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ABSTRACT

Cancer is a leading cause of death across the world and continues to increase in incidence. Despite years of research, multiple tumors (e.g.,
glioblastoma, pancreatic cancer) still have limited treatment options in the clinic. Additionally, the attrition rate and cost of drug development
have continued to increase. This trend is partly explained by the poor predictive power of traditional in vitro tools and animal models. Moreover,
multiple studies have highlighted that cell culture in traditional Petri dishes commonly fail to predict drug sensitivity. Conversely, animal models
present differences in tumor biology compared with human pathologies, explaining why promising therapies tested in animal models often fail
when tested in humans. The surging complexity of patient management with the advent of cancer vaccines, immunotherapy, and precision
medicine demands more robust and patient-specific tools to better inform our understanding and treatment of human cancer. Advances in stem
cell biology, microfluidics, and cell culture have led to the development of sophisticated bioengineered microscale organotypic models (BMOMs)
that could fill this gap. In this Perspective, we discuss the advantages and limitations of patient-specific BMOMs to improve our understanding of
cancer and how these tools can help to confer insight into predicting patient response to therapy.
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ADVANTAGES OF BIOENGINEERED MICROFLUIDIC
ORGANOTYPIC MODELS (BMOMs)

BMOMs are commonly defined as microscale in vitro platforms
that rely on the use of three dimensional (3D) environments (e.g.,
multicellular spheroids), 3D matrices (e.g., collagen), and/or the cul-
ture of one or multiple cell types (e.g., tumor cells) to mimic specific
features of in vivo organ physiology.1,2 BMOMs are based on the use
of engineered microfluidic devices (i.e., with a volume capacity in the
ll range), which may include microchambers connected by micro-
channels and other microscale features. BMOMs enable researchers to
control cell organization and compartmentalization as well as the flow
of nutrient and waste products,3 which helps us to illustrate their
advantage over traditional 2D platforms. In this article, we focus on
the advantages derived from leveraging microscale physics, monitor-
ing capabilities, and BMOM’s bottom-up approach to modeling with
all-human materials. An overview of the advantages and disadvantages
of microfluidic models compared to in vitro and in vivomodels is illus-
trated in Fig. 1 and is discussed more in-depth in this section.

BMOMs leverage physics at the microscale

Microfluidics is defined as the manipulation of fluid volumes at
the submillimeter scale. At the microscale level, the effects of surface
tension and capillarity dominate gravity and inertia, which makes fluid
behavior highly predictable.4–6 The predictability of these systems can
be leveraged to control microenvironmental conditions, generate bio-
chemical gradients, or separate components from a complex sample
(e.g., multiple cell types such as tumors and blood cells).3

An often-mentioned advantage of BMOMs is their small sample
requirement, which enables work with limited samples (e.g., patient-
derived biopsies, exosomes, circulating tumor cells from the blood).7,8

BMOMs typically require a working volume in the microliter scale, as
opposed to traditional in vitro platforms that operate in the milliliter
scale. Therefore, the use of small volumes in BMOMs enables better
recapitulation of physiologically relevant factor concentrations while
avoiding sample dilutions or manipulations that may incur in sample
loss (e.g., circulating tumor cells from the blood).8 The advantages of
working with small and concentrated samples are exemplified by
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enzymatic processing (e.g., digestion, qPCR), where the probability of
enzyme-substrate interactions increases with the solute concentration
wherein the resultant reaction has improved efficiency.9 Furthermore,
by avoiding dilution, BMOMs have also been shown to enhance para-
crine signaling (i.e., soluble factor signaling between different cells)
and, therefore, can facilitate studying the crosstalk between different
cell types.10,11

Another advantage of BMOMs is their potential for scalability,
which is desirable for basic studies and indispensable for extensive
drug screening (e.g., Organoplate from MIMETAS).12 The potential of
BMOMs for screening multiple therapeutic options is already being
leveraged by research groups.13,14 However, many microfluidics-based
companies are attempting to further increase the scale of multifactorial
organotypic models with limited success.15 We anticipate that there
will be further improvement in the scalability of BMOMs over time,
which will require efforts in developing new materials that support
mass production and operational parameters that allow use with exist-
ing high throughput instrumentation.

Additionally, we envision that microfluidics, coupled with
BMOMs, could be instrumental in facilitating primary sample
research. The inconsistency and labor-intensive nature of sample proc-
essing are common concerns for researchers working with primary
samples. Predictable microscale physics can be leveraged to optimize

laboratory procedures resulting in new strategies to standardize and
automate primary sample processing (e.g., tissue mincing, enzymatic
digestion, washing, and separating components of a complex mix-
ture).16,17 The reproducible processing of primary tissue samples is an
unmet need in the field that microfluidics could help to fill.18 Notably,
as a response to this need, funding agencies have initiatives in the
homogenization of sample processing, sample preparation, and analy-
sis systems,19 and the first reports of “tissue processing devices” and
sample preparation devices20,21 are appearing in the literature to fill
this gap.

Monitoring capabilities

Compared with in vivo models, BMOMs offer additional moni-
toring abilities. Most BMOMs are amenable to high-resolution micros-
copy, which can help investigate biological processes in detail (e.g., the
metastatic cascade).22,23 Although in vivo models are becoming more
amenable to imaging techniques (e.g., intravital imaging), they are lim-
ited by the shortcomings intrinsic to the imaging technique (e.g.,
breathing artifacts, limited imaging depth).24 This lack of real-time
imaging and the complexity of the in vivo systems often result in the
“black box” effect. This caveat is described as the user’s inability to
determine the relationships between input and output. Conversely,

FIG. 1. Schematic representation of a comparison among bioengineered microscale organotypic models (BMOMs), in vitro and in vivo models. BMOMs are a balanced middle
ground between the advantages of in vitro models (purple) and the advantages of in vivo models (green). Further, the leverage of microscale technologies comes with advan-
tages over both in vitro and in vivo models (red).
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due to the increased control that the user can exert on customizing the
organotypic model, the stochastic nature of BMOMs is reduced com-
pared to in vivomodels.

Monitoring capabilities could be further improved in BMOMs
via the integration of miniaturized sensors (e.g., microfluidic flow
cytometers, microfluidic Polymerase Chain Reaction devices).25 Some
examples that illustrate the potential of sensor integration in organo-
typic microfluidic models are recently reported devices integrating
multiple sensors (e.g., a glucose, oxygen, and pH sensor) in the same
platform, which allows for fine control of the cell culture parameters
in real-time.26,27 Other applications are CMOS-camera coupled micro-
devices, which are continuously monitored for higher tractability of
the models and may even be automatically processed. Other monitor-
ing examples include Raman spectroscopy integrated into microfluidic
devices and miniaturized electrode-based reactive oxygen species sen-
sors.28 While few of these advances have made it into mainstream lab-
oratories, they have the potential of turning time-consuming tasks into
highly standardized and automated processes, while minimizing
human error and ensuring efficiency when working with small sam-
ples. However, challenges remain in the operation of these sensors
(e.g., sensor biofouling)29 as well as in simplifying these systems to
include user-friendly interfaces that can be taken advantage of in
biology-focused laboratories with little need for specialized training.30

A bottom-up approach to modeling

An advantage of BMOMs over in vivo models is their modular
nature which enables scalable complexity. In BMOMs, researchers can
determine the number of components desired for a specific design
(e.g., a gut-liver system to study drug absorption),31 thereby decou-
pling the organs of interest to delve into basic mechanisms of disease
pathology. In engineering terms, the studies enabled by BMOMs are
described as bottom-up, indicating that complexity is built by adding
subsequent individual physiological components.32 This bottom-up
approach has proved useful in cell biology as it limits the system to
those aspects of specific interest. For example, identifying specific cel-
lular crosstalk between different cell types is challenging in in vivo
models, which are top-down systems (i.e., large systems that require
breaking down for study). Furthermore, BMOMs can be customized
to include comprehensive and controlled environmental stimuli for
mechanistic studies. Examples of environmental stimuli include
mechanical cues (e.g., surface topography, stiffness, shear stress,
mechanical deformations)33–35 and biochemical cues (e.g., pH gra-
dients, growth factor gradients).36–38 Biological gradients, which are
known to drive critical biological processes in tissue development;39

and 3D matrix architecture,40 which is known to drive cancer cell
migration and tumor progression in vivo,41 can also be tailored
through this bottom-up approach. By incorporating these cues, micro-
fluidic organotypic models have been increasingly engineered to better
resemble the microenvironment, thereby increasing their biological
relevance and applicability. Studies are beginning to identify specific
cell functions better mimicked in organotypic models than in tradi-
tional in vitro cultures. An example is a recent report that showed that
cell proliferation in organotypic 3D models, which more accurately
matched in vivo proliferation, was vastly different from the prolifera-
tion observed in traditional 2D models.42 Notable examples are blood
and lymphatic vessel BMOMs, which have been of increasing interest
in the last decade.43,44 Generally based on lining one or several surfaces

(e.g., biocompatible materials or hydrogels) with cells of endothelial
lineage (e.g., Human Umbilical Vessel Endothelial Cells or Human
Lymphatic Endothelial Cells), these systems also include mechanical
cues and supporting cell types43,45,46 The applications for these
BMOMs have ranged from basic cancer biology studies to more
applied drug mechanism and drug testing studies.47–50 More recently,
tissue-specific blood vessel and lymphatic vessel BMOMs have filled
an existing literature gap exploring the influence of vessel variability
(e.g., lymphatic, arteries, capillaries) and tissue specificity in cancer
progression, metastasis, and treatment.40,51–55 Finally, a recent applica-
tion of BMOMs has been the mimicry of the bone microenvironment.
A well-known example is the report of an organotypic microfluidic
model of the bone microenvironment established by culturing bone
fibroblasts in a 3D matrix.56 This model illustrated the bone trophism
(i.e., preferential metastasis), exhibited by breast cancer cells during
the metastatic cascade. More recently, microfluidic organotypic
patient-specific cancer models of multiple myeloma have been devel-
oped to test treatment effectiveness in vitro.56–59

In recent years, we have witnessed a handful of studies
developing patient-specific organotypic models for drug-testing
applications.43,60–63 Although most of these studies remain at the
proof of concept stage and have yet to demonstrate clinical rele-
vance, they help to pave a path forward in how these tools can be
further refined to be used clinically.

The capacity of developing models entirely from
human material

A vast majority of BMOMs report using human cell lines or
patient-derived cells, which often constitutes an advantage over in vivo
models. Despite their similarities, mice and humans present differ-
ences at many different biological levels.

First, studies have shown that the transcriptomic landscape of
mice and humans is significantly different, thereby translating into
physiological and functional differences.64 Likewise, human-to-mouse
functional differences are illustrated in the immune system, where
there are critical differences in both innate and adaptive immunities of
humans and mice (e.g., T-cell subsets, cytokine receptors, costimula-
tory molecule expression and function, Th1/Th2 differentiation, Toll-
like receptors, the NK inhibitor receptor families Ly49 and KIR).65

The relevance of these differences goes beyond basic studies since the
immune system plays a critical role in tumor cell biology, and immu-
notherapy is now at the forefront of cancer treatment. An example
illustrating these differences is found in the clinical trials of the anti-
CD28 monoclonal antibody TGN1412,66 which failed due to a cyto-
kine storm effect that was not observed in animal models.

Second, it is known that some diseases (e.g., glioblastoma,
Alzheimer’s disease) cannot be modeled in mice due to the apparent
mouse-to-human differences.67 To generate some of these models, the
genome of the mice is often engineered to present mutations that have
been related to the disease of interest in humans; however, the pheno-
typic result of these mutations does not always match the pathology
observed in humans. Therefore, it remains unclear whether the rele-
vance of the results extracted from in vivo models will translate to
human pathophysiology.

Finally, even in those mouse models in which human cells have
been implanted, the microenvironment and surrounding cells (com-
monly referred to as the stroma) have a mouse origin.68 As a
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consequence, animal models have limited translatability into human
disease studies given the differences between humans and animals
(e.g., nonconserved immune mechanisms against solid tumors). In
contrast, BMOMs rely on entirely human-derived components,
thereby increasing the translatability of results.

Overall, the main advantages of BMOMs are rooted in a careful
balance between in vivo and in vitro models with the additional bene-
fits derived from their small scale. Harnessing physics at the micro-
scale in BMOMs provides many advantages: allows for a high degree
of control and customizability over the building components of the
model and lower reagent costs compared to traditional in vitro and
in vivo models. However, BMOMs also present limitations that must
be taken into consideration before future perspectives of these models
can be discussed.

LIMITATIONS OF BMOMs

Although BMOMs offer multiple advantages compared with tra-
ditional in vitro platforms or animal models, most of these models
remain confined to engineering research and are excluded from tradi-
tional cellular and molecular biology laboratories. Adoption of these
technologies has been hindered by both scientific and logistical
challenges.

Limited capacity to model multiorgan interactions and
behavioral responses

Traditionally, BMOMs have focused on mimicking concrete tis-
sue structures such as the liver sinusoid, the nephron, or the lung epi-
thelium, which are simpler systems compared with a complete organ
(e.g., liver, kidney, lung).69 Therefore, these models fail to fully capture
the complexity of the target organ complexity and its multitude of
functions (e.g., liver nutrient metabolism, drug transformation, albu-
min production, urea cycle).23 Similarly, BMOMs for human disease
(e.g., alcoholic cirrhosis) commonly focus only on the affected tissue
(e.g., liver), ignoring potential ramifications to other organs (e.g., alco-
hol abuse can lead to a severe alcohol-associated pancreatitis). Hence,
identifying the required components to fully capture a specific disease
state or biological function is a question that remains to be answered.8

Arguably, for diseases with a clear onset and defined pathophysiology,
such as cystic fibrosis (CF), selectively focusing on the affected tissue
might be a successful strategy. CF can be caused by mutations in the
CF transmembrane conductance regulator (CFTR) gene, affecting
mucus production in the lung and digestive organs, which commonly
leads to life-threatening airway obstructions.70 Thus, BMOMs that
mimic the lung epithelium physiology might suffice to study CF as
well as to evaluate new therapies. Conversely, other diseases, such as
cancer, have a more complex, multifactorial pathophysiology involving
the interaction between multiple cell types and organs. Cancer immu-
notherapy might be a paradigmatic example of a complex system
where the patient outcome depends on the interplay between multiple
cell types (e.g., cancer, stromal, and immune cells) and biological
structures (e.g., tumor vasculature, bone marrow, lymph nodes). In
this scenario, BMOMs focusing on one specific tissue structure might
fall short. To bridge this gap in cancer modeling, researchers have
developed more sophisticated models combining multiple biological
structures such as the 3D tumor tissue with the presence of blood ves-
sel surrogates and immune cells.23 However, multiple steps of the
immune-tumor cycle have not been yet included in the most recent

models, such as antigen capture in the tumor tissue and presentation
to immune cells in the lymph nodes, potential side-effects of chemo/
radiotherapy in immune cell production in the bone marrow and
secondary organs (e.g., thymus), or the establishment of long-term
memory response (e.g., tumor vaccines).71

There have been some attempts to connect BMOMs mimicking
different organs72,73 to better study these multiorgan interactions in
complex disease states. To this end, two or more different tissue-
specific BMOMs are combined to study the crosstalk between different
organs. A representative example is the metastatic cascade, where can-
cer cells migrate form the primary tumor to the metastatic site. An
early example explored breast cancer metastasis to bone tissue, and
follow-up work included immune cell extravasation into this scenario,
thereby including three different organs relevant to the metastatic cas-
cade.56 More often, models have explored tumor–vascular interactions
without enabling tissue-specific metastatic extravasation and coloniza-
tion studies,40,52,63,74,75 which pales in comparison to the extensive
functions observed in vivo (e.g., drug metabolism, nutrient processing,
intravasation, cell differentiation, dissemination, and tissue-specific
colonization).76–78

Additionally, this gap between BMOMs and human physiology
becomes wider when we consider human behavior and behavioral
responses. Notably, multiple diseases (e.g., irritable bowel syndrome or
cancer) involve higher level functions, resulting from interactions
between multiple organs and kingdoms.79 Notable examples include
the influence of the microbiome or psychosocial stress in breast cancer
prognosis and outcome.80–82 Some models have been developed to
study simpler processes such as axon regeneration within the highly
complex physiology of the brain.83 However, current BMOMs are yet
far from successfully mimicking higher cognitive functions. In this sit-
uation, animal models might offer a more robust approach. Thus, for
some applications, BMOMs still require improvement to be consid-
ered a significant alternative to animal models.

Manufacturing and balancing required complexity
with model throughput

Traditionally, soft lithography has been the most used technique
to fabricate microfluidic platforms to hold BMOMs. Soft lithography
relies on pouring the elastomer polydimethylsiloxane (PDMS) on top
of a negative template, fabricated by UV-lithography. Next, the PDMS
device is commonly bonded to a glass substrate using oxygen plasma
to generate the microfluidic platform. This approach provides
researchers with a relatively versatile and fast approach to prototyping.
However, soft-lithography is not amenable to mass production, as
compared to injection molding, one of the most common techniques
used to fabricate Petri dishes and well-plates.84

Additionally, PDMS presents additional limitations as a material
for laboratory use. PDMS is a porous material that absorbs small
hydrophobic molecules, which can significantly affect cell biology.
Furthermore, multiple molecules used in cell biology (e.g.,
Rhodamine), as well as drugs used in the clinic (e.g., doxorubicin), are
absorbed into the PDMS, which will significantly decrease the effective
concentration in culture.85 This property makes PDMS poorly suited
for drug screening, and researchers have explored other alternative
materials (e.g., polystyrene, PMMA)15 in order to overcome these
limitations.
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Further engineering limitations in BMOMs are illustrated in their
limited throughput potential. BMOMs are a versatile tool to model
complex scenarios, including interactions between multiple cell types
and tissue structures (e.g., immune cells and vasculature). However,
many BMOMs trade complexity for throughput potential, thereby
leading to sophisticated platforms poorly suited for the parallelization
and high-throughput capacity required for drug screening.
Additionally, the use of specialized equipment to operate these com-
plex models (e.g., syringe pumps, fluorescent microscope) further lim-
its their throughput. Furthermore, most BMOMs require in-depth,
hands-on training, partially explaining why they have remained
limited to research environments with little translation into clinical
settings. Conversely, most microfluidic platforms designed for high-
throughput applications (e.g., single-cell analysis) rely on simplistic
designs (e.g., microwells to capture single cells) unable to capture the
complex structure and interactions of biological tissues and organs in
BMOMs.86 Specifically, a few high throughput platforms have been
developed and even commercialized to generate spheroids or luminal
structures dedicated to drug testing purposes.87–89 These platforms
present potential advantages of scale and capacity of testing multiple
drug conditions and combinations, much needed for anticancer drug
screening.90,91 Further, high throughput platforms are often conceived
to be coupled with automatized pipetting systems or automatic drug
gradient generation, thereby diminishing user-associated bias and
error.92,93 However, integrating higher complexity models that include
both cellular and microenvironmental cues (e.g., combination of sev-
eral different cell types and structures, tubes for fluid flow, complex
Extra Cellular Matrix matrices) remains a technical challenge in
BMOMs. To seamlessly integrate the use of BMOMs into the biomedi-
cal community, the devices (and BMOMs) should be easy to operate
and compatible with standard equipment used in research and pathol-
ogy facilities.

Future prospects

Despite the advantages of BMOMs, their implementation in
research and clinical settings remains limited.

Arguably, the main barrier to a wider implementation of
BMOMs is a lack of deep understanding of the critical components
required for each disease model to successfully predict patient out-
come. One approach that can facilitate the development of predictive
BMOMs is to apply the Adverse Outcomes Pathway (AOP) developed
within the field of systems toxicology. AOP defines the key events and
relationships between the molecular inciting event and adverse out-
come.94 AOP is an approach to drug testing that integrates a compre-
hensive understanding of the mechanism of action of the drug. The
application of the AOP framework has been suggested for the develop-
ment of patient-specific BMOMs. The modular and bottom-up nature
of BMOMs enables the integration of the main tissues or biological
components playing a role in the targeted biological process.95 AOP
can guide the development of BMOMs to balance complexity,
throughput, and straightforward operation in a more standardized
manner across different research groups. This bottom-up, reverse
engineering approach may be laborious but is likely required for the
rational design of BMOMs, which will result in long-term cost-saving,
facilitate commercialization, and eventually result in implementation
in clinical settings.

The complex process of rational design for BMOMs may benefit
from the integration of computational systems biology, which aims to
mathematically model complex, nonlinear biological systems.96 The
integration of computational systems biology and BMOM develop-
ment will likely require continuous and close collaboration between
computational and brick-and-mortar biology researchers to ensure
accurate in silico modeling of BMOMs. For example, studies are being
continued to illustrate the importance of the microbiome and cross-
kingdom interactions, as well as stress, diet, and environment80 in
understanding human diseases. These newly found interactions may
need to be included and evaluated both in in silico and “wet” models
to unravel their importance in a specific mechanism according to
AOP. Thus, it is unlikely that we will be able to develop the ideal
BMOM without the help of animal models and clinical studies. A syn-
ergy between the engineering community, biologists, computational
biologists, and clinicians can allow the information obtained from
human and animal studies to be incorporated into BMOMs and com-
putational models and vice versa. Furthermore, developing predictive
patient-specific BMOMs to achieve the goals of precision medicine
poses even greater challenges that can only be overcome through a
concerted and multidisciplinary effort in research, engineering, indus-
try, and patient advocate foundations (Fig. 2).97–101
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