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Abstract

Photosynthetic CO2 assimilation is the carbon source for plant anabolism, including amino acid production and protein
synthesis. The biosynthesis of leaf proteins is known for decades to correlate with photosynthetic activity but the
mechanisms controlling this effect are not documented. The cornerstone of the regulation of protein synthesis is believed
to be translation initiation, which involves multiple phosphorylation events in Eukaryotes. We took advantage of
phosphoproteomic methods applied to Arabidopsis thaliana rosettes harvested under controlled photosynthetic gas-
exchange conditions to characterize the phosphorylation pattern of ribosomal proteins (RPs) and eukaryotic initiation
factors (eIFs). The analyses detected 14 and 11 new RP and eIF phosphorylation sites, respectively, revealed significant CO2-
dependent and/or light/dark phosphorylation patterns and showed concerted changes in 13 eIF phosphorylation sites and
9 ribosomal phosphorylation sites. In addition to the well-recognized role of the ribosomal small subunit protein RPS6, our
data indicate the involvement of eIF3, eIF4A, eIF4B, eIF4G and eIF5 phosphorylation in controlling translation initiation
when photosynthesis varies. The response of protein biosynthesis to the photosynthetic input thus appears to be the result
of a complex regulation network involving both stimulating (e.g. RPS6, eIF4B phosphorylation) and inhibiting (e.g. eIF4G
phosphorylation) molecular events.
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Introduction

Intense efforts are currently devoted to disentangle the

regulation of protein biosynthesis in plant organs with the aim to

increase the protein fraction or the nitrogen content in crops. In

addition to nitrogen nutrition, metabolic commitments and

transcriptional control, mRNA translation is believed to be of

importance to regulate protein synthesis and protein content of

plant tissues. Plants are phototrophic organisms and thus their

translational activity is strongly influenced by light and photosyn-

thesis. Pioneering studies with isotopic labeling showed that in

mature leaves, gross protein synthesis (incorporation of 15N in

proteins) was larger in the light than in the dark [1] and in Chlorella

pyrenoidosa (single celled green alga), steady-state photosynthesis has

been found to be associated with 14C-labeling in proteinaceous

amino acids [2]. More recently, molecular studies have shown that

in plant leaves, light stimulates translational activity of photosyn-

thesis-related mRNA (ferredoxin) [3] and furthermore, a larger

fraction of polysomal ribosomes has been found in the light

compared to the dark [4]. In leaves, isotopic labelling (14CO2) has

demonstrated that an increasing proportion (from 10 to 24% of

net fixed carbon) of carbon is allocated to protein synthesis as

photosynthesis increases from low to high [CO2] conditions,

demonstrating a positive effect of photosynthetic input (CO2 mole

fraction) on gross protein synthesis [5]. Nevertheless, little is known

about the mechanisms by which photosynthesis influences

translation and overall protein production.

Quite generally, protein phosphorylation appears to play a

crucial role in the regulation of translational initiation. A key-step

of translational control seems to be the phosphorylation of the

ribosomal protein S6 (RPS6), since alterations of its phosphory-

lation level have drastic effects on growth and polysome formation

[6,7]. Recent proteomic characterization of ribosomal phosphor-

ylation patterns showed a significant increase of the phosphory-

lation level of RPS6 as well as two other ribosomal proteins (RPP1

and RPL29-1) in the light when compared to the dark [8]. RPS6 is

known to be phosphorylated by S6 kinase (S6K) which in turn may

be phosphorylated by other kinases such as PDK1 and the TOR/

RAPTOR complex [9,10]. Translation initiation in the cytoplasm

begins with the recognition of the cap structure (59 end of mRNA)

by the initiation factors eIF4E, eIF4G, eIF4B and the RNA

helicase eIF4A. The 40S ribosomal subunit binds an eIF2-

containing complex (eIF2, GTP and Met-tRNA) and the initiation

factors eIF1, eIF1A, eIF3 and eIF5, forming the 43S initiation

complex. The cap-binding complex interacts with the 43S

initiation complex and allows mRNA scanning and the correct

positioning at the start codon. eIF5B eventually promotes join-

ing of the 60S ribosomal subunit. At each of these steps,
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eIF-phosphorylation is crucial for the control of initiation and

there are multiple phosphorylation sites on these proteins, which

can either stimulate or repress translation (for a review, see [11]).

The phosphorylation of eIF1, eIF2b, eIF3c and eIF5 by CK2

favours the assembly of the complex that binds the 40S ribosomal

subunit in vitro [12,13]. Phosphorylation of eIF4B and poly-A

binding protein (PABP) promotes their interaction and the

formation of a circular mRNA structure that stimulates translation

initiation [14]. In mammalian cells, the alteration of eIF4E

phosphorylation compromises mRNA cap recognition, however if

eIF4E phosphorylation occurs in plants the equivalent phosphor-

ylated Ser residue in the primary sequence is missing [15].

Similarly, eIF4G and eIF(iso)4G, which participate to mRNA

binding and interact with eIF4B, might be controlled by

phosphorylation but this is at present uncertain due to the absence

of the phosphorylation motif for binding the MNKI kinase [16].

Phosphorylation of eIF2a by GCN2 seems to down-regulate

translation by disfavouring the eIF2B-catalyzed exchange of GDP

for GTP [16,17]. The current knowledge of this complex

orchestration mostly stems from in vitro studies, characterization

of mutants or use of stressful conditions (e.g., anoxia). But quite

critically, the way by which eIF phosphorylation is influenced by

natural light/dark conditions and photosynthetic conditions is not

well documented.

Figure 1. Photosynthetic parameters. leaf net photosynthesis (A), leaf-to-air water vapour drawdown (B), leaf glucose content (C) and Gly-to-Ser
ratio (D), under the different photosynthetic contexts used (LC, NC and HC: 100, 380 and 1000 mmol mol21 CO2; D: darkness).
doi:10.1371/journal.pone.0070692.g001
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As an aid in clarifying the nature and the phosphorylation of

molecular actors involved in photosynthesis-driven translational

control, we have investigated the phosphorylation of ribosomal

proteins and initiation factors in Arabidopsis leaves in different

photosynthetic contexts: various CO2 conditions (ordinary [CO2]

(380 ppm), high [CO2] (1000 ppm), low [CO2] (100 ppm)) in the

light and ordinary CO2 in the dark. We took advantage of a gas-

exchange system with liquid N2 spraying for instant sampling and

nanoLC-MS/MS based phosphoproteomics to characterize phos-

phorylated peptides in rosette leaves. We report 11 new

phosphorylation sites in eIF proteins and 14 new sites in ribosomal

proteins (RPs), describe significant CO2-dependent protein phos-

phorylation patterns and show concerted changes in 13 eIF

phosphorylation sites and 9 ribosomal phosphorylation sites. Our

results suggest a key role of eIF and RP phosphorylation in

photosynthesis-driven regulation of mRNA translation in leaves.

Results

Photosynthetic Conditions and Sampling
Short-day grown Arabidopsis rosettes were placed in a purpose-

built chamber connected to a gas-exchange system, as described in

the Material and Methods. CO2 and water vapour (H2O) were

monitored so as to calculate photosynthesis and transpiration.

After four hours at a photosynthetic steady-state at the desired

CO2 mole fraction, leaf rosettes were sprayed with liquid nitrogen

and sampled. Sampling in the dark was carried out on dark-

adapted leaves, that is, after two hours in darkness following 4

hours of steady photosynthesis at ordinary CO2 (380 ppm).

Protein composition and phosphorylation were analysed by

nanoLC-MS/MS. Figures 1A and 1B show steady net photosyn-

thesis rates and leaf-to-air water vapour draw-down levels,

respectively. There was a very clear effect of CO2 on photosyn-

thesis demonstrating that the four types of samples analysed here

(ordinary, low and high CO2 and darkness) corresponded to

strongly different photosynthetic contexts. This CO2 effect was

independent from water deficit since the water vapour draw-down

between evaporation sites and atmosphere remained constant

(Figure 1B). Photosynthetic metabolism (photosynthate produc-

tion) was reflected by the glucose content which correlated with

the photosynthesis rate (Figure 1C). The quotient of the two key

photorespiratory metabolites Gly and Ser, which correlates with

O2 fixation (photorespiration activity), was indeed higher at low

CO2 (Figure 1D, LC).

LC-MS Analysis of Leaf Proteins
For proteomic characterization, protein samples were digested

by trypsin and then analysed as described in [18]. Peptides were

methylated via formylation with labeled (deuterated) or non-

labeled formaldehyde and reduction with cyanoborohydride.

Non-labeled and labeled peptides were mixed (the condition of

interest (non-labeled) and the mix of all samples as a reference

(labelled) mixed with a 1:1 mixing ratio, see Material and methods),

and underwent a SCX (Strong Cation Exchange) chromatog-

raphy. Collected fractions were enriched in phospho-peptides by

IMAC (Immobilized ion Metal Affinity Chromatography) and

then analysed by nanoLC-MS/MS. The quantity of proteins

was determined by direct analysis (no SCX and labeling).

(Phospho)peptides were identified with X!Tandem [19] and

quantified with MassChroQ [20]. Table 1 summarizes the

number of phosphopeptides identified using nanoLC-MS/MS,

with the complete list of phosphorylated peptide sequences in

Table S1. 156 ribosomal proteins were detected, among which

33 phosphorylated ribosomal proteins were found, represented

by 45 phosphopeptides (for a complete description of RP and

eIF proteins identified, see Table S2). 25 eIFs were detected,

with 15 phosphorylated proteins represented by 28 phospho-

peptides. The statistical analysis of peptide quantity in samples

(three independent biological replicates were analysed for each

experimental condition) indicated no difference between the

CO2 and dark treatments. Therefore, the changes in phospho-

peptide abundance described below are strictly related to

changes in the phosphorylation ratio.

Phosphopeptides and Phosphorylation Sites
Phosphopeptides identified in RPs and eIFs are listed in Table 1,

in which significant (i.e., with statistically significant changes under

photosynthetic/light conditions), insignificant and punctual (i.e.,

punctually phosphorylated with little repeatability) sites are

distinguished. Phosphorylation sites were mapped using MS

spectra and searching with the MASCOT engine, thus giving

obvious phosphorylated residues in peptides. In some instances,

however, ambiguous cases occurred, in which the nature of the

phosphorylated residue could not be determined (two undistin-

guishable possibilities). This was the case for peptides from

RPS6A/RPS6B, RPS2C, RPS17 and eIF4G that include two

phosphorylatable Ser residues or both Ser and Thr residues (Table

S2). New phosphorylation sites (absent from PhosPhAt 4.0 (http://

phosphat.mpimp-golm.mpg.de/) and from [21] and [8]) were

detected in at least 16 ribosomal proteins, including in the

ribosomal proteins RPS6A and/or RPS6B at Ser 229 (with mono-

and bis-phosphorylated peptides DRRpS229ESLAK and

DRRpS229EpS231LAK, respectively, Figure 2). In this case, the

specific nature of the ribosomal protein RPS6A or B could not be

solved due to their close sequence identity. We also detected a new

phosphopeptide located in the activation loop of the S6 kinases

S6K1 and S6K2 (SNpS290MCGTTEYMAPEIVR). Other new

sites located in eIFs are listed in Table 1 and amongst them, the

most significant are Ser 178 (or Thr 177) and Ser 530 in eIF4G

(Figure 2). We did not detect any phosphorylated sites in eIF4E

and PABP (Poly-A Binding Proteins). Amongst the components of

the eIF2B complex (a guanidine nucleotide exchange factor which

catalyzes the substitution of hydrolysed GDP for GTP in eIF2), no

phosphopeptide was detected for eIF2Ba, eIF2Bc and eIF2Be
while eIF2Bb was phosphorylated at Ser 173 (SADKSpS173LTR)

and eIF2Bd in 10 different Ser residues (Table 1).

Phosphorylation Patterns
Nine phosphorylation sites in ribosomal proteins and 13

phosphorylation sites in eIFs were significantly affected (P,0.04)

by conditions: light/dark and/or photosynthetic activity (CO2

mole fraction). Their phosphorylation patterns are shown in

Figures 3 and 4. Several phosphorylation sites in ribosomal

proteins were affected by both light/dark and photosynthesis

conditions, such as Ser 229 and 231 in RPS6A and/or RPS6B,

Ser 19 in RPS14A and Thr 138 in RPL13D (Figure 3A and

3B). In the latter case, the photosynthetic effect was not

monotonous and light decreased Thr 138 phosphorylation (at

380 ppm CO2). Most sites in eIFs were significantly affected by

light/dark conditions, except for eIF4B1 at Ser 480; by contrast,

this site was significantly affected by CO2 mole fraction. Most

sites were positively influenced by CO2 mole fraction (i.e. there

was a positive correlation between phosphorylation and

photosynthetic activity), except for eIF4G, eIF4A and eIF5A

(Figure 4A). That is, the components of eIF4F were either not

phosphorylated in our conditions (eIF4E) or responded nega-

tively to photosynthetic conditions (eIF4G, eIF4A). 17 and 5

sites in ribosomal proteins and eIFs, respectively, were

Translational Control in Plants
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constantly phosphorylated, with no significant change with

light/dark or CO2 mole fraction. For example, this was the case

of Ser 52 in RPL6C and Ser 4 in eIF4A1 (Table S1). The

pseudo-uridylate synthase (TruB, enzyme which post-transcrip-

tionnally isomerizes uridine residues in t-RNA) was affected by

light/dark conditions (more phosphorylated at night at Ser 132)

but not by photosynthesis, while eIF2Bd at Ser 127 was

contrarily affected (more phosphorylated in the light, significant

photosynthetic effect) and eIF2Bb (Ser 173) was not significantly

affected by any condition. That is, the phosphorylation pattern

of the eIF2B complex did not appear to be simple, with

contrasted effects on individual subunits.

Discussion

The phosphorylation status of eIFs and RPs is known to be

crucial in regulating protein interactions and activity for transla-

tion initiation [11]. Here, we show multiple phosphorylation sites

and protein phosphorylation patterns affected by light and

photosynthetic (CO2) conditions.

RP Phosphorylation
In eukaryotic cellular systems examined so far (mammals, yeast

and plants), cytosolic RPs have been found to be phosphorylated,

allowing a fine control of translation. RPS6 activity seems to be

controlled by phosphorylation (for a review, see [22]). In

mammalian cells, the TOR kinase phosphorylates the S6K kinase

that in turn phosphorylates RPS6. Homologs of TOR and S6K

exist in plants and RPS6 has indeed been found to be

phosphorylated [23,24]. A recent investigation of RP phosphor-

ylation in Arabidopsis leaves in the light and in the dark has further

shown that RPP1A/B/C, RPS6A/B, RPP0B, RPS2C and

RPL29A are phosphorylated and RPP1A/B/C, RPS6A/B, and

RPL29A respond to light/dark conditions: RPS6A/B appeared to

be significantly more phosphorylated in the light while RPP1A/B/

C and RPL29A appeared to be slightly but insignificantly more

phosphorylated in the light [8]. Here, we show that in addition to

RPP1A/B/C, RPS2C, RPP0C and RPS6A/B, 25 other ribosom-

al proteins can be phosphorylated (Table 1), among which two are

significantly affected by light (RPS14A and RPL13D). The

phosphorylation of RPs of the small subunit (RPS6 and RPS14)

Figure 2. Identification of Ser 229 and Ser 231 in RPS6A/B (A) and Ser 178 and Ser 530 in eIF4G (B) by mass spectrometric
sequencing of two phosphorylated peptides. Spectra of methylated and phosphorylated peptides show b (N-terminal) and y (C-terminal)
fragment-ions as displayed in the sequence (top of each spectrum). Lower case p indicates the phosphate group. Phosphorylation is localized
according to the pattern of the fragment-ions containing phosphate and fragment-ions with phosphate loss. Ions showing a neutral loss of H3PO4

and 26H3PO4 are labelled with ‘‘-1P’’ and ‘‘-2P’’ respectively. Fragment from neutral losses are coloured in pink, and fragment ions are coloured in
green. Parental ion fragments are, as shown in insets: DRRpSEpSLAK (m/z 643.31177, z = 2), DRRpSESLAK (m/z 402.55502, z = 3), LGpSPKDR (m/z
458.75925, z = 2) and TTpSAPPNMDDQK (m/z 724.83307, z = 2). They were identified in 6, 20, 1 and 76 spectra, respectively.
doi:10.1371/journal.pone.0070692.g002
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further appeared to correlate with photosynthetic activity

(Figure 3). Changes in phosphorylation of RPs caused by

environmental or hormonal conditions have been found to occur

in maize roots under hypoxia [23] and anticipated in plant lines

with altered TOR or S6K kinases [9,25]. During the light period

and photosynthesis, which are associated with an increased

translation activity (see Introduction), the stimulation of translational

activity is thus likely to be associated with a pronounced

phosphorylation of RPs, thereby promoting the formation of the

initiation complex.

eIF Phosphorylation
The phosphorylation of several eIFs is believed to be of

considerable importance in triggering translation initiation

[26,27]. Multiple phosphorylations of several eIFs by CK2 are

required for the formation of the mRNA-binding complex

containing eIF4A, eIF4B, eIF4F and eIF5 [12]. To date, eIF4A

has been found to be increasingly phosphorylated and eIF4B

dephosphorylated in response to stressful environmental changes

in plant cells [28,29,30]. eIF3c has been shown to be phosphor-

ylated by CK2 [13] although no apparent effect of eIF3c

phosphorylation on translation has been detected [31].

Here, we show that several eIF3 (eIF3a, eIF3b, eIF3c), eIF4

(eIF4A, eIF4B, eIF4G) and eIF5 (eIF5A2, eIF5A3) proteins are

phosphorylated and many phosphorylation sites responded

significantly to light/dark and photosynthesis conditions

(Figure 4). Importantly, eIF4A and eIF4G were found to be

less phosphorylated at high photosynthetic rates and more

phosphorylated in the dark. It is plausible that eIF4A and

eIF4G phosphorylation inhibits day-time translation or that the

phosphorylation is not required under ordinary, non-stressful

conditions (or alternatively, that photosynthate deprivation in

the dark causes eIF4A and eIF4G phosphorylation). All

phosphorylation sites of eIF4B respond positively to photosyn-

thesis suggesting a reverse pattern (eIF4B phosphorylation

required for ordinary translation). In our study, eIF4E,

eIF(iso)4E and eIF(iso)4G did not appear to be phosphorylated,

despite the fact that their involvement has proven important in

selecting translated mRNAs [32]. eIF3c, eIF5A2 and eIF5A3

were found to be more phosphorylated in the light compared to

the dark, with little photosynthetic effect. The interaction of

eIF3c with eIF5 is believed to be crucial for AUG recognition

along the mRNA and therefore, these eIFs (and eIF3c

phosphorylation at Ser 40) are probably essential at all times

when translation is active (daytime). We further show that other

eIF3s are phosphorylated (eIF3B1/2), implying that eIF3 activity

might also require phosphorylation at other sites. It should

nevertheless be recognized that phosphorylation of eIF5A has

been found to favour eIF5A sequestration in the nucleus and

thus it has been hypothesized to repress translation [33,34]. The

individual effects of multiple phosphorylation events in eIFs on

translation are thus presently difficult to appreciate but here, the

clear effect on RPS6 and eIF4B phosphorylation undoubtedly

reflects translation enhancement at increased photosynthetic

rates.

Figure 3. Phosphorylation pattern of ribosomal proteins. A, Heat map representation of the phosphorylation level of significant
phosphopeptides (phosphorylated peptides that showed statistically significant changes with conditions). A hierarchical clustering analysis is shown
on the left. All significant phosphopeptides had a very similar pattern, except for RPL13D, which was minimally phosphorylated under ordinary
conditions (NC). Unavailable data (non-detected peptides) are indicated with a grey cell. B and C, Detailed phosphorylation pattern of RPS6A/B and
RPS14A. LC, NC, HC and D: low, normal and high CO2 and darkness.
doi:10.1371/journal.pone.0070692.g003
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New Phosphorylation Sites
Most phosphorylation sites in RPs described here (Table S1) are

novel, with the notable exception of Ser 231, Ser 237 and Ser 240

in RPS6A/B [8]. We found the new phosphorylation site Ser 229,

which cannot be unambiguously attributed to RPS6A or RPS6B

(Figure 2). eIF3c is associated with a phosphorylation site at Ser

40, which has been anticipated in Arabidopsis using sequence

alignment with wheat (Ser 53) [12]. eIF4B is phosphorylated at Ser

422 in mammals but this site does not exist in Arabidopsis [35]. We

found instead a phosphorylation site at Ser 462 in eIF4B1 and Ser

475 in eIF4B2 (and three other sites, Table 1). The three

phosphorylation sites that vary significantly under our conditions

(Ser 480 in eIF4B1, Ser 475 and Ser 489 in eIF4B2) seem to be

conserved in higher plants (such as A. lyrata, Populus trichocarpa,

Glycine max and Vitis vinifera). eIF4G appeared to be phosphorylated

in the N-ter region as we found phosphorylation sites at Thr 177

and/or Ser 178. However, this region is not associated with a clear

function in translation [29,36]. We further found two new

phosphorylation sites (Ser 530 and 1353) which might influence

eIF4G activity (these Ser residues might be in regions interacting

with eIF3 and eIF4E as in yeast [37]). eIF5A3 has been shown to

be phosphorylated at Ser 2 in maize [33,34] and the same site is

found here (Table 1).

Translational Control and Photosynthesis
Considering the whole data set obtained here, clear phosphor-

ylation patterns were observed in key actors of translation

initiation (RPs, eIFs) likely reflecting stimulation of daytime

translation (compared to the dark). There is a considerable

literature showing that nitrogen metabolism and nitrate assimila-

tion occur during daytime in leaves (reviewed in [38]) while dark

respiration is (partly) fed by protein degradation and amino acid

recycling [39]. That is, metabolic imperatives caused by light/dark

alternation are so that in leaves, gross protein synthesis and

Figure 4. Phosphorylation pattern of initiation factors eIFs. A, Heat map representation of the phosphorylation level of significant
phosphopeptides. A hierarchical clustering analysis is shown on the left so as to separate photosynthesis or light-stimulated (top) and -inhibited
(bottom) phosphorylation events. Unavailable data (non-detected peptides) are indicated with a grey cell. B and C, Detailed phosphorylation pattern
of eIF4B2 and eIF4G. LC, NC, HC and D: low, normal and high CO2 and darkness.
doi:10.1371/journal.pone.0070692.g004
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translational activity is more important in the light. Our results

suggest that translation initiation is stimulated via phosphorylation

of RP proteins, eIF2Bd, eIF3 and eIF4B and dephosphorylation of

repressing sites in eIF4A and eIF4G when photosynthesis

increases. The molecular mechanism and rationale of this

regulation remain to be elucidated, though. We suggest that

important cellular kinases are responsible for this pattern (Figure 5).

In fact, eIF2, eIF3c, eIF4B and eIF5 are phosphorylated by CK2

which in turn seems to be activated by light phase duration [40]

and photomorphogenesis [41] and thus presumably, might be

activated during active photosynthesis. In mammals, eIF4B is

phosphorylated by the S6K kinase (which also phosphorylates

RPS6) and ORF45 of the herpes virus, and this stimulates

translational activity [42]. Despite the fact that the phosphorylated

site of mammalian eIF4B is not conserved in plants, eIF4B

phosphorylation probably stimulates translation initiation. Fur-

thermore, plants have two S6K isoforms (S6K1 and S6K2) that

are activated by PDK1 which is in turn activated by auxin

response and growth [43]. S6K is also activated by the TOR-

RAPTOR signalling pathway and, perhaps, SnRK1 under specific

metabolic conditions (photosynthate and sugar availability) [9,44].

By contrast, GCN2-catalyzed phosphorylation of eIF2a (from

which no phosphopeptide was detected here) is stimulated under

deprived or stressful conditions [45]. Taken as a whole, there is

probably a balance between the stimulation of translation

initiation caused by favourable nutritional conditions (photosyn-

thesis) and the repression caused by cell division (e.g., CDK-

dependent phosphorylation of eIF4A, [46]) or stress (e.g., GCN2-

catalyzed phosphorylation of eIF2a) (Fig. 5).

Perspectives
Our understanding of translation initiation in plants is still

rather incomplete and further work is needed to disentangle the

specific role of individual eIFs and their associated phosphoryla-

tion. In that regard, our model in Figure 5 is very crude and

probably not fully representative. Future high-throughput se-

quencing and proteomics are warranted to yield substantial pieces

of information on translational control in response to environ-

mental conditions. Our data suggest that natural nutritional

conditions influence translation in folio. This is probably of prime

importance in situ (in the field) since changes in CO2 mole fraction

occur quite frequently due to, for example, stomatal closure or

diurnal CO2 changes in the ecosystem atmosphere. Some

uncertainty nevertheless remains as to the targets of such a

translational regulation: since the use of different eIFs modifies

mRNA affinity (e.g., eIF4E versus eIF(iso)4E), the nature of

mRNA selected for increased translation during photosynthesis is

probably finely adjusted. Future translatomics (and polysome)

analyses or 15N-labeling followed by protein-specific isotopic

analyses would be required to describe the full translational

picture of photosynthetising leaves.

Figure 5. Tentative summary of protein phosphorylation events involved in translation initiation during photosynthesis, with
activating (black) and repressing (grey) effects. Phosphorylated proteins are indicated with the symbol P. Those associated with
phosphopeptides detected in the present study are indicated with a star, with the phosphorylation level that either correlates (black star), anti-
correlates (grey star) or stays constant (white star) with photosynthesis. This figure is simplified and does not mention all molecular actors (such as
eIF4G and eIF2Bd).
doi:10.1371/journal.pone.0070692.g005
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Materials and Methods

Plant Material and Gas-exchange
After sowing on potting mix, Arabidopsis (Col-0 ecotype) plantlets

were transplanted to individual pots and grown in a controlled

environment (growth chamber) under 8:16 h light/dark (short

days) at an irradiance of approximately 100 mmol m22 s21, 20/

18uC day/night temperature, 65% humidity and nutrient solution

(1 g L21 PP14-12-32, [Plant-Prod, Puteaux, France] supplement-

ed with 20 mL L21 fertoligo L [Fertil, Boulogne-Billancourt,

France]) twice a week. Gas-exchange were carried out with a

purpose-built cuvette adapted to three Arabidopsis rosettes con-

nected to the sample channel of the Li-Cor 6400 xt (Li-Cor,

Lincoln, USA). Water vapour in inlet air was fixed (dew point

temperature 11.6uC) with a dew-point generator Li-610 (Li-Cor,

Lincoln, USA). Air temperature in the chamber was maintained

with a water-bath. Leaf rosettes were separated from the below-

ground part and soil of the pot by a plexiglass wall (with specific

holes for collars) so as to avoid alteration of gas-exchange by soil

and root respiration. The upper wall of the leaf cuvette was made

of a tight polyvinyl chloride film allowing instant sampling by

liquid N2 spraying. Photosynthesis was allowed to stabilise under

the desired CO2 mole fraction (at 250 mmol m22 s21 PAR) and

after 4 hours, rosettes were instantly frozen and stored at –80uC
for further analyses. Rosettes sampled in darkness were collected

after 4 hours at 380 ppm CO2 and 2 hours dark-adaptation.

Protein Extraction and In-solution Digestion
Leaf fragments were finely ground with liquid nitrogen. Protein

extraction was carried out by using the TCA/acetone method.

Briefly, the powder was incubated in a precipitating solution (10%

TCA, 0.07 b-mercaptoethanol in acetone) for 1h at –20uC. After

centrifugation (19 000 g), the pellet was rinced three times in

0.07% b-mercaptoethanol in acetone and spin-dried. It was then

suspended in a solubilization solution made of 6 M urea, 2 M

thiourea, 2% CHAPS (w/v) and 30 mM Tris-HCl pH 7.8

(60 mL/mg) and cell debris were eliminated by centrifugation.

Total protein content was determined using the 2-D Quant-kit

(GE Healthcare). 2 mg of proteins were reduced by adding DTT

(final concentration: 10 mM) and then alkylated by adding

iodoacetamide (final concentration: 40 mM). The samples were

diluted to 1 M urea by adding 50 mM ammonium bicarbonate.

Protein digestion (sequencing grade modified trypsin, Promega)

was performed at an enzyme/substrate ratio of 1:30 (w/w) by

overnight incubation at 37uC, and stopped by adding 1% formic

acid (v/v).

Stable Isotope Dimethyl Labeling
Tryptic peptides were spin-dried and re-suspended in 1 mL of

5% formic acid (v/v). Stable isotope dimethyl labeling was

performed according to the on-column procedure described by

[47] using formaldehyde or [2H2]formaldehyde (labeling). Each

sample was loaded on a separate SepPak C18 cartridge column

(3cc, Waters) and washed with 0.6% acetic acid (v/v). SepPak

columns were flushed seven times with 1 mL of the respective

labeling reductive reagent (50 mM sodium phosphate buffer

pH 7.5, 30 mM NaBH3CN and 0.2% CH2O or C2H2O (v/v)).

Samples were eluted with 500 mL of 0.6% acetic acid (v/v) and

80% acetonitrile (v/v). All labelled dimethylated peptides were

homogenized to form a reference sample, before being mixed with

the unlabeled dimethylated peptides in a 1:1 abundance ratio.

Peptide Fractionation Using Strong Cation Exchange
Chromatography (SCX)

Prior to SCX, the dimethyl-labeled peptides were spin-dried

and resuspended in 500 mL of solvent A (30% acetonitrile (v/v),

5% formic acid (v/v), pH 2.5). SCX was performed at 200 mL/

min using Zorbax BioSCX-Series II columns (0.8-mm inner

diameter650-mm length; 3.5 mm particle size) and a Famos

autosampler (LC Packings). After sample loading, the first 17 min

were run isocratically at 100% solvent A, followed by an increasing

pH gradient using solvent B (30% acetonitrile (v/v), 5% formic

acid (v/v), 540 mM ammonium formate, pH 4.7). Twelve SCX

fractions per sample were automatically collected using an on-line

Probot system (LC Packings).

Selective Enrichment of Phosphopeptides Using
Immobilized Metal Ion Affinity Chromatography (IMAC)

SCX fractions were dried and resuspended in 300 mL of solvent

C (250 mM acetic acid, 30% acetonitrile (v/v)). Peptides were

gently mixed with 80 mL of Phos-Select iron affinity gel (Sigma-

Aldrich) and incubated for 2 hours using a tube rotator, as

described by [48]. The mixture was transferred into SigmaPrep

spin columns (Sigma-Aldrich) and the flow-through fractions

containing the non-phosphorylated peptides were collected. Iron

affinity gel with bound phosphopeptides was rinsed twice with

200 mL of solvent C, then with double distilled water. The elution

of bound phosphopeptides was achieved with 100 mL of solvent D

(400 mM NH4OH, 30% acetonitrile) by centrifugation at 8200 g.

Eluted phosphopeptides were dried and kept at –20uC until LC-

MS/MS analysis.

LC-MS/MS Analysis
On-line liquid chromatography was performed on a NanoLC-

Ultra system (Eksigent). A 4 mL sample was loaded at 7.5 mL/min

on a pre-column cartridge (stationary phase: C18 PepMap 100,

particles of 5 mm; column: 100 mm i.d., 1 cm length; Dionex) and

desalted with 0.1% formic acid in water. After 3 min, the

precolumn cartridge was connected to the separating PepMap

C18 column (stationary phase C18 PepMap 100, particles of 3 mm;

column 75 mm i.d., 150 mm length; Dionex). Buffers were 0.1%

formic acid in water (solvent E) and 0.1% formic acid in

acetonitrile (solvent F). Peptide separation was achieved using a

linear gradient from 5 to 30% F at 300 nL/min. Eluted peptides

were analysed with a Q-Exactive mass spectrometer (Thermo

Electron) using a nano-electrospray interface (non-coated capillary

probe, 10 m i.d; New Objective). Peptide ions were analysed using

Xcalibur 2.1 with the following data-dependent acquisition steps:

(1) full MS scan on a 300 to 1400 range of mass-to-charge ratio

(m/z) with a resolution of 70000) and (2) MS/MS (normalized

collision energy: 30%; resolution: 17500). Step 2 was repeated for

the 8 major ions detected in step 1.

Identification of Peptides and Phosphorylation Sites
Database searches were performed using X!Tandem CY-

CLONE (http://www.thegpm.org/TANDEM). Cys carboxyami-

domethylation and light and heavy dimethylation of peptide N-

termini and lysine residues were set as static modifications while

Met oxidation and phosphorylation of tyrosine, serine or threonine

residues were set as variable modifications. Precursor mass

tolerance was 10 ppm and fragment mass tolerance was

0.02 Th. Identifications were performed using the TAIRrelease

8 database (http://www.uniprot.org/http://www.arabidopsis.

org/). Identified proteins were filtered and grouped using the

X!Tandem pipeline v3.2.0 (http://pappso.inra.fr/bioinfo/
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xtandempipeline/). Data filtering was achieved according to a

peptide E value smaller than 0.01. The false discovery rate (FDR)

was estimated to 0.92%.

Quantification of Peptides and Phosphorylation Sites
Relative quantification of non-phosphorylated peptides and

phosphopeptides was performed using the MassChroQ software

[20] by extracting ion chromatograms (XICs) of all identified

peptides within a 10 ppm window and by integrating the area of

the XIC peak at their corresponding retention time. LC-MS/MS

chromatogram alignment was performed by using common MS/

MS identifications as landmarks to evaluate retention time

deviations along the chromatographic profiles. Alignments were

performed within groups of LC-MS/MS runs originating from

similar SCX fractions. For each peptide detected in the heavy and

light form in a single LC-MS/MS run, a light-to-heavy ratio was

computed. To compensate for possible global deviations to 1:1 of

the light/heavy ratio (i.e. unequal mixture of heavy and light

samples), normalization was performed by centering to 1 the

distribution of all ratios within each LC-MS/MS run. Quantita-

tion of protein amounts was performed by averaging centered data

obtained from their different peptides. Subsequent statistical

analyses (analysis of variance) were performed on log10-trans-

formed normalized data.

Supporting Information
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