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Abstract

The catalytic enantioselective ketimine Mannich and its related reactions provide direct access to 

chiral building blocks bearing an α-tertiary amine stereogenic center, a ubiquitous structural motif 

in nature. Although ketimines are often viewed as challenging electrophiles, various approaches/

strategies to circumvent or overcome the adverse properties of ketimines have been developed 

for these transformations. This review showcases the selected examples that highlight the benefits 

and utilities of various ketimines and remaining challenges associated with them in the context of 

Mannich, allylation, and aza-Morita-Baylis-Hillman reactions as well as their variants.
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1. Introduction

The condensation reaction between in situ generated imines and enols to form β-amino 

carbonyl compounds was reported by Carl U. F. Mannich for the first time in 1912 [1], 

This is the transformation that is widely known as the Mannich reaction today. Since it 

provides direct access to synthetically useful chiral building blocks from readily available 

carbonyls and amines, it attracted huge attention from the synthetic community and is now 

recognized as one of the most important chemical transformations (selected reviews; [2–

12]). In order to circumvent the inherent difficulties associated with the classical Mannich 

reaction such as regio-, stereo-, and product-selectivities, preformed imines and/or enolates 
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have often been employed. These nonclassical Mannich variants are broadly regarded as 

the Mannich reaction while they are alternatively called the Mannich-type reaction, aza- or 

imino-aldol reaction to be more specific. However, distinction between these terminologies 

largely remains dependent on an individual author; thus, the term “Mannich reaction” is 

used for all Mannich-type transformations covered in this review for clarity unless otherwise 

stated.

Over the years, the asymmetric catalytic Mannich reaction of ketimines (Scheme 1) has been 

of significant interest to synthetic and medicinal chemists as a way to access synthetically 

versatile compounds bearing an α-tertiary amine stereogenic center (selected reviews; 

[13–23]). It is because optically pure chiral α-tertiary amines are a key structural motif 

found in a large number of biologically relevant molecules and natural products (Figure 

1) [24–28]. However, ketimines are much more challenging electrophiles than aldimines 

for the Mannich and its related reactions (e.g., allylation) due to some notorious structural 

properties of the formers (Figure 2). In general, diaryl, aryl alkyl, and dialkyl ketimines (i.e., 

unmodified ketimines) are poor electrophiles because of the severe steric demands and the 

electron-donating nature of the two groups flanking a C=N bond. Furthermore, these two 

substituents on a prochiral center are structurally similar thus difficult to distinguish by a 

chiral catalyst, often leading to low stereoselectivities.

Nonendocyclic ketimines can equilibrate between the E and Z forms in solution at room 

temperature by an inversion, or rotation, and furthermore, through ketimine-enamine 

tautomerization, if they have an α-hydrogen atom [29]. Therefore, ketimines are often 

available only as a mixture of E and Z isomers that could lead to diminished 

stereoselectivities in the asymmetric transformations. An interesting observation regarding 

the E/Z isomerism was reported by Leighton and coworkers in 2004 (Scheme 2) [30]. Their 

chiral allylation reagent provided the homoallylic amine in the same yield and ee regardless 

of the E/Z isomeric ratio of the ketimine used. It was presumed that the ketimine isomerized 

under the reaction conditions, and one isomer selectively underwent the allylation reaction. 

Despite this observation, it remains largely elusive how to logically develop such catalytic 

enantioselective methods. Alternatively catalytic methods that tolerate N-unsubstituted 

ketimine salts, thus obviating the E/Z isomerism, have been developed in recent years 

[31]. In 2009, Gosselin, Zhang, and coworkers reported the first examples of catalytic 

hydrogenation of N-unsubstituted ketimine salts (not shown) [32], These reported examples 

bode well for the further development of ketimine Mannich and related transformations.

The majority of the work published on the ketimine Mannich reaction and its related 

transformations employed ketimines where some notorious properties of unmodified 

ketimines summarized in Figure 2 were absent. In this mini-review, unmodified ketimines 

refer to nonendocyclic ketimines in which no electron-withdrawing groups and/or alkynes 

are attached to the carbon atom of a C=N bond (sp hybridized carbon atoms are 

electronegative; for example, the pKa value of acetylene is 24 in H2O). Therefore, this 

review is organized based on the structures of ketimines under each reaction class. It 

is arguable whether ketimines bearing strongly electron-withdrawing N-protecting groups 

such as N-tosyl ketimines should be categorized as unmodified ketimines or not; however, 

they are also included as part of unmodified ketimines as long as those ketimines are 
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tautomerizable. Where appropriate, each ketimine class is further classified based on the 

kind of nucleophiles and/or the methods to generate them. The objective of this review 

is to highlight the benefits and utilities of different ketimines and remaining challenges 

associated with them in the context of Mannich, allylation, and aza-Morita-Baylis-Hillman 

reactions as well as their variants. We hope the information provided herein promotes the 

study and use of ketimines that are in general considered problematic substrates. Only a 

summary of the results is shown in each case to focus on the objective, unless otherwise 

noted. Interested readers may want to refer to the corresponding literature for the detailed 

catalytic mechanisms and the stereochemical models that are usually provided therein.

In this review, selected examples published over the past decade or so and some pioneering 

works are covered. With respect to the transformations related to the ketimine Mannich 

reaction, only methods that employ enolates or its equivalents (e.g., silyl enol ethers and 

allyl metals) as nucleophiles to provide β-amino carbonyl compounds or its equivalents 

are covered, while vinylogous Mannich reactions are included. The asymmetric catalytic 

methods of ketimines that provide α-amino carbonyl compounds such as Strecker reaction 

(selected review; [33]), nitro-Mannich reaction (selected review; [34]), aza-benzoin reaction 

(selected references [35,36]) are not included. The asymmetric umpolung addition of 

ketimines to electrophiles (selected references; [37–44]) is beyond the scope of this 

review. Oxidative asymmetric Mannich reaction is an approach to avoid some drawbacks 

of preformed ketimines by in situ oxidation of corresponding amines, which is recently 

reviewed [45]. Interested readers may wish to refer to these selected articles.

2. Activated and/or Cyclic Ketimines in the Mannich Reaction

2.1. Endocyclic Ketimines with Electron-Withdrawing Substituents

2.1.1. The First Examples of Catalytic Enantioselective Ketimine Mannich 
Reactions—In 2003, Jørgensen and coworkers described their approach toward the first 

catalytic enantioselective ketimine Mannich reaction (Scheme 3) [46], They designed and 

developed the endocyclic aryl ketiminoesters (1) that circumvented the poor electrophilicity 

the structural similarity of two groups flanking a C=N bond, the tautomerization, and the 

E/Z isomerism associated with unmodified ketimines. They evaluated their ketiminoesters 

for the Mukaiyama-Mannich reaction (2) and obtained the products in 86–99% yields with 

34–95% ee. In a subsequent year, they reported the application of the same ketiminoesters 

for direct organocatalytic enantioselective Mannich reaction that provided the corresponding 

products in 82–99% yields with 4:1–>20:1 diastereoselectivities and 72–98% ee (3) [47]. 

It is worthy of note that these ketimines reacted well with catalytically generated enamines 

in the presence of small aldehydes such as propionaldehyde (i.e., good electrophiles). The 

two consecutive reports clearly demonstrated that these endocyclic tautomerization-free 

ketiminoesters were viable substrates for the enantioselective catalytic Mannich reactions 

via either the electrophile activation (i.e., Lewis acid catalysis) or the nucleophile activation 

(i.e., Lewis base catalysis) methods to access chiral synthetic building blocks bearing an 

α-tertiary amine stereogenic center, inspiring the later developments.
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2.1.2. Direct Mannich—In 2012, Kano, Maruoka, and coworkers developed 

synthetically flexible ketiminoester 4 and demonstrated its utility in direct organocatalytic 

enantioselective ketimine Mannich reactions (Scheme 4) [48]. More specifically, they 

designed an easy-to-prepare nonaromatic ketiminoester that provides relatively versatile 

synthetic building blocks because an ester group is synthetically more flexible than an aryl 

group in general. As 4 is relatively reactive, it is a convenient electrophile to build a chiral 

α-tertiary amine motif into compounds. It is notable that their method is stereodivergent and 

afforded either syn- or anti-γ-lactones after subsequent NaBH4 reduction of the aldehyde 

products in 59–79% yields with excellent diastereo- and enantio-selectivities (>20:1 and 

99% ee, respectively). L-Proline and axial chiral anime 5 afforded syn- and anti-γ-lactones, 

respectively.

Endocyclic N-sulfonyl ketiminoesters have often been employed in catalytic asymmetric 

Mannich reactions because resulting chiral benzosultams are an important structural motif 

present in many medicinally important molecules, and this class of ketimines is relatively 

easy substrates to work with (highly electrophilic, no tautomerization, and no E/Z isomer 

issues). As such, we discuss selected examples in Scheme 5 and 10 (for other selected 

examples; see [49–53]).

In 2015, Ma and coworkers developed a highly regio-, diastereo- and enantio-selective 

Mannich reaction of (β, γ-unsaturated ketones with N-sulfonyl ketiminoesters by employing 

a saccharide-derived tertiary amino-thiourea catalyst (Scheme 5) [54]. The reaction scope 

was found broad in allylic ketones and included aryl, heteroaryl, alkenyl, benzyl, and 

alkyl allyl ketones, affording the corresponding products in 45–99% yields with 1.5:1–

>20:1 diastereoselectivities and 77–97% ee. The β, γ-unsaturated-ketone products did not 

isomerize to the corresponding α,β-unsaturated ketones, which highlighted the mildness 

of the reaction conditions. It is noteworthy that benzyl allyl ketone provided a desired 

regioisomer in 64% yield.

Chiral dihydroquinazolinones are one of the important motifs found in biologically 

relevant molecules. Since the catalytic asymmetric Mannich reaction of dihydroquinazolines 

provides direct access to enantio-enriched dihydroquinazolinones and dihydroquinazolines 

are relatively reactive ketimines, many contributions have been reported, which highlight 

the usefulness of the asymmetric Mannich reaction of dihydroquinazolines for medicinal 

chemistry. We discuss two selected examples herein (for other selected examples, see [55–

57]).

In 2017, Enders and coworkers developed an enantioselective oxidative NHC-catalyzed 

[4 + 2] annulation reaction of β-methyl enals and trifluoromethyl dihydroquinazolines 

(Scheme 6) [58]. The catalytically generated dienolate proved highly effective for addition 

to trifluoromethyl dihydroquinazolines, providing heterocyclic dihydroquinazolinone 

derivatives bearing a trifluoromethyl group and a tetrasubstituted stereogenic center in 42–

85% yields with 87:13–98.5:1.5 enantiomeric ratios.

In 2018, Xu, Yuan, and coworkers developed a diastereo- and enantio-selective catalytic 

Mannich reaction of pyrazoleamides with trifluoromethyl dihydroquinazolines by employing 
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a bifunctional cinchona-derived squaramide catalyst (Scheme 7) [59]. The method provided 

a wide range of trifluoromethyl dihydroquinazolinone derivatives bearing adjacent tertiary 

and quaternary stereogenic centers in 17–99% yields with >20:1 diastereoselectivity and 

85–99% ee. It is noteworthy that they successfully demonstrated a multi-mmol scale reaction 

that provided 1.21 g of the desired product with no loss in yields and stereoselectivities (R1 

= Cl, Ar = Ph, R2 = H, 91% yield, >20:1 d.r., 99% ee).

Indole derivatives are privileged structures and thus found in numerous pharmaceutical 

compounds. Moreover, 2-Aryl-3H-indol-3-ones are valuable synthons for the synthesis of 

complex indole-derived molecules. This class of ketimines was demonstrated as viable 

electrophiles in the proline-catalyzed Mannich reactions with aldehydes and ketones by the 

groups of Xie and Rueping in 2011 and 2012, respectively [60,61] (not shown), highlighting 

their sufficient electrophilicity.

In 2019, Fu and coworkers developed a chiral phosphoric acid-catalyzed Mannich reaction 

of 2-aryl-3H-indol-3-ones (10) with Schiff bases generated in situ from aromatic aldehydes 

and diethyl 2-aminomalonate (Scheme 8) [62]. This method afforded complex heterocycles 

bearing a nitrogen-substituted quaternary and aminal stereogenic centers that are not trivial 

to make in 51–71% yields with >20:1 diastereoselectivities and 21–96% ee.

In 2019, Zheng, Ye, Huang, and coworkers reported a one-pot construction of chiral 

2,2-disubstituted 3-iminoindolines (Scheme 9) [63]. In addition, 3-Iminoindoles (11) were 

generated in situ from amides and isocyanides in CH2CI2 for 1 h, and then the resulting 

reaction mixtures were treated with a DMSO solution of ketones, proline and Et3N to 

provide the Mannich products in 51–79% yields with 95–99% ee. This method constructed 3 

carbon-carbon bonds, 1 ring, and 1 nitrogen-substituted quaternary stereogenic center in one 

pot.

2.1.3. Preformed Enolate Equivalents—In 2017, Jia and coworkers reported an 

enantioselective [2 + 2] cycloaddition of N-sulfonyl ketiminoesters with N-allenamides that 

produced chiral azetidines (Scheme 10) [64], They screened several Lewis acidic metal 

salts and chiral BOX ligands and then identified Ni-12 complex as an optimal catalyst for 

this transformation. N-Allenyl oxazolidinones were also found to be viable nucleophiles 

for their method. The reactions with N-allenyl oxazolidinones provided the corresponding 

acrylaldehydes after standard aqueous work-up, although it took 3 h at 60 °C to hydrolyze 

azetidines derived from N-allenamides with TsOH·H2O. It is noteworthy that only one 

diastereomer was detected in all cases. The azetidines and acrylaldehydes were obtained in 

52–90% yields with 90–99% ee and in 44–65% yields with 83–95% ee, respectively.

2.2. Endocydic Ketimines without Electron-Withdrawing Substituents

All of the notorious properties of unmodified ketimines summarized in Figure 2 are absent 

in the ketimines discussed above. However, these contributions clearly demonstrated that 

creative applications of relatively easy-to-use ketimines for Mannich reaction can provide 

synthetically versatile and medicinally important β-amino carbonyl compounds and their 

variants that are otherwise difficult to synthesize. In this section, endocyclic ketimines 

that are not substituted with electron-withdrawing substituents at their C=N carbon atoms 
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are discussed. These ketimines are less electrophilic and thus, arguably, more challenging 

substrates.

2.2.1. Direct Mannich—3-Aryl-3-hydroxyisoindolin-l-ones are often employed as 

stable precursors for the corresponding endocyclic N-carbonyl diaryl ketimines. This class 

of ketimines is useful synthons to access chiral isoindolin-l-ones that are an important 

motif found in numerous biologically relevant molecules and natural products. In 2019, 

Reddy and coworkers reported BINOL phosphoric acid-catalyzed Mannich reaction of 

endocyclic N-acyl ketimines generated in situ from 3-hydroxyisoindolin-l-ones (Scheme 

11) [65]. The method provided chiral isoindolin-l-ones bearing adjacent quaternary and 

tertiary stereogenic centers in 83–95% yields with excellent stereoselectivities despite the 

high reaction temperature (99:1 diastereoselectivity for all substrates and 77–97% ee). They 

noted that 3-hydroxy-3-pentylisoindoline-l-one (i.e., a tautomerizable ketimine) provided 

the corresponding enamide in 95% in 4 h without the desired Mannich product under the 

optimized condition.

In 2013, Wang and coworkers described the proline-catalyzed direct asymmetric Mannich 

reaction of 3-substituted-2H-l,4-benzoxazines (Scheme 12) [66], This work represents 

the first catalytic asymmetric Mannich reaction of 3,4-dihydro-2H-l,4-benzoxazines and 

provided the N-heterocyclic products in 48–94% yields with 61–>99% ee. The authors 

pointed out that the ring strain in 3,4-dihydro-2H-l,4-benzoxazines contributed to their 

reactivities. It is still notable that these ketimines bear no electron-withdrawing substituents 

in sharp contrast to the ketimines discussed earlier in this review. It is worthy of mention 

that the same transformation catalyzed by wheat germ lipase was reported by Guan, He, and 

coworkers in 2016 (not shown) [67].

2H-Azirines are three-membered ring molecules with a C=N double bond and are the most 

strained nitrogen unsaturated heterocyclic compounds (selected review; [68]). Their high 

chemical reactivity is mainly due to their high ring strain that enhances the reactivity of the 

C=N bond.

In 2018, Lin, Feng, and coworkers developed a copper-catalyzed asymmetric Mannich 

reaction of 2-H-azirines with β-keto amides (Scheme 13) [69]. This represents the first 

example of the catalytic enantioselective Mannich reaction of 2-H-azirines and is one of 

the two early examples of asymmetric catalytic additions of carbon-based nucleophiles to 

2-H-azirines (the aza-benzoin reaction of aldehydes with 2-H-azirines was reported earlier in 

the same year) [35], This method employed racemic 2-H-azirines; one enantiomer of which 

preferentially reacted with a chiral Cu-enolate complex, affording the aziridines bearing 

three contiguous stereogenic centers in 65–99% yields with 45:55–91:9 diastereoselectivities 

and 32–94% ee.

In 2019, Yin and coworkers reported a copper(I)-catalyzed asymmetric decarboxylative 

Mannich reaction of 2H-azirines (Scheme 14) [70], This method utilized a 2H-azirine not 

only as an electrophile but also as a base to deprotonate a cyanoacetic acid to induce 

its decarboxylation (i.e., decarboxylative enolization). As such, a reacting electrophile 

was a protonated 2H-azirine whose electrophilicity was enhanced. Importance of this 
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“proton transfer” strategy was successfully demonstrated by showing that a nonprotonated 

2H-azirine did not react with a corresponding nucleophile under the otherwise identical 

reaction condition. The reaction scope was very broad and tolerated various substituents 

on both nucleophiles and electrophiles, affording various enantio-enriched aziridines in 73–

99% yields with 2.4:1–>20:1 diastereoselectivities and 91–98% ee. Furthermore, the method 

worked on a gram-scale reaction with only 2 mol% catalyst loading without any loss in 

stereoselectivities; albeit, it took 50 h (R1 = Ph, R2 = Me, Ar = Ph, 91% yield, >20:1 d.r., 

97% ee).

In 2020, Trost and coworker developed an asymmetric Mannich reaction of 2H-azirines with 

alkynyl cycloalkyl ketones (Scheme 15) [71]. The key to the success was to employ their 

bimetallic Zn-ProPhenol complex (16) that activated both nucleophiles and electrophiles 

within the same chiral pocket encompassing both Brønsted basic and Lewis acidic sites. The 

method efficiently provided the complex aziridines in 40–91% yields with 82–98% ee. The 

authors noted that possible intramolecular hydrogen bonding between the N–H bond of the 

aziridine moiety and the carbonyl moiety within a product presumably resulted in a chiral 

center at the nitrogen atom, making the subsequent product characterizations very difficult. 

Therefore, a sequential N–H bond acetylation of the products was conducted.

2.2.2. Silyl Enol Ethers—In 2020, Zhang, Ma, and coworkers reported a chiral 

phosphoric acid-catalyzed Mukaiyama-Mannich reaction of endocyclic N-acyl ketimines 

generated in situ from 3-hydroxyisoindolin-l-ones (Scheme 16) [72]. They employed 

difluorinated silyl enol ethers as nucleophiles to prepare enantioenriched fluoroalkyl

functionalized isoindolones. During the screening of reaction conditions and chiral 

phosphoric acid catalysts, they found that (1) the use of hexafluoroisopropyl alcohol 

as additive was beneficial for both reactivity and enantioselectivity and (2) catalysts 

bearing trifluoromethylated chiral barriers (Ar2) were superior to counterparts having no 

trifluoromethyl group. As such, they tested a nonfluorinated silyl enol ether (F = H, Ar1 

= Ph) under the optimized reaction conditions and found it unreactive. The scope of both 

ketimines and silyl enol ethers were broad, and the Mannich products were obtained in 55–

97% yields with 48–99% ee. It is noteworthy that their method tolerated a tautomerizable 

ketimine (R2 = Me), giving the corresponding product (R1 = H, Ar1 = Ph) in 85% yield 

with 48% ee (see Scheme 11 for comparison). Furthermore, a gram-scale reaction was 

successfully demonstrated (R1 = H, R2 = Ar1 = Ph, 98% yield, and 96% ee).

2.3. Isatin-Derived Ketimines

3-substituted-3-aminooxindoles are an important structural motif found in numerous natural 

products and biologically relevant molecules. The catalytic asymmetric Mannich reaction 

of isatin-derived ketimines provides direct access to enantio-enriched 3-substituted-3

aminooxindoles. Furthermore, isatin-derived ketimines are relatively reactive electrophiles. 

As such, many catalytic asymmetric Mannich reactions of isatin-derived ketimines have 

been reported. In light of the excellent review articles that covered up to the end of 2017 

[73–75], we discuss herein a few selected examples published after that period (for other 

selected examples, see: [76–84]).
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2.3.1. Direct Mannich—In 2018, Morimoto, Ohshima, and coworkers reported a 

decarboxylative Mannich reaction of N-unprotected isatin-derived ketimines, which directly 

afforded enantio-enriched chiral oxindoles bearing primary amines at their 3-postions 

(Scheme 17) [85]. The method that can accommodate substrates that have no protecting 

groups are more step- and atom-economical than the counterparts that require them [86–

88], The method tolerated various ketoacids, affording the Mannich products in 69–99% 

yields with 79–96% ee. Their preliminary mechanistic study indicated that the addition of a 

ketoacid to a ketimine preceded the decarboxylation process with their catalytic system.

In 2019, Wolf and coworkers developed a copper-catalyzed stereodivergent asymmetric 

Mannich reaction of isatin-derived ketimines and α-fluoro-α-arylnitriles (Scheme 18) 

[89]. A chiral cuprous keteniminate complex generated from α-fluoro-α-arylnitrile, 

a chiral copper catalyst, and BTMG was proposed as a nucleophile. The Segphos 

(18)-copper complex provided anti diastereomers in 81–99% yields with 8.5:1–>50:1 

diastereoselectivities and 84–97% ee. On the other hand, the Taniaphos (19) complex 

afforded syn diastereomers in 84–99% yields with 3:1–6.7:1 diastereoselectivities and 83–

97% ee. The switching of diastereoselectivities was successfully demonstrated by choosing a 

proper combination of the chiral ligand and the isatin N-protecting group (trityl or phenyl). 

Furthermore, a gram-scale reaction (R1 = H, R2 = trityl, Ar = Ph, 99% yield, 12.7:1 d.r., 

90% ee) was successfully carried out without compromising yield and stereoselectivities.

In 2020, Liu, Feng and coworkers described several Lewis acid-catalyzed enantioselective 

transformations of (β,γ-unsaturated 2-acyl imidazoles; the study of which included 

ketimines as electrophiles (Scheme 19) [90], After the screening of the reaction conditions, 

the catalyst complex generated from La(OTf)3 and (S)-pipecolic acid-derived ligand was 

found to promote the Mannich reaction of isatin-derived ketimines and β,γ-unsaturated 

2-acyl imidazoles, delivering the desired β-amino 2-acyl imidazoles as single regio- and 

diastereo-isomers in 75–99% yields and 88–91% ee. The pyrazolinone-derived ketimines 

were also demonstrated to be good substrates for their method (not shown).

2.3.2. Silyl Enol Ethers—In 2019, Feng and coworkers reported a serendipitously 

discovered tandem α-alkenyl addition/proton shift reaction of silyl enol ethers and ketimines 

catalyzed by chiral N,N′-dioxide/Zn(II) complexes (Scheme 20) [91]. After the optimization 

of reaction conditions, dioxide 21 was found to be optimal for a series of isatin-derived 

ketimines (1), giving the products in 83–90% yields with 94–95% ee. A gram-scale reaction 

(R1 = H) was successfully demonstrated without compromising yield and stereoselectivity 

(86% yield and 95% ee). With respect to the scope of silyl enol ethers, dioxide 22 
turned out best and provided the products in 21–90% yields with 87–97% ee and 8:1–

>19:1 diastereoselectivities (for racemic α′-substituted cyclic silyl enol ethers that required 

10 mol% catalyst loadings). The pyrazolinone-derived ketimines were also demonstrated 

to be good substrates for the method (not shown). Their preliminary mechanistic study 

strongly supported that the Mukaiyama-Mannich addition intermediates got protonated by 

isopropanol (additive) before the subsequent silyl shift, giving the corresponding β-amino 

silyl enol ethers.
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2.4. Acyclic Ketimines Bearing Electron-Withdrawing Groups and/or Alkynes

Ketimines substituted with esters, perfluorinated alkyl, or alkyne groups are relatively good 

electrophiles, and thus, enolates with a range of different nucleophilicities (i.e., different 

catalytic methods) were reported for their Mannich reactions. Nonetheless, some examples 

presented in this section demonstrate that seemingly subtle differences in the ketimine 

structures substantially affected chemical yields and stereoselectivities, highlighting the 

challenging nature of ketimine Mannich reactions. On the other hand, some ketimines 

presented herein were creatively designed so as to not only circumvent the inherent 

problems of unmodified ketimines but also to provide synthetically and medicinally 

important chiral building blocks.

Direct Mannich—In 2016, Terada and coworkers developed a novel 

asymmetric direct Mannich reaction of ketiminoesters with thionolactones using 

bis(guanidino)iminophosphorane 23 as a chiral organosuperbase catalyst (Scheme 21) [92], 

Thionolactones were identified as suitable nucleophiles, while a corresponding lactone did 

not undergo the reaction. It was presumed that a lactone was not acidic enough to get 

enolized by the base catalyst. With respect to the electrophiles, the substituent on the 

benzoyl protecting group was found crucial for both chemical yield and diastereoselectivity. 

For example, a corresponding methoxy-substituted ketiminoester (CF3 = OMe) provided the 

product in much lower yield and selectivity (Ar = p-tol: for CF3, 93% yield, d.r. = 95:5; 

for OMe, 35% yield, d.r. = 88:12). Under the optimized conditions, the method provided 

the products with vicinal quaternary stereogenic centers in 56–>99% yields with 95:5–99:1 

diastereoselectivities and 83–93% ee.

As part of their longstanding interests in the soft Lewis acid/hard Bronsted base cooperative 

catalysis, in 2016 Kumagai, Shibasaki, and a coworker developed the direct catalytic 

asymmetric Mannich reaction of an α,β-unsaturated γ-butyrolactam with ketiminoesters 

(Scheme 22) [93]. This method was found to give the α-addition products (aza-Morita

Baylis-Hillman type products) through the regioselective α-addition of the dienolate 

intermediate followed by isomerization of a double bond. This work represents the first 

α-addition of α,β-unsaturated γ-butyrolactams to ketimines under the asymmetric catalysis 

conditions. The interaction of the soft Lewis acidic copper catalyst and soft Lewis basic 

thiophosphinoyl protecting group of ketimines was suggested crucial for the success 

of this Mannich reaction, because a corresponding phosphinoyl protected ketiminoester 

did not react under the otherwise identical reaction conditions. These observations were 

consistent with their earlier works on the soft Lewis acid/hard Brønsted base cooperative 

catalysis (vide infra). The method accommodated 17 ketiminoesters and provided the β

amino carbonyl products in 55–99% yields with 74–94% ee. A gram-scale reaction was 

demonstrated without any loss in yield or ee (Ar = Ph, 99% yield, 91% ee).

As part of their efforts in the development of the transformations employing N

unprotected imines/ketimines, in 2017 Morimoto, Ohshima, and coworkers reported a direct 

enantioselective Mannich reaction with an N-unprotected trifluoromethyl ketiminoester 

(Scheme 23) [94]. While unprotected N-H ketimines generally have limited stabilities, they 

often mitigate problems associated with the E/Z isomerism in the asymmetric catalysis 
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reactions. Under the optimized conditions, their method tolerated malonates, cyclic (3

keto-nitriles, esters, and oxindoles (conducted at 0 °C instead of −20 °C), providing 

the corresponding products in 77–99% yields with 78–94% ee, 75–98% yields with 

17:1–>20:1 diastereoselectivities and 77–>99% ee, and 91–99% yields with 11:1–>20:1 

diastereoselectivities and 81–98% ee, respectively.

In 2018, Trost and coworkers developed a Zn-ProPhenol catalyzed asymmetric Mannich 

reaction of α,β- and β/γ-butenolides with perfluoroalkyl alkynyl ketimines (Scheme 24) 

[95]. The method provided vinylogous products bearing two contiguous tetrasubstituted 

stereogenic centers. This represents the first successful use of ketimines in the ProPhenol 

Mannich process. They noted the salient features of perfluoroalkyl alkynyl ketimines; (1) 

a fluorinated group makes ketimines more electrophilic; (2) an alkyne is sterically much 

less demanding and its higher s character should further enhance the electrophilicity of 

ketimines; and (3) the increased steric differences between alkynyl and perfluoroalkyl 

groups would give ketimines in a single diastereomeric form, which is critical for high 

stereoselectivities. The reaction scope was very broad, providing the medicinally important 

(i.e., perfluoroalkyl groups) and synthetically versatile (i.e., alkynes) Mannich products in 

35–92% yields with 4:1–>50:1 diastereoselectivities, 4:1–>50:1 regioselectivities, and 54–

99% ee.

Chiral amine catalysts derived from natural amino acids have proven highly effective for 

a wide range of enantioselective transformations. However, enantiomers of natural amino 

acids are not always readily available. As such, in 2019, Lan, Shao, and coworkers described 

their strategy to address this issue, which was “enantiodivergence” via minimal modification 

of a chiral amine catalyst (Scheme 25) [96]. They successfully demonstrated this strategy by 

applying their catalysts to the Mannich reaction of alkynyl ketiminoesters. By switching 

catalyst 26 and MeCN to 28 and dichloroethane, the corresponding enantiomers were 

obtained in almost the same yields and stereoselectivities. They also demonstrated that 

the same was true for a range of alkynyl trifluoromethyl-, isatin-derived-, and pyrazolinone

derived ketimines (not shown).

Ketimines bearing two structurally similar substituents exist as an inseparable E/Z 
diastereomeric mixture and thus are rarely utilized in the asymmetric catalysis methods 

in contrast to ketimines that are available in a single diastereomeric form. Dialkyl ketimines 

are a prototypical example of such isomeric ketimine mixtures. They are also relatively 

easy to tautomerize to enamines (especially ones protected with Boc). In 2021, Kano, 

Maruoka, and coworkers reported a solution to this classical yet persisting problem, which 

is to utilize alkynyl alkyl ketimines as synthetic equivalents of dialkyl ketimines. The 

alkynyl groups in the reaction products can be readily reduced to the corresponding alkyl 

groups through simple hydrogenation. Furthermore, the steric size differences between 

alkynyl and alkyl groups are large enough to give alkynyl alkyl N-protected ketimines 

in a single diastereomeric form, which in turn makes them easy to differentiate by a 

chiral catalyst. As discussed above, alkynyl-substituted ketimines are more reactive than 

the corresponding alkyl counterparts due to their electronegative sp hybridized carbon atoms 

and sterically small triple bonds. These advantageous properties of alkynyl alkyl ketimines 

certainly outweigh the cost of an extra hydrogenation step. Nonetheless, N-Boc alkynyl 
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alkyl ketimines are hardly accessible in a single diastereomeric form through dehydrative 

condensation reaction. Therefore, they developed the synthesis of N-Boc-protected alkynyl 

alkyl ketimines ((1) and (2), Scheme 26) and then proceeded to evaluate them for chiral 

amine-catalyzed Mannich reactions (3) [97]. (Z)-Alkynyl alkyl ketimines underwent chiral 

amine-catalyzed Mannich reaction smoothly with aldehyde nucleophiles. Their method 

is stereodivergent; proline provided anti products in 42–77% yields with 8:1–>20:1 

diastereoselectivities and 96–99% ee, and phenylcyclopropane-based amine 29 afforded syn 

counterparts in 60–84% yields with 10:1–>20:1 diastereoselectivities and 98–99% ee. They 

successfully demonstrated the hydrogenation of the Mannich products, providing chiral 

amines bearing two structurally similar alkyl groups that are otherwise very difficult to 

prepare in an enantio-enriched form (not shown).

3. Unmodified Ketimines in the Mannich Reaction

Unless the ketimine activating groups are part of the desired products (e.g., CF3, isatin), 

they need to be transformed adequately or removed from the Mannich products, which adds 

steps that would not have been necessary otherwise (vide supra). Therefore, arguably, the 

development of the Mannich reaction with unmodified ketimines would be highly beneficial 

from the viewpoints of both atom and step economies [86–88].

3.1. Silyl Ketene Acetals

In 2007, Kanai, Shibasaki, and coworkers disclosed the first catalytic enantioselective 

Mannich reaction of unmodified ketimines using a preformed silyl ketene acetal and 

chiral copper complexes (Scheme 27) [98]. In these reactions, N-di(3,5-xylyl)phosphinoyl 

ketimines were employed, and a highly nucleophilic copper enolate was generated from a 

silyl ketene acetal and a chiral copper complex through transmetalation. They attempted to 

accelerate the presumable turnover-limiting catalyst regeneration step from the intermediate 

copper amide product by using an electrophilic silicon species, (EtO)2Si(OAc)2 or 

(EtO)3SiF as a trapping agent and successfully improved the yield. While optimal chiral 

ligands for aromatic and aliphatic ketimines turned out to be different, the method tolerated 

both classes of ketimines very well, giving the β,β-disubstituted amino acid equivalents in 

61–92% yields with 91–97% ee and 45–99% yields with 58–81% ee, respectively, While 

they mentioned that the nucleophile scope was limited to acetate donors since α-substituted 

enolates did not undergo the addition reaction, this work still remains as the state-of-the

art catalytic enantioselective Mannich reaction between unmodified ketimines and acetate 

donors.

In 2013, Nakamura and coworkers reported a diastereo- and enantio-selective vinylogous 

Mannich reaction of N-diphenylphosphinoyl ketimines and 2-(trimethylsiloxy)furan 

catalyzed by a chiral copper(II) complex (Scheme 28) [99], They proposed that a 

nucleophilic chiral copper dienolate complex generated from 2-(trimethylsiloxy)furan was 

an actual nucleophilic species. Cinchona alkaloid-derived amide 31 was found to be an 

optimal ligand, and its copper (II) complex tolerated both aromatic and aliphatic ketimines, 

giving the products 31–99% yields with 88:12–99:1 diastereoselectivities and 91–97% ee.
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3.2. Reductive Mannich

α,β,β-trisubstituted (β2,3,3) amino acids are among the important building blocks for a 

wide variety of natural products, medicinally relevant molecules, and mimics of protein 

structural motifs. The ketimine Mannich reaction of α-substituted enolates provides direct 

access to α,β,β-trisubstituted amino acids from readily available carbonyl compounds. 

In 2008, Kanai, Shibasaki, and coworkers described their efforts to significantly expand 

their previous ketimine Mannich reaction (Scheme 27) that was limited to acetate 

nucleophiles (Scheme 29) [100]. Since they found that the copper enolate generation 

from a corresponding silicon enolate through transmetalation was the rate-limiting step 

for their method, they attempted to increase the concentration of active copper enolates by 

the conjugate addition of Cu-based nucleophiles to α,β-unsaturated esters. Their reductive 

enolate formation approach turned out to be fruitful and afforded the Mannich products in 

47–95% yields with 3:1–30:1 diastereoselectivities and 82–93% enantiomeric excesses. This 

work is not only the first example of but also state of the art for the Mannich reaction 

between nonactivated ketimines and propionate nucleophiles.

Reep and Takenaka developed a simple method to generate exceedingly reactive O

trichlorosilyl-N-O-ketene acetals from corresponding acrylamides and HSiCl3 under the 

Lewis base catalysis conditions as an approach to the propionate ketimine Mannich reaction 

(Scheme 30) [101]. At the outset of their study, they found that the reported reductive 

method for (α,β-unsaturated ketones [102,103] quantitatively reduced dimethylacrylamide 

in the presence of benzaldehyde, but no aldol products formed, although they fully 

reproduced the reported reductive aldol reaction. Since the D2O quenching of the reaction 

did not incorporate the detectable amount of D atom in a resulting propionamide, they 

hypothesized that this hitherto unknown O-trichlorosilyl-N-O-ketene acetal got rapidly 

protonated by a small amount of HC1 intrinsic to HSiCl3. After screening various proton 

scavengers, they found that activated 4 Å molecular sieves (MS) were optimal. Their success 

could be attributed to the “sieve effect” since 3 and 5 Å MS gave the similar results 

but not 10 Å MS. These findings highlighted the exceedingly higher nucleophilicity of 

O-trichlorosilyl-N-O-ketene acetal than ketone-derived counterparts that underwent aldol 

reactions in the absence of proton scavengers. They focused on α-mono-substituted Z(O)
N, O-ketene acetals, because the high nucleophilicity is presumably derived from their 

nitrogen lone-pairs that can donate electron density to the enol units. The corresponding 

α,α-disubstituted ketene acetals lose this electronic benefit due to the allylic strain that 

pushes their nitrogen lone-pairs out of conjugation with the enol functionality [104–106]. 

They tested the reductive method for an aliphatic ketone-derived benzoylhydrazone and 

found that the desired product formed in 96% yield with 11:1 diastereoselectivity and only 

2% ee. Since their method provided an anti diastereomer, it could possibly be developed into 

a complementary method to Shibasaki’s syn-selective propionate ketimine Mannich reaction 

(Scheme 29). The relative stereochemistry of the Mannich product was established by the 

X-ray analysis of the product crystal [107].

3.3. Enamine

In 2008, Tsogoeva and coworkers reported highly enantioselective self-coupling of enamides 

by using BINOL-derived phosphoric acids (Scheme 31) [108]. They took advantage of 
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an equilibrium between ketimine and enamide in the presence of a chiral acid catalyst to 

utilize N-acyl ketimines that are otherwise difficult to employ as electrophiles due to the 

tautomerization. The method provided the self-coupled products with 15–83% yields with 

85–>99% ee. They successfully demonstrated the utility of enantio-enriched self-coupled 

products by converting one example to a β-aminoketone without essential loss in its optical 

activity (2). This method is a viable alternative to the ketimine Mannich reaction.

3.4. Direct Mannich

In 2008/ Kumagai, Shibasaki, and coworkers reported a direct catalytic asymmetric addition 

of allylic cyanides to ketimines (Scheme 32) [109], They became interested in nitriles 

because these can be viewed as a masked carboxylic acid, are readily available, and 

could be small enough nucleophiles to overcome the severe steric demands of ketimines. 

Furthermore, they pointed out that allylic cyanides bear a relatively acidic α-proton (pKa 

= 21.1 in DMSO), and thus, they could be selectively deprotonated by a base catalyst in 

the presence of ketimines. They hypothesized that a soft Lewis acidic Cu-Ph-BPE complex 

selectively coordinated to a cyanide so as to allow a phenoxide to deprotonate it (i.e., soft 

enolization). To their delight, the reaction scope turned out broad, giving the products in 62–

95% yields with <2/98–12/88 E/Z ratios and 71–94% ee. They successfully demonstrated 

the utility of the products by converting one example to a densely functionalized β′-amino 

α,β-epoxyamide (2).

As a direct access to α,β-diamino acid surrogates with vicinal tetrasubstituted stereocenters, 

Matsunaga, Shibasaki, and coworkers described the ketimine Mannich reaction with α

methyl-α-isothiocyanato ester in 2011 (Scheme 33) [110]. They began their study with 

catalysts made from Bu2Mg and BINAM-derived Schiff bases on the basis of their previous 

experiences with the aldol reaction of α-methyl-α-isothiocyanato ester and determined that 

the Schiff base shown in Scheme 33 was optimal with a model ketimine (Ar = 4-Br6C6H6). 

This chiral Mg catalyst afforded a syn diastereomer (36) as a major product (87% yield, d.r. 

= 91:9, 84% ee). In order to improve stereoselectivities, they further investigated Ca(OiPr)2, 

Sr(OiPr)2, and Ba(OiPr)2 with the same Schiff base. To their surprise, Sr(OiPr)2 led to an 

unexpected reversal of the diastereoselectivity, providing an anti-isomer (37) as a major 

product (Ar = 4-Br6C6H6, 86% yield, d.r. = 94:6, ee = 92%) while the other two metals 

gave only trace amounts of the products. The reversal of the diastereoselection resulted 

from the opposite ketimine facial selectivities by the Mg and Sr catalysts. The 1H NMR 

spectra of both catalysts were found to be complicated, which implicated a possibility of the 

oligomeric structures of theses catalysts. As such, the elucidation of the precise structures 

of the catalysts proved very challenging. Nonetheless, the Mg provided syn products in 

70–99% yields with 90:10–93:7 diastereoselectivities and 80–95% ee, and the Sr catalyst 

gave anti products in 45–99% yields with 83:17–96:4 diastereoselectivities and 87–97% ee. 

To demonstrate the synthetic utility of the products, an anti product (Ar = 4-MeC6H4) was 

converted to a corresponding imidazoline and 2-phenyl-imidazoline (not shown).

In 2013, Kumagai, Shibasaki, and coworkers reported a direct catalytic asymmetric 

vinylogous ketimine Mannich reaction of γ-butenolides (Scheme 34) [111]. For the 

development of direct catalytic asymmetric carbon-carbon bond-forming transformations 
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under proton-transfer conditions, γ-butenolides have attracted much attention as useful 

pronucleophiles due to their relatively acidic protons that facilitate the generation of the 

corresponding dienolates and the high frequency of a γ-butenolide motif present in natural 

products and biologically relevant compounds. It is notable that prior to their contribution, 

γ-butenolides had not been employed in direct catalytic asymmetric vinylogous Mannich 

reactions with ketimines. On the basis of their continuing interests in the soft Lewis 

acid/hard Bronsted base cooperative catalysis (vide supra), they hypothesized that a soft 

Lewis acid would activate an N-(diphenylthiophosphinoyl)ketimine, while a hard Bronsted 

base would generate a dienolate from a γ-butenolide via deprotonation. They successfully 

demonstrated the importance of soft Lewis acid-soft Lewis base interaction (i.e., Cu⋯S 

interaction) by confirming that a N-phosphinoyl ketimine (R1 = Ph, R2 = Me) barely reacted 

under the optimized reaction conditions. The reaction scope was broad and included two 

alkyl methyl ketimines and two methyl substituted γ-butenolides, giving the products in 

52–92% yields with >20:1 diastereoselectivity and 97–99% ee.

In 2014, the groups of Dixon and Nakamura independently reported direct asymmetric 

Mannich reactions of isocyanoacetates and ketimines (Scheme 35) [112,113]. Despite the 

importance of α,β-diamino acid building blocks in chemical synthesis of biologically 

relevant molecules, catalytic enantioselective addition of isocyanoacetates to ketimines were 

not reported before their contributions.

Dixon and a coworker found that when a combination of cinchona-derived aminophosphine 

precatalyst 38 and silver oxide was employed as a binary catalyst system, anti

configured imidazoline products (39) were obtained in 70–98% yields with 73:27–99:1 

diastereoselectivities and 90–99% ee (Scheme 35, (1)). It is notable that their method 

worked very well with the 1:1 ratio of ketimine and isocyanoacetate, indicating a high 

performance of their catalyst system. In general, excess of either electrophile or nucleophile 

is necessary for challenging asymmetric catalytic transformations such as the ketimine 

Mannich reaction. In 2016, they further developed this method to include α-substituted 

isocyanoacetates whose reaction scope was broad and included various aryl, heteroaryl, and 

alkyl methyl ketimines (not shown) [114]. Hydrolysis of these imidazoline products afforded 

access to fully substituted α,β-diamino acids in an enantio-enriched form.

Nakamura and coworkers reported that a complex made from alkaloid 40 and Cu(OTf)2 

efficiently catalyzed the Mannich reaction of isocyanoacetate in the presence of CS2CO3 

(Scheme 35, (2)). Their method provided complementary syn-configured imidazoline 

products (41) in 45–78% yields with 73:27–99:1 diastereoselectivities and 91–99% ee. 

The corresponding 1-indanone-derived ketimine (i.e., a cyclic substrate) was also a good 

substrate for their method, affording the product in 44% yield with 91:9 diastereoselectivity 

and 98% ee. Notably, this catalyst system was found to work for the aliphatic ketimines 

(not shown). Two alkyl methyl ketimines (Ar = PhCH2CH2 and iBu in (2)) gave anti 

diastereomers as major products (anti:syn = 72:28 and 60:40,54 and 78% yields, 72 and 89% 

ee, respectively). In 2016, they also disclosed their investigation of the ketimine Mannich 

reaction of α-substituted isocyanoacetates (not shown) [115]. A catalytic complex made 

from an alkaloid analogous to 40 and NiCl2 was found to be optimal for this reaction in 
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which the substrate scope was broad. The enantioselective synthesis of imidazolines with 

vicinal tetrasubstituted stereocenters was achieved by this new chiral Ni complex.

As part of their continuing interests in nitrile-based pronucleophiles and the soft Lewis acid/

hard Brønsted base cooperative catalysis (vide supra), Kumagai, Shibasaki, and coworkers 

developed a direct catalytic asymmetric Mannich reaction of N-(9-fluorenylidene)-α

aminoacetonitrile and N-(diphenylthiophosphinoyl)ketimines (Scheme 36) [116]. The 

method provided vicinal diamines bearing tetra- and tri-substituted contiguous stereogenic 

centers in 61–99% yields with 77:23–95:5 diastereoselectivities and 83–95% ee. It is 

notable that their method was highly enantioselective for aliphatic ketimines where the 

structural difference of the two groups flanking a C=N bond was relatively small. Also 

worthy of mention is that only 3 mol% catalyst loading was enough, and it worked on 

a gram-scale reaction without any detrimental effect (R1 = CH2CH2Ph, R2 = Me, 48 

h, 95% yield, d.r. = 91:9, 93% ee). Strangely enough, however, acetophenone-derived 

N-(diphenylthiophosphinoyl)ketimine provided only trace amounts of the product under the 

optimized reaction conditions. They conducted a preliminary mechanistic study and found 

that the analogous N-diphenylphosphinoyl ketimine (R1 = CH2CH2Ph, R2 = Me) resulted in 

much lower conversion and stereoselectivity under the reaction conditions, and this catalytic 

system exhibited higher performance for differentiating the prochiral face of ketimines 

rather than that of α-cyano carbanions. As such, the result suggested that the specific 

activation of the thiophosphinoyl group by a soft-Lewis acidic Cu(I) complex was crucial for 

the formation of a carbon-carbon bond and efficient stereochemical discrimination.

In 2015, Nakamura and coworkers reported that a complex made from alkaloid 42 and 

Zn(OTf)2 efficiently catalyzed the ketimine Mannich reaction of a γ-butenolide (Scheme 

37) [117]. The ketimine scope was broad and included aryl, heteroaryl, and alkyl methyl 

ketimines as well as 1-indanone-derived ketimine. The products were obtained in 79–99% 

yields with 85:15–99:1 diastereoselectivities and 90:10–94:6 er. It is noteworthy that the 

pseudo-enantiomeric catalyst gave very similar reactivity and selectivity for three ketimines 

(R1 = 4-MeOC6H4, 4-FC6H4 and EtOCOCH2CH2, in 81–84% yields with 93:7–96:4 d.r. and 

10:90–8:92 er) in this method, which is not always the case for cinchona-derived catalysts.

4. Activated and/or Cyclic Ketimines in the Allylation Reaction

The addition of allylic organometallic reagents to carbonyl and imine compounds represents 

an important process in the chemical synthesis (selected reviews; [118–121]). When 

ketimines are employed as electrophiles, chiral homoallylic α-tertiary amines are obtained. 

In light of a double bond in the products that can be viewed as a masked carbonyl, the 

allylation of the ketimines is analogous to the ketimine Mannich reaction.

4.1. Endocyclic Ketimines

4.1.1. Allyl Rhodium Species—In 2012, Lam and coworkers reported the first 

enantioselective rhodium-catalyzed addition of allylboron reagents to endocyclic ketimines 

(Scheme 38) [122]. Using only 1.5 mol% of the catalyst complex, 1,2,5-thiadiazolidine

l,1-dioxides (43) underwent the reaction with various allyl-, crotyl- and prenyl

trifluoroborates, affording the corresponding products in 61–89% yields with 17:1–>19:1 
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diastereoselectivities and 95–99% ee, as did a cyclic sulfamidate imine (45) with 

allyltrifluoroborate, which provided a corresponding homoallylamine in 83% yield with 

93% ee. In subsequent years, they expanded the substrate scope of the method, which 

included endocyclic N-sulfonyl ketimines bearing CF3 and n-butyl groups at the imine 

carbon atom as well as various potassium allyltrifluoroborates (not shown) [123,124].

4.1.2. Allyl Cobalt Species—In 2018, Yang, Zhang, and coworkers described that the 

same classes of electrophiles and nucleophiles that were previously studied with chiral 

rhodium complexes by Lam and coworkers (vide supra) underwent the allylation reaction 

catalyzed by chiral complexes generated from more cost-effective Co(ClO4)·6H2O and BOX 

ligands. The method afforded the enantio-enriched homoallylamines in 78–98% yields with 

3:1 diastereoselectivity and 53–99% ee (Scheme 39) [125].

4.2. Isatin-Derived and Analogous Cydic Ketimines

4.2.1. Allyl Palladium Species—Ketimines derived from isatins have attracted much 

attention as electrophiles because they provide chiral 3-substituted 3-amino-2-oxindoles 

that are a structural motif found in biologically relevant compounds and natural products, 

and they are relatively reactive electrophiles, as discussed above. However, asymmetric 

catalytic allylation of isatin-derived ketimines had not been reported prior to a contribution 

made by Nakamura and coworkers (Scheme 40) [126]. Chiral allyl palladium species 

generated from bis(imidazoline)-palladium pincer catalyst 47 and allyltrimethoxysilanes 

through transmetalation underwent the allylation reaction with N-teri-butoxycarbonyl-N′
trityl-protected isatin-derived ketimines. Under the optimized reaction conditions, allylation 

of ketimines with both electron-donating and -withdrawing substituents provided the 

corresponding products in 84–96% yields with 82–95% ee.

4.2.2. Allyl Bismuth Species—In 2019, Li and coworkers described the development 

of an enantioselective asymmetric allylation of isatin-derived ketimines with allylboronates 

promoted by a binary acid system containing bismuth acetate and chiral phosphoric acid 

(Scheme 41) [127]. It is notable that most of the ketimines investigated were allylated in 

less than an hour at room temperature with only 1 mol% of Bi(OAc)3 and 2 mol% of 

chiral phosphoric acid 48. The method gave chiral homoallylic α-tertiary amines in 73–99% 

yields with 85.1:14.9–99.3:0.7 enantiomeric ratios. An endocyclic N-sulfonyl ketiminoester 

and a pyrazoledione-derived ketimine were included in their study (not shown). While the 

former was comparable to the isatin-derived ketimines, the latter took 40 h to provide 

the corresponding product in 98% yield with 85.3:14.7 enantiomeric ratio. Regarding 

the actual nucleophile, they proposed that a chiral allyl bismuth complex generated from 

allylboronate and two molecules of chiral phosphoric acids through transmetalation would 

be the allylation species, because the α-selectivity was observed with 1-methylalylbornoic 

acid pinacol ester, and a positive nonlinear effect between the ees of chiral phosphoric acids 

and products was observed.

4.2.3. Allenyl Copper Species—In 2020, Du, Chen, and coworkers reported Cu(I)

catalyzed asymmetric α-allenylation of activated ketimines with 3-butynoates (Scheme 42) 

[128]. Screening of catalysts and reaction conditions was conducted with isatin-derived 
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ketimines. With an optimal catalytic system, α-allenylation of fifteen isatin-derived (49), 

five pyrazoledione-derived (50), four isoquinoline-1,2,3-trion-derived (51) ketimines, and 

one trifluoromethyl alkynyl ketimine (not shown) were evaluated. The first two classes of 

ketimines underwent the reaction at −10 °C and provided the corresponding products after 

36 h in 79–97% yields with 77–98% ee, and 64–91% yields with 84–92% ee, respectively 

In contrast, isoquinoline-1,2,3-trion-derived ketimines took 72 h at rt to provide the products 

in 59–63% yields with 73–92% ee. With respect to the actual nucleophile, it was suggested 

that 3-butynoate generated the corresponding copper enolate intermediate in the presence of 

DIPEA, which isomerized to γ-allenyl copper species.

4.2.4. Allyl Gold Species—In 2021, Hu, Xu, and coworkers developed a gold and 

chiral organocatalyst cooperative catalysis strategy for the allylation of isatin-derived 

ketimines with readily available N-propargylamides 52 (Scheme 43) [129], Their method 

tolerated various substituents on both substrates and provided the products in 57–96% 

yields with 10:1–>20:1 diastereoselectivities and 98–>99% ee. As they obtained an X-ray 

crystal structure of the allyl gold intermediate (55, R3 = Ph), they hypothesized that allyl 

gold species resulted through the aromatization of the corresponding vinyl gold species 

promoted by a basic functionality of squaramide 53. On this basis, they proposed that 

the squaramide electrophilically activated a ketimine via dual-hydrogen bonding, while its 

nitrogen atom coordinated with the gold catalyst, leading to a formal intramolecular reaction 

(i.e., bifunctional catalysis by the squaramide).

4.3. Ketimines Bearing a CF3 and/or Carbonyl Moiety etc

4.3.1. Allyl Indium Species—In 2019, Kürti and coworkers described the first direct 

catalytic enantioselective allylation of acyclic keti mi noesters to provide α-allyl-α-aryl and 

α-allyl-α-trifluoromethyl amino esters (Scheme 44) [130]. They identified that a complex 

generated from a commercially available BOX-type ligand (56) and Ini as an optimal 

catalyst for both α-aryl- and α-trifluoromethyl-α-ketiminoesters. Their method afforded 

α-allyl-α-aryl and α-allyl-α-trifluoromethyl amino esters in 85–98% yields and 95–99% ee 

with 5 mol% catalyst loading in CH2CI2, and 91–99% yields and 90–99% ee with 10 mol% 

catalyst loading in THF, respectively. These reactions were scalable to a gram-scale with no 

deterioration of the yield or enantiopurity. Since an enantiomer of the optimal ligand (56) is 

not commercially available and would require several steps to synthesize, they found another 

commercially available ligand 57 that performed comparably to ligand 56 with the opposite 

sense of enantioselection, obtaining the corresponding enantiomers in six α-aryl- and three 

α-trifluoromethyl-α-ketiminoesters examined.

4.3.2. Allyl Boronate Species—In 2020, Hoveyda and coworkers reported a catalytic 

regio- and enantio-selective synthesis of trifluoromethyl-substituted homoallylic α-tertiary 

primary amines (Scheme 45) [131]. The reaction scope was very broad and included 

aryl-, heteroaryl-, alkenyl-, and alkynyl- trifluoromethyl ketimines, and γ-substituted Z-allyl 

and β,γ-trisubstituted Z-allyl boronates. Unprotected N–H ketimines generated in situ 

from corresponding N-silyl ketimines were allylated by an O-methyl-L-threonine-derived 

aminophenol-based boryl catalyst, giving the desired products in 32–91% yields with 45:55–

>98:2 α:γ selectivity, 95:5–>98:2 Z:E selectivity, and 88:12–>99:1 enantiomeric ratios. It 
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is worth mentioning that (1) N-trimethylsilyl aryl-trifluoromethyl ketimines are stable and 

readily prepared in multigram quantities and (2) this allylation reaction was demonstrated on 

a gram-scale with no deterioration of the yield, regio- and stereo-selectivities.

4.3.3. Allyl Copper Species—In 2020, Chen and coworkers described an asymmetric 

allylation of acyclic ketiminoesters through copper-catalyzed carboboronation of allenes 

(Scheme 46) [132]. They found that the use of a bulky C2-symmetric NHC was the key 

to control the chemo-, regio-, diastereo-, and enantio-selectivities in their protocol. While 

the scope of the electrophiles was limited to alkyl aryl glyoxylate-derived ketiminoesters 

(Ar1 = aryl), that of allenes was found broad, affording the products in 53–96% yields with 

4:1–>20:1 diastereoselectivities and 75:25–98:2 enantiomeric ratios.

5. Unmodified Ketimines in the Allylation Reaction

5.1. AUyl Copper Species

In 2006, Kanai, Shibasaki, and coworkers reported the first catalytic enantioselective 

ketimine allylation reaction (Scheme 47, (1)) [133]. On the basis of their previous studies 

on the Cu-catalyzed allylboration of ketones, they hypothesized that a highly nucleophilic 

allylcopper species generated from allylboronate would also be a suitable nucleophile for 

ketimines. They first investigated the effect of different ketimine N-protecting groups on 

the reactivity by using achiral CuF·3PPh3 as a catalyst and selected N-benzylketimines for 

the development of an enantioselective variant. Cyclopentyl-DuPHOS was identified as an 

optimal chiral ligand for aryl methyl ketimines, providing homoallylic amines in 76–97% 

yields with 81–93% ee. On the other hand, iPr-DuPHOS was better for an aliphatic ketimine, 

giving a corresponding homoallylamine in 98% yield with 23% ee. The removal of N-benzyl 

group was done in two steps with an overall yield of 88% (2).

In 2017, Hoveyda and coworkers disclosed the first asymmetric catalytic allylation of 

unprotected N-H ketimines generated in situ from the corresponding salts (61), which 

directly provided enantio-enriched α-tertiary primary amines (Scheme 48) [134], This 

class of ketimine salts is bench-stable and prepared by the addition of organo-lithium 

or magnesium species to readily available nitriles followed by HC1 treatment [32]. This 

method was not only atom and step economical but also obviated possible complications 

associated with the removal of N-protecting units in the products. With respect to the 

actual nucleophiles, the chiral NHC-Cu complex produced corresponding chiral (Z)-allyl 

copper intermediates through borylcupration of monosubstituted allenes with B2(pin)2, 

which underwent the addition reaction to N–H ketimines. The reaction scope was very broad 

in terms of both ketimines and allenes, and the primary amine products were obtained in 38–

95% yields with 85.5:14.5–>99:1 enantiomeric ratios and exceptional diastereoselectivity 

(>98:2 throughout). They noted that reactions of ketimines that contained an α- or (β-alkoxy 

or a benzyl group were inefficient, probably due to facile decomposition (enamine formation 

and β-elimination, respectively) and that the same applied to trifluoromethyl-substituted 

ketimines (decomposition to unidentified products). This catalytic method puts forward 

an expeditious strategy for the synthesis of α-tertiary homoallylamines (β-tertiary-amino 

carbonyl equivalents) with a very broad substrate scope in high diastereo- and enantio
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selectivities, thus providing a solution to an important and persisting problem in catalytic 

enantioselective synthesis. Indeed, this method is the state of the art in the ketimine 

allylation.

In 2019, Yun and coworkers described copper-catalyzed asymmetric intramolecular 

reductive coupling of (E)-dienyl arenes with a tethered ketimine moiety (Scheme 49) 

[135]. This transformation was a sequence of a chemo-, regio-, and enantio-selective 

hydrocupration reaction of (E)-dienes that produced allyl copper species and their 

subsequent intramolecular addition to ketimines. The reaction scope was broad and provided 

enantio-enriched 1-benzazepine derivatives bearing two contiguous stereocenters in 11–79% 

yields with 75:25–100:0 diastereoselectivities and 63–97% ee.

5.2. Pd-Trimethylenemethane (TMM)

In 2010, Trost and a coworker reported that a zwitterionic complex (Pd-TMM) 

generated in situ from a Pd catalyst and l-cyano-2-((trimethylsilyl)methyl)allyl acetate (63) 

underwent facile cycloaddition reaction with various ketimines (Scheme 50) [136,137]. The 

electrophile scope was very broad and included aryl alkyl, cyclic, and dialkyl ketimines. 

Phosphoramidite ligand 64 was found to be optimal for aryl alkyl and cyclic ketimines and 

provided the corresponding products in 77–99% yields with 7:1–>20:1 diastereoselectivities 

and 81–>99% ee but gave an unacceptable level of diastereoselectivity for cyclohexyl 

methyl ketimine. Ligand 65, however, turned out fruitful for dialkyl ketimines, affording the 

cycloadducts in 50–99% yields with 1:1–>20:1 diastereoselectivities and 84–99% ee.

5.3. AUyl Rhodium Species

In 2010, Cramer and a coworker reported one example of enantioselective rhodium(I)

catalyzed intramolecular allylation of a ketimine (Scheme 51, (1)) [138], This 

transformation was initiated by an imine-directed orthorhodation, followed by a 

carbometallation of the terminal bond of an allene that produced an allyl rhodium species, 

which in turn underwent an intramolecular ketimine allylation reaction to give the product 

where its ester group spontaneously cyclized on to the primary amine moiety formed. 

The absolute configuration of (−)-67 was not determined. In 2013, they extended this 

protocol to Rh-catalyzed dynamic kinetic resolution of racemic allenes (2) [139], The 

substrate scopes of both ketimines and allenes were very broad, affording various cyclic 

α-tertiary homoallylamines in 38–97% yields with 5:1–>20:1 E:Z selectivities and 95:5–

99:1 enantiomeric ratios. This protocol also used unprotected N–H ketimines that obviated a 

potentially problematic deprotection of the amine group in the products.

5.4. Allyltrichlorosilane

In 2014, Peng and Takenaka described one example of enantioselective allylation of an 

aliphatic ketimine with allyltrichlorosilane catalyzed by their helical-chiral Lewis base 

catalyst (Scheme 52) [140]. Commercially available allyltrichlorosilane is an inexpensive 

easy-to-use allylation reagent. It is often employed for the allylation of aldehydes and 

aldimines, but its catalytic enantioselective addition to ketimines is not known to the best 

of our knowledge. Based on their preliminary mechanistic study, they hypothesized that a 

product (bearing a NSiCl3 unit before aqueous work-up) inhibited the catalyst from turning 
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over efficiently in CH2Cl2. A more Lewis basic solvent, THF did improve the catalyst’s 

turnover but adversely affected the enantioselectivity.

6. Activated and/or Cyclic Ketimines in Aza-Morita-Baylis-Hillman 

Reaction

The asymmetric aza-Morita-Baylis-Hillman (aza-MBH) is widely recognized as a useful 

and atom-economical carbon-carbon bond formation reaction between electron-deficient 

alkenes and imines catalyzed by chiral Lewis bases (selected reviews; [141–144]). This 

transformation provides highly functionalized β-amino carbonyl compounds in an enantio

enriched form. As such, a number of important developments have been reported. However, 

the ketimine variant was not known until 2013, in which three independent studies were 

disclosed [145–147]. One of them employed isatin-derived ketimines [146], and more 

contributions with isatin-derived ketimines were disclosed later (selected references; [148–

154]). In light of the excellent review articles on the isatin-derived ketimines that covered up 

to the end of 2017 [73–75], we discuss a few selected examples in Section 6.3 (vide infra).

6.1. Acyclic Ketimines Bearing a Carbonyl Moiety

In 2013, Chen and coworkers developed an aza-MBH reaction of alkenyl or alkynyl 

ketiminoesters with acrolein catalyzed by β-isocupreidine ((β-ICD) (Scheme 53) [145]. 

During their optimization study, they found that some double-hydrogen-bond donors such 

as catechol, (R)-, (S)-BENOL, and a chiral thiourea enhanced the enantioselectivity of the 

model substrate (R1 = 4-Cl-Ph) from 65% ee to 87, 90, 90, and 90% ee, respectively, 

while yields were comparable (89, 92, 91, 89, and 91%, respectively). On the basis of 

the preliminary 1H NMR study of (β-ICD and phenolic additives, they proposed that a 

BINOL bridged a ketiminoester and a β-ICD-acrolein adduct through hydrogen bonding, 

leading to a more organized transition state. The optimized method worked for both alkenyl- 

and alkynyl-substituted ketiminoesters and provided the corresponding products in 81–96% 

yields with 60–92% ee and 70–90% yields with 88–92% ee, respectively.

In the same year, Jugé and Sasai reported an aza-MBH reaction of methyl or ethyl 

vinyl ketones with ketiminoesters (Scheme 54) [147]. During their catalyst screening 

study, they identified that P-chirogenic Lewis bases were superior to other catalysts that 

were commonly employed for MBH reactions. After optimization of P-chirogenic catalyst 

structures and other reaction parameters, catalyst 67 provided the MBH products in 59–98% 

yields with 41–97% ee.

In the same year, Sasai described a chiral Lewis base catalyzed formal [2 + 2] cycloaddition 

of ketiminoesters with allenoates (Scheme 55) [155]. This work represents the first example 

of catalytic enantioselective allenoate addition to ketimines (1). They screened various chiral 

amines and identified β-ICD as an optimal catalyst that provided the azetidines in 64–97% 

yields with 6:1–>20:1 E/Z selectivities and 83–99% ee. To demonstrate the synthetic utility 

of the products, they successfully converted an enantio-enriched azetidine to a β-amino 

carbonyl compound in two steps without any loss in its optical purity (2).
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6.2. Endocyclic Ketimines

In 2014, Sasai and coworkers reported enantioselective Lewis base-catalyzed formal [4 

+ 2] cycloaddition of endocyclic N-sulfonyl ketimines with α-methyl allenoate (Scheme 

56) [156]. After screening commonly used chiral phosphines, they found that (R)-SITCP 

efficiently promoted the desired transformation. This method readily provided enantio

enriched tetrahydropyridines bearing a chiral tetrasubstituted carbon stereogenic center in 

81–95% yields with >20:1 regioselectivity and 62–92% ee. With respect to the observed 

regio-selection, they proposed that SITCP (monoaryl spiro-type phosphine catalyst) was 

relatively electron-rich, thus leading to the kinetically favored γ-addition to the ketimine 

through the zwitterionic allenoate-catalyst adduct, followed by intramolecular cyclization.

In 2016, Huang and coworkers described a bifunctional-phosphine-catalyzed sequential 

annulation of endocyclic N-sulfonyl ketimines with γ-benzyl allenoates (Scheme 57) [157]. 

This transformation readily provided rapid access to polyheterocyclic products with four 

contiguous stereogenic centers (one quaternary and three tertiary carbon centers). It is 

noteworthy that only one isomer was obtained in all cases. As to the reaction pathway, 

it was proposed that a zwitterionic allenoate-catalyst adduct conjugatively added to an 

α,β-unsaturated ketimine to generate intermediate 71, followed by a proton shift and 

intramolecular addition to the ketimine unit to form the first ring. The method tolerated 

various aromatic and heteroaroma tic substitutions for both substrates and provided the 

highly complex products in 51–98% yields with 81–99% ee.

6.3. Isatin-Derived Ketimines

In 2013, Shi, Li and coworkers described the first catalytic asymmetric aza-MBH reaction of 

isatin-derived ketimines with methyl vinyl ketone (Scheme 58) [146]. They evaluated both 

amine- and phosphine-based catalysts ((β-ICD and 74, respectively) and optimized other 

reaction parameters for each catalyst. (β-ICD provided the products in 32–98% yields with 

62–94% ee, and 74 afforded them in 70–97% yields with 70–>99% ee.

In 2016, Han, Lu, and coworkers reported an enantioselective phosphine-catalyzed [3+2] 

annulation reaction of allenoates and isatin-derived ketimines for the first time (Scheme 59) 

[148]. The method tolerated allenes with both alkyl and aryl substituents at the γ-positions 

and afforded various 3,2′-pyrrolidinyl spirooxindoles in 50–85% yields with 2.3:1–11.2:1 

diastereoselectivities and 98.6–99.9% ee.

In 2016, Kumar and coworkers disclosed the first diastereo- and enantio-selective [3+2] 

annulation reaction of α-substituted allenoates with isatin-derived ketimines catalyzed by 

a chiral phosphine (Scheme 60) [149]. They screened various chiral phosphine-based 

catalysts and found that SITCP provided a desired 3,2′-pyrrolidinyl spiro-oxindole with 

high selectivities. Under the optimized reaction conditions, the catalyst gave the products in 

58–88% yields with >99:1 diastereoselectivity and 94.3–99.9% ee.

7. Summary and Outlook

Because of the notorious structural properties of simple ketimines, chemists in general are 

under the impression that even ketimines with electron-withdrawing substituents are hard to 
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utilize for catalytic asymmetric reactions. Driven by the clear benefits of Mannich reactions, 

various ketimines have been studied, and many notable achievements are reported in the 

literature. As such, we hope that these important contributions show that chemists now 

can readily build α-tertiary amine stereogenic centers into molecules of their interest by 

choosing activated ketimines adequate for their needs. On the other hand, the Mannich 

and its related reactions of unmodified ketimines currently remain as some of the most 

important persisting problems in asymmetric catalysis and synthesis, providing intellectually 

stimulating research opportunities.
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Scheme 1. 
Asymmetric catalytic ketimine Mannich reaction.
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Scheme 2. 
Selected example of in situ E/Z isomerization of ketimine.

Xu et al. Page 32

Catalysts. Author manuscript; available in PMC 2021 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 3. 
The first asymmetric catalytic ketimine Mannich reactions.
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Scheme 4. 
Stereodivergent direct catalytic asymmetric Mannich reaction of an endocyclic 

ketiminoester.
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Scheme 5. 
Regioselective asymmetric Mannich reaction of allylic ketones with N-sulfonyl 

ketiminoester.

Xu et al. Page 35

Catalysts. Author manuscript; available in PMC 2021 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 6. 
The oxidative NHC-catalyze [4 + 2] annulation reaction of enals and dihydroquinazolines.
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Scheme 7. 
Asymmetric Mannich reaction of pyrazoleanides and dihydroquinazolines.
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Scheme 8. 
Chiral phosphoric acid-catalyzed Mannich reaction of 2-aryl-3H-indol-3-ones.
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Scheme 9. 
Proline-catalyzed Mannich reaction of 3-iminoindoles generated in situ from amides and 

isocyanides.
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Scheme 10. 
Enantioselective [2 + 2] cycloaddition of N-allenamides with N-sulfonyl ketiminoester.
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Scheme 11. 
BINOL phosphoric acid-catalyzed Mannich reaction of endocyclic N-acyl ketimines.
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Scheme 12. 
Proline-catalyzed Mannich reaction of 3-substituted-2H-l,4-benzoxazines.
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Scheme 13. 
Copper-catalyzed asymmetric Mannich reaction of 2H-azirines with β-ketoamides.
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Scheme 14. 
Copper(I)-catalyzed asymmetric decarboxylative Mannich reaction of 2H-azirines.
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Scheme 15. 
Zn-ProPhenol catalyzed asymmetric Mannich reaction of 2H-azirines with alkynyl 

cycloalkyl ketones.
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Scheme 16. 
Chiral phosphoric acid-catalyzed Mukaiyama-Mannich reaction of endocyclic N-acyl 

ketimines.
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Scheme 17. 
Copper-catalyzed Mannich reaction of N-unprotected isatin-derived ketimines.
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Scheme 18. 
Stereodivergent asymmetric Mannich reaction of α-fluoronitriles with isatin-derived 

ketimines.
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Scheme 19. 
Chiral La-catalyzed Mannich reaction of isatin-derived ketimines with β,γ-unsaturated 2

acyl imidazoles.
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Scheme 20. 
Tandem α-alkenyl addition/proton shift reaction of silyl enol ethers with ketimines.
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Scheme 21. 
Chiral organosuperbase-catalyzed direct Mannich reaction of ketiminoesters.
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Scheme 22. 
Direct enantioselective Mannich reaction of α,β-unsaturated γ-butyrolactam with 

ketiminoesters.
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Scheme 23. 
Direct catalytic Mannich reaction with an N-unprotected trifluoromethyl ketiminoester.
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Scheme 24. 
Direct catalytic asymmetric vinylogous Mannich reaction of polyfluorinated alkynyl 

ketimines.

Xu et al. Page 54

Catalysts. Author manuscript; available in PMC 2021 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 25. 
Enantiodivergent Mannich reaction of alkynyl ketiminoesters catalyzed by chiral amines.
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Scheme 26. 
Chiral amine-catalyzed Mannich reactions of (Z)-alkynyl alkyl ketimines.
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Scheme 27. 
The first asymmetric catalytic Mannich reaction of unmodified ketimines.
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Scheme 28. 
Chiral copper(II) complex-catalyzed anti-selective vinylogous ketimine Mannich reaction.
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Scheme 29. 
State-of-the-art enantioselective propionate ketimine Mannich reaction.
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Scheme 30. 
Anti-selective propionate ketimine Mannich reaction.
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Scheme 31. 
Asymmetric self-coupling of enamides by a BINOL-derived phosphoric acid.
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Scheme 32. 
Direct catalytic asymmetric addition of allylic cyanide to ketimines.
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Scheme 33. 
Stereodivergent direct catalytic asymmetric Mannich reaction.

Xu et al. Page 63

Catalysts. Author manuscript; available in PMC 2021 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 34. 
Direct catalytic asymmetric vinylogous ketimine Mannich reaction of γ-butenolides.
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Scheme 35. 
Direct asymmetric Mannich reactions of isocyanoacetates and ketimines.
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Scheme 36. 
Direct catalytic asymmetric addition of N-alkylidene-α-aminoacetonitrile to aliphatic 

ketimines.
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Scheme 37. 
Direct enantioselective vinylogous Mannich reaction of ketimines with a γ-butenolide.
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Scheme 38. 
Enantioselective rhodium-catalyzed allylation of endocyclic ketimines.
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Scheme 39. 
Enantioselective cobalt-catalyzed allylation of endocyclic ketimines.

Xu et al. Page 69

Catalysts. Author manuscript; available in PMC 2021 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 40. 
Enantioselective allylation of isatin-derived ketimines catalyzed by a chiral Pd-pincer 

complex.
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Scheme 41. 
Bi(III)-catalyzed enantioselective allylation of ketimines.
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Scheme 42. 
Cu(I)-catalyzed asymmetric α-allenylation of activated ketimines.
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Scheme 43. 
Asymmetric allylation of ketimines by allyl gold intermediates promoted by squaramide.
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Scheme 44. 
Enantioselective catalytic allylation of acyclic ketiminoesters.
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Scheme 45. 
Regio- and enantio-selective allylation of N–H ketimines generated in situ.
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Scheme 46. 
Enantioselective catalytic allylation of acyclic ketiminoesters via carboboronation of allenes.
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Scheme 47. 
The first catalytic enantioselective ketimine allylation reaction.
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Scheme 48. 
State-of-the-art catalytic enantioselective allylation of unmodified ketimines.
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Scheme 49. 
Catalytic asymmetric intramolecular allylation of ketimines.
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Scheme 50. 
Pd-catalyzed asymmetric [3 + 2] cycloaddition of trimethylenemethane with ketimines.
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Scheme 51. 
Rhodium-catalyzed asymmetric intramolecular allylation of ketimines.
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Scheme 52. 
Chiral Lewis base-catalyzed allylation of an aliphatic ketimine.
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Scheme 53. 
The first aza-Morita-Baylis-Hillman reaction of acrolein with ketiminoesters.
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Scheme 54. 
The P-chirogenic Lewis base-catalyzed aza-MBH reaction of alkyl vinyl ketones with 

ketiminoesters.
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Scheme 55. 
Chiral Lewis base-catalyzed formal [2 + 2] cycloaddition of ketiminoesters with allenoates.
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Scheme 56. 
Enantioselective formal [4 + 2] cycloaddition of ketimines with α-methyl allenoate.
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Scheme 57. 
Chiral phosphine-catalyzed sequential annulation of allenoates and endocyclic ketimines.
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Scheme 58. 
The first asymmetric catalytic aza-MBH reaction of isatin-derived ketimines.
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Scheme 59. 
A chiral phosphine-catalyzed [3+2] cycloaddition reaction of allenoates and isatin-derived 

ketimines.
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Scheme 60. 
A chiral phosphine-catalyzed [3+2] annulation reaction of α-substituted allenoates and 

isatin-derived ketimines.
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Figure 1. 
Examples of bioactive compounds and natural products bearing an α-tertiary amine 

stereogenic center.
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Figure 2. 
Notorious properties of unmodified ketimines as electrophiles.
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