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ABSTRACT

Polymyxin antibiotics are disfavored owing to their potential clinical toxicity, especially nephrotoxicity. However, the dry antibiotic 
development pipeline, together with the increasing global prevalence of infections caused by multidrug-resistant (MDR) gram-negative 
bacteria, have renewed clinical interest in these polypeptide antibiotics. This review highlights the current information regarding the 
mechanisms of resistance to polymyxins and their molecular epidemiology. Knowledge of the resistance mechanisms and epidemiology 
of these pathogens is critical for the development of novel antibacterial agents and rapid treatment choices. 
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INTRODUCTION

Polymyxins have been used for over 50 years in both veterinary 
and human medicine. Colistin is a decapeptide administered either 
as colistin sulfate, an oral prodrug, or as colistin methanesulfonate 
(CMS) when used intravenously1. There are five types of polymyxins, 
from A to E, but only colistin (also known as polymyxin E) and 
polymyxin B were clinically used in the 1950s, as they were found 
to be the least nephrotoxic2.  Ultimately, these antibiotics fell out of 
favor, and their systemic use was reduced due to their considerable 
adverse effects, particularly their potential for nephrotoxicity and 
neurotoxicity3. Attempts to reduce nephrotoxicity through dosing 
have also been discussed4,5. Among these, extensive monitoring of 
renal function during therapy, avoiding the co-administration of 
other known nephrotoxic agents when possible, and maintaining an 
adequate fluid and electrolyte balance are essential components of 
approaches that may reduce the risk of polymyxin-associated acute 
kidney injury5. However, interest in systemic polymyxins has recently 
reignited owing to the growing incidence of infections caused by 
multidrug-resistant (MDR) gram-negative bacteria6. Unfortunately, 
extensive use of colistin as a livestock food additive, along with 
its inappropriate use in clinical medicine, has led to reservoirs 
of high levels of resistance in gram-negative bacteria, such as 
Acinetobacter baumannii, Enterobacteriaceae (Klebsiella pneumoniae 
and Escherichia coli), and Pseudomonas aeruginosa7. Although the 

value of polymyxins now used in health centers is acknowledged, 
novel derivatives that are less toxic and more effective are needed. 
CA824, FADDI-02, MicuRx-12, FADDI-287 and SPR206 [previously 
CA1206] are polymyxins derivatives shown to be superior to the old 
polymyxins in human clinical trials and rodent lung infection models 
with P. aeruginosa and/or A. baumannii8,9 Despite the improvements 
in the discovery of new polymyxins derivatives, investigation groups 
also have made excellent progress in clarifying the mechanism of 
colistin resistance. The goal of the present review is to discuss the 
molecular mechanisms of polymyxin resistance and their molecular 
epidemiological data. 

Mechanisms of Polymyxin Resistance

Polymyxins are cyclic peptides that share almost identical 
primary structures. Polymyxin B is currently used in antimicrobial 
therapy10.  Polymyxins selectively bind to lipopolysaccharides 
(LPSs), thereby acting on the membranes of gram-negative 
bacteria (Figure 1). LPSs are composed of three domains: the 
central oligosaccharide,  lipid A, and O antigen11. Lipid A, the 
most vital domain, plays an essential role in maintaining the 
stability and integrity of membrane structures. Initially, polymyxins 
electrostatically interact with lipid A phosphate groups and replace 
the calcium and magnesium ions, whose function is to cross-bridge 
adjacent lipid A molecules and stabilize the outer membrane. These 
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FIGURE 1: Antibacterial mechanisms of polymyxin: (a) classic mechanism of membrane lysis; (b) alternative mechanism of vesicle-
vesicle contact. LPS: lipopolysaccharide22

interactions result in the decline of lipid A and the subsequent 
disruption of the membrane, leading to cell lysis and death12.

Some chromosomal mutations have been associated with 
colistin resistance, as they lead to changes in the outer membrane 
elements essential to polymyxin function. Polymyxin resistance 
is mediated mainly by the structural modification of membrane 
LPSs through regulatory systems. These changes can reduce the 
electrostatic attraction between the phosphate groups of lipid A 
and polymyxin molecule13,14.

Modification of the chemical composition of lipid A via the 
biosynthesis and addition of phosphoethanolamine (pEtN) and 
4-amino-4-deoxy-L-arabinose (L-Ara4N) are the most common 
mechanisms. The master regulator of polymyxin resistance includes 
a two-component Pho-PQ system. Sub-lethal concentrations 
of polymyxin induce the PhoQ kinase sensor to phosphorylate 
PhoP, leading to activation of the PmrA-PmrB system via the 
PmrD protein15. Therefore, the PmrA-PmrB system stimulates the 
expression of the arnBCADTEF operon, which is necessary for the 
covalent alteration of the phosphate groups in lipid A. Structural 
modifications decrease the negative charge on the membrane, 
avoiding interactions with polymyxin13.

Another regulatory system, crrAB, acts as a mediator of 
polymyxin resistance. It comprises a histidine kinase (crrB) and 
an inactivated or absent response regulator (crrA) in certain 
strains of K. pneumoniae, leading to activation of the pmrCAB 
system16. Numerous mutations have been documented in the 
genes involved in polymyxin resistance. The most common 
mechanism found in K. pneumoniae involves inactivation of mgrB 
through nonsense mutations, nucleotide deletion, and truncation 
by insertion elements. Recently, a clonal spread of polymyxin-
resistant K. pneumoniae isolates was described for the first time, 
with polymyxin resistance linked with various changes in the mgrB 
gene involving inactivation by an insertion sequence and nonsense 

point mutations. The results showed that mgrB alterations were 
the most frequent source of polymyxin resistance in Brazilian 
clinical settings17. 

Regarding inactivation by insertion elements (ISs), the IS5 
family is the most frequently found, followed by the IS1 family. 
These ISs can be inserted into the coding or promoter  regions of 
the gene18,19. Lipid A content can also be altered by the addition of 
pEtN. This is the most important resistance mechanism observed 
in A. baumannii and may involve several genes, including eptB 
(pagC), eptA (pmrC), and eptC (cptA)16. 

The loss of the O-antigen through the mutation of genes 
implicated in the biosynthesis of this component has already 
been delineated in Yersinia enterocolitica, Salmonella spp., 
and Enterobacteria. Reduced susceptibility to polymyxin may 
be attributed to other regulatory genes that modulate lipid A 
biosynthesis, such as ramA20,21.

Efflux pumps can also contribute to polymyxin resistance, 
and several efflux pump regulators have been observed in 
different species, such as BrlR, sensitive antimicrobial peptides 
(Sap) proteins, KpnEF, or the AcrAB-TolC complex. Generally, the 
activation of these pumps leads to increased resistance to several 
antibiotics at the same time, including polymyxin22. Increased 
expression of genes encoding capsule synthesis has also been 
observed in strains of K. pneumoniae, E. coli, and P. aeruginosa, 
which cause resistance to polymyxin16. These findings highlight 
the importance of bacterial capsules for polymyxin resistance.

Polymyxin resistance was initially described to be associated 
with chromosomal mechanisms with no possibility of horizontal 
transfer. In 2016, a new plasmid-mediated resistance gene was 
identified in bacterial isolates23. The mcr-1 gene encodes an 
enzyme of the phosphoethanolamine transferase family, which is 
responsible for the synthesis and conjugation of pEtN to lipid A. 
The first description occurred in China of bacterial isolates from 
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animal foods (chickens and pigs). In humans, the first isolate was 
identified in Latin America as an E. coli strain recovered from a 
hospitalized patient24-26.  To date, nine variants of the mcr-1 gene 
have been identified and sequentially named mcr-1 to mcr-927. 
In enterobacteria, the genes mcr-1, mcr-2, and mcr-3 have been 
isolated in plasmids and recently identified in the chromosomes 
of Moraxella spp. and Aeromonas28,29.

Plasmid-mediated horizontal transfer results in the rapid 
spread of resistance genes among several bacterial species, which 
is responsible for a wide variety of MDR phenotypes in bacteria 
that can cause infections in humans and animals. The existence 
of mcr-1 and other resistance genes suggests the presence of 
different pathways for the horizontal transmission of colistin 
resistance and its high potential for propagation. The mcr-1 variant 
can be connected to various types of plasmids, including IncHI2, 
IncI2, IncP, IncX, and IncFIP.  The association of these plasmids 
with other genes that confer resistance has also been established, 
with reduced susceptibility to quinolones, cephalosporins, and 
fosfomycin discovered16,30. 

In a retrospective study, the mcr-1 gene was identified in E. coli 
strains obtained from chicken farms in the 1980s, the same period 
when colistin was introduced to China's livestock. The frequency 
of mcr-1 was found to be 20% in animal bacterial strains and 1% 
in human bacteria in China23. A few months after being reported 
for the first time, mcr-1 has been detected in bacterial isolates 
from animals, humans, and the environment in various countries 
in South America,  North America, Europe, Asia, and Africa, and has 
been identified in several bacterial genera, including Escherichia, 
Shigella, Klebsiella, Salmonella, Enterobacter, and E. coli31-35.

Molecular Epidemiology of Polymyxin-Resistant  
Enterobacteria

Antimicrobial resistance is a major challenge to human and 
animal health in the 21st century, and polymyxin resistance 
appears to be an even more serious problem, compounded 
by the fact that an efficient policy for the use of antibiotics in 
animal and human production is absent in some countries. The 
worldwide occurrence of resistance to polymyxins is 10% among 
gram-negative bacteria, with higher rates in Southeast Asian and 
Mediterranean countries30,36,37. The increase in the use of polymyxin 
for infections caused by MDR gram-negative bacteria has led to 
the emergence of resistance in several countries worldwide, and 
its prevalence may vary among regions.  Countries such as South 
Africa and Japan do not have access to polymyxin, and some areas 
of the world have only colistin formulations, while, in other areas, 
including Brazil, USA, Singapore, and Malaysia, clinicians prescribe 
parenteral formulations of colistin or polymyxin B38. Reports are 
scarce in African countries, whereas studies in South Africa and 
Nigeria have reported resistance rates of less than 10%39. In the 
Asian region, resistance to colistin is common mainly in isolates 
of Enterobacter spp. and Klebsiella spp., prevalent in all countries 
in the region except Singapore, with rates ranging from 13.8% 
(India) to 50% (Philippines)30,36,40. 

In Brazilian hospitals, there was an increase in the rate of 
polymyxin-resistant K. pneumoniae from 1.8% in 2009 to 15% 
in 2013 and 35.5% in 201541. It is considered endemic and is 
frequently associated with high rates of morbidity and mortality 
in patients17. A study conducted in São Paulo, Brazil on KPC-
producing K. pneumoniae isolates demonstrated that the 

polymyxin resistance index varied from 0% in 2011 to 27% in 
201542-44. Some studies carried out in different Brazilian hospitals 
have identified strains of polymyxin-resistant enterobacteria, 
whose responsible mechanisms include modification of membrane 
LPS through inactivation of mgrB17 and the presence of the mcr-1 
gene32,45,46. Although reports of cases from the USA and Europe 
are generally rare, an increasing incidence from these regions has 
been recorded in recent years47,48.

The identification of polymyxin resistance genes in 
microorganisms isolated from animal food has rekindled debate 
regarding the contribution of the undiscovered use of antibiotics 
in animals to detect high levels of resistance in humans. Resistance 
to polymyxin, encoded by the mcr-1 gene, is believed to have been 
disseminated from animals to humans, based on the fact that they 
were primarily obtained in groups of animals that consume a large 
amount of this antibiotic during development. It is estimated that 
approximately 12,000 tons of colistin are utilized per year in food 
production, and that utilization is expected to rise to 16,500 tons 
by 2021. In view of this scenario, preventive measures need to 
be implemented to prevent the continuous dependence on this 
antibiotic and control the spread of this resistance35.

CONCLUSIONS 

Colistins and polymyxin B are potent bactericidal agents 
against enterobacteria. However, polymyxin-resistant strains 
have emerged at an alarming rate. As discussed in this review, 
it is imperative that rigorous control measures that prevent 
dissemination, as well as cautious use of polymyxins, are critical 
until new drugs or alternative therapeutic advances are available. In 
addition, studies of the molecular epidemiology of the distribution 
and dissemination of mcr genes should be conducted. 
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