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Abstract

It is often a difficult task to accurately segment brain magnetic resonance (MR) images with

intensity in-homogeneity and noise. This paper introduces a novel level set method for

simultaneous brain MR image segmentation and intensity inhomogeneity correction. To

reduce the effect of noise, novel anisotropic spatial information, which can preserve more

details of edges and corners, is proposed by incorporating the inner relationships among the

neighbor pixels. Then the proposed energy function uses the multivariate Student’s t-distri-

bution to fit the distribution of the intensities of each tissue. Furthermore, the proposed

model utilizes Hidden Markov random fields to model the spatial correlation between neigh-

boring pixels/voxels. The means of the multivariate Student’s t-distribution can be adaptively

estimated by multiplying a bias field to reduce the effect of intensity inhomogeneity. In the

end, we reconstructed the energy function to be convex and calculated it by using the Split

Bregman method, which allows our framework for random initialization, thereby allowing

fully automated applications. Our method can obtain the final result in less than 1 second for

2D image with size 256 × 256 and less than 300 seconds for 3D image with size 256 × 256 ×
171. The proposed method was compared to other state-of-the-art segmentation methods

using both synthetic and clinical brain MR images and increased the accuracies of the

results more than 3%.

Introduction

Brain disease has become one of the most talked-about diseases in the world. Scientists mainly

depend on medical imaging technologies to analyze brain diseases. The use of magnetic reso-

nance imaging has become a preferred choice of method because it is generally painless, harm-

less and can provide very informative diagnostic images of most of the relevant organs and

tissues. Among the MRI (Magnetic resonance image) data analysis, precise measurement of

the distribution of tissues of interest (TOI), including gray matter (GM), white matter (WM)

and cerebrospinal fluid (CSF), plays an important role for brain studies. In order to obtain the

precise measurement, accurate image segmentation is a crucial step. Although many segmen-

tation methods have been reported [1], automated and accurate segmentation still remains a

difficult task due to the noise and intensity inhomogeneity (also named as bias field), which

can easily be found in MRI.
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Among the proposed segmentation methods, active contour models (also named as snake

models) [2, 3] in particular have been widely used. The active contour models can provide

smooth and closed contours as segmentation results, can be incorporated by using various

prior knowledge, such as shape prior information and intensity distribution, and can achieve

sub-pixel accuracy of the boundaries of TOI [4,5]. However, the snake model is local optima

and topology invariable. Furthermore, different parameters should be set when segmenting

different images [6]. In order to deal with these problems, level set methods [7, 8] have been

proposed and widely further improved.

The existing level set methods can be categorized into two categories: edge-based models

[9–12] and region-based models [4, 5, 13–17]. Edge-based models utilize local edge informa-

tion, such as gradients of edge pixels, to attract the evolving contour/surface toward the boun-

daries of the region of interest (ROI). These methods are based on local edge information,

which makes them sensitive to the noise, low contrast and hard to obtain satisfied results.

The region-based models can obtain more accurate results than those of edge-based models

by exploiting region descriptors to guide the motion of the evolving contour/surface. Chan

and Vese [7] simplified the Mumford-Shah function [18] and proposed a piecewise constant

(PC) model, which presumes that image intensities are statistically homogeneous in each dis-

joint region. However, brain MR images are usually suffered from various artifacts such as

noise and intensity inhomogeneity, which makes the PC model hard to find satisfied results.

In order to reduce the effect of intensity inhomogeneity, Li et al. [4] proposed a local binary fit-

ting (LBF) energy, which assumes that image intensities are statistically homogeneous only in

local regions. The LBF method can reduce the effect of intensity inhomogeneity, however, it

only uses the local mean intensity of each local region, which makes the method cannot obtain

accurate results when the noise is severe. In order to improve the accuracy, Wang et al. [19, 20]

(Local Gaussian Distribution based method, LGD) used Gaussian distribution to fit the in-

tensity distribution in each local region. The LGD can reduce the effect of Gaussian noise;

however, if the noise is not Gaussian, it cannot obtain accurate results without any spatial

information. In order to reduce the effect of noise, many researchers utilize the Markov ran-

dom fields (MRF) to model the spatial correlation between neighboring pixels/voxels [21–24].

Based on this idea, Shahvaran et al. [15] utilizes the MRF to improve the robustness of LGD.

Nonlocal theory is another popular method to reduce the effect of noise [25, 26]. Following

this idea, Wang et al. [17] proposed a patch based LGD method (PLGD) to improve the ro-

bustness of LGD. Zhang et al. [27] found that variances in the LGD are easily affected by the

intensity of the neighbor region and improved them to be piecewise constant. The method is

more stable; however, it uses constant kernel to indicate the local region, which makes the

method easily loses details.

A number of investigators have proved that the intensity inhomogeneity in brain MR

images is harder to deal with than that of noise for segmentation methods [28–38]. The inten-

sity inhomogeneity arises from the imperfections of the image acquisition process and mani-

fests it-self as a smooth intensity variation across the image. Then, the intensity varies with the

location of the same tissue. The intensity inhomogeneity has little effect on visual perception

because the human visual system can correct it automatically. However, it changes the inten-

sity distribution and overlaps the intensity components among different tissues, which makes

the segmentation method hard to find accurate results. In order to reduce the effect of intensity

inhomogeneity, Li et al. [37] improved the LBF by taking into account the bias field, which can

estimate the bias field when segmenting the image. Wang et al. [13] improve d the LGD in the

same way to estimate the bias field. In these methods, the smoothness of the bias field derived

from the proposed energies is naturally ensured by using the Gaussian convolution in the data

terms, without needing any other explicit smoothing term on the bias field. They found that
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when the intensity inhomogeneity level was high, an accurate bias field was still difficult to esti-

mate. In order to obtain the estimated bias field, Li et al. [31–33] used a linear combination of

orthogonal basis functions to fit the bias field, which resulted in the estimated bias field being

smooth and accurate. However, these methods are based on clustering methods and have not

considered spatial information, which makes the segmentation results be inaccurate.

In this paper, we propose a novel region-based level set model for brain MR image segmen-

tation and bias correction. To integrate the spatial information, we propose a novel treatment

of Hidden Markov Random field to construct the data term. Since the Student’s t-distribution

has one more parameter than that of Gaussian distribution, the proposed method uses the

multivariate Student’s t-distribution to fit the intensity distribution. In order to further reduce

the effect of noise, novel anisotropic spatial information is proposed by incorporating the

inner relationships among the neighborhood pixels. The anisotropic spatial information can

preserve more details of the edges and corners when it is utilized into the multivariate Stu-

dent’s t-distribution. Following the idea of [31–33], we estimate the bias field by using a linear

combination of orthogonal basis functions, which can guarantee bias field smooth, and intro-

duce it to the data term, which makes the proposed method estimate the bias field meanwhile

segmenting images. In order to make the framework more robust, we reconstructed the energy

function to be convex and calculated it by using the Split Bregman theory [34, 35, 39], which

allows our framework for random initialization and thereby allowing fully automated applica-

tions. The proposed method has been compared to other state-of-the-art segmentation meth-

ods in both synthetic and clinical brain MR images to show that our method can obtain results

that are more accurate.

Materials and methods

2.1 Materials

The synthetic brain MR images are generated from the Brain Web (http://brainweb.bic.mni.

mcgill.ca/). The Brain Web provides full 3-D simulated brain data sets with three modalities:

T1, T2 and PD; and can produce brain data sets with a variety of slice thicknesses, noise levels

and intensity inhomogeneity levels; and provides the ground truths. The clinical brain MR

images are downloaded from the Internet Brain Segmentation Repository (IBSR, http://www.

cma.mgh.harvard.edu/ibsr/ which can provide full 3-D clinical brain MR image data sets and

segmentation results to permit a standardized mechanism for evaluation of the sensitivity of a

given analysis method for signal to noise ratio, contrast to noise ratio, shape complexity,

degree of partial volume effect, etc.

2.2 Proposed method

2.2.1 Hidden markov random field models. We consider an alphabet K ¼ f1; 2; � � � ;Kg.
Let S ¼ f1; 2; � � � ;Ng be the set of indexes, H be a random field, whose state space is K, so far

for 8x 2 S we have HðxÞ 2 K. Let H be the set of all possible configurations of H so that

H ¼ PN
x¼1

HðxÞ ¼ KS
. For HðxÞx2S 2 H on the product space, the positive probability distribu-

tion p(H(x)) satisfies: pðHðxÞÞ > 0; 8HðxÞ 2 H. Let N ¼ fN ðxÞ : x 2 Sg be a neighborhood

system on S, such as x=2N ðxÞ and y 2 N ðxÞ if and only if x 2 N ðyÞ for 8x; y 2 S. Then the

neighborhood system N can be introduced by using MRF into the previously considered ran-

dom field:

pðhðxÞjhðS � fxgÞÞ ¼ pðhðxÞjhðN ðxÞÞÞ ð1Þ

Brain MR segmentation based on IACM
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According to the Hammersley-Clifford theorem, the MRF can be characterized by a Gibbs

distribution:

pðhðxÞÞ ¼
expðUðhðxÞÞÞ

Z
ð2Þ

Where Z is a normalizing constant given by

Z ¼
X

hðxÞ2H

expðUðhðxÞÞÞ ð3Þ

and U(x) is the energy function with the form

UðhÞ ¼
X

c2C

VcðhÞ ð4Þ

C is a class of subsets of the indexes that are all neighbors, Vc is the clique potential associated

with the clique c and depends on the local configuration of c.
Let I be an observable random field with state spaces I , which is also indexed by the sup-

posed set of sites S and is given as: I ¼
YN

x¼1
IðxÞ; IðxÞ ¼ fIðxÞ 2 Rwg. Given any H 2 H,

the random variables I are independent:

pðIjHÞ ¼
Y

x2S

pðIðxÞjHðxÞÞ ð5Þ

Then, the joint probability of (I,H) can be written as:

pðI;HÞ ¼ pðIjHÞpðHÞ ð6Þ

Given the neighborhood configuration HðN ðxÞÞ of H(x), the joint probability of any pair of (I
(x),H(x)) can be written by using the local characteristics of MRF [40,41] as:

pðIðxÞ;HðxÞjN ðxÞÞ ¼ pðIðxÞjHðxÞÞpðHðxÞjHðN ðxÞÞÞ ð7Þ

Then the marginal probability distribution of I(x), Θ, and N ðxÞ can be written as:

pðIðxÞjN ðxÞ;YÞ ¼
X

k2K

pðIðxÞ; YÞpðkjHðN ðxÞÞÞ ð8Þ

Where Θ is the set of parameters and in this case Θ is treated as a random variable. Compared

with MRF, which is only defined with respect to H, HMRF is defined with respect to the pair

of random variable families (I,H).

2.2.2 The level set method. The snake model evolves a curve/contour from an initial posi-

tion in the direction normal to the boundary of the object. One limitation of the original snake

model is the explicit representation of the curve, thus topological changes (such as merging

and breaking of the curve) may be hard to handle. In order to address this problem, a level set

model was introduced in [42].

Later, Chan and Vese introduced a level set model (PC model) [7], which is based on the

general Mumford-Shah formulation [18], for active contour segmentation. For two-phase seg-

mentation, the minimization in [7] is defined as:

Eðc1; c2; �Þ ¼

Z

O

jIðxÞ � c1j
2Hð�Þdxþ

Z

O

jIðxÞ � c2j
2
ð1 � Hð�ÞÞdx

þ n

Z

O

Hð�Þdxþ m

Z

O

rjHð�Þjdx
ð9Þ
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where ϕ is the level set function satisfying:

(
�ðxÞ > 0 if x is inside of C

�ðxÞ ¼ 0 if x is at C

�ðxÞ < 0 if x is outside of C

ð10Þ

C is the contour, H is the Heaviside function: HðxÞ ¼ 1

2
1þ 2

p
arctan x

ε

� �� �
. The derivative of H is

the smoothed Dirac delta function dðxÞ ¼ 1

p

ε
ε2þx2 [36]. ν and μ are the weighting parameters.

Z

O

Hð�Þdx is the area term and

Z

O

rjHð�Þjdx is the length term.

In order to segment images into more regions, Vese and Chan [43] improved PC model

into multiphase model. For segmenting brain MR images into four classes: WM, GM, CSF and

the background, the improved PC model can be written as:

Eðc1; c2; c3; c4; �1; �2Þ ¼
XK

k¼1

Z

O

jIðxÞ � ckj
2Mkð�1; �2Þdx

þ n

Z

O

rjHð�1Þjdxþ n

Z

O

rjHð�2Þjdx
ð11Þ

Where Mi(ϕ1, ϕ2) are functions of ϕ, which are designed such that
XN

i¼1
Mið�1; �2Þ ¼ 1. In

this paper: M1(ϕ) = H(ϕ1)H(ϕ2), M2(ϕ) = H(ϕ1)(1−H(ϕ2)), M3(ϕ) = (1−H(ϕ1))H(ϕ2), M4(ϕ) =

(1−H(ϕ1))(1−H(ϕ2)).

The improved PC model assumes that image intensities are statistically homogeneous in

each disjoint region, which makes it sensitive to intensity inhomogeneity. To deal with the

effect of intensity inhomogeneity, the LGD method used the Gaussian distribution to describe

local region information and the energy function is defined as follows:

Eð�;YÞ ¼ � l1

Z

O

Z

O1

oðx � yÞlogp1;yðIðxÞÞM1ð�ðxÞÞdxdy

� l2

Z

O

Z

O2

oðx � yÞlogp2;yðIðxÞÞM2ð�ðxÞÞdxdy

� l3

Z

O

Z

O3

oðx � yÞlogp3;yðIðxÞÞM3ð�ðxÞÞdxdy

� l4

Z

O

Z

O4

oðx � yÞlogp4;yðIðxÞÞM4ð�ðxÞÞdxdy

þ n

Z

jrHð�1Þjdy þ n

Z

jrHð�2Þjdy

þ m

Z
1

2
ðjr�1j � 1Þ

2dy þ m

Z
1

2
ðjr�2j � 1Þ

2dy

ð12Þ

WhereΘ is the parameter of Gaussian distribution, ω(x−y) is a non-negative weighting

function such that ω(x−y) = 0 for |x−y|> r and

Z

Ly

oðx � yÞdx ¼ 1. r is the radius of local

region. In the method, the weighting function is chosen as a Gaussian kernel. pi;yðIðxÞÞ ¼

1ffiffiffiffi
2p
p

si;y
exp � ðIðxÞ� uiðyÞÞ

2

2s2
i;y

� �

; li; i ¼ 1; 2; 3; 4, ν and μ are nonnegative constant.

Z

rjHð�Þjdy

serves to regularize the zero level contour of ϕ, while

Z
1

2
ðjr�j � 1Þ

2dy regularizes the entire
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level set function ϕ by penalizing its deviation from signed distance[4]. The LGD method can

reduce the effect of Gaussian noise by using Gaussian distribution; however, when the images

have strong noise and severe intensity inhomogeneity, the method is hard to obtain accurate

results. In order to reduce the effect of intensity inhomogeneity, our previous work [38] intro-

duced the bias field into LGD:

Eð�;YÞ ¼ � l1

Z

O

Z

O1

oðx � yÞlogp1;yð
~IðxÞ � ~BðyÞÞM1ð�ðxÞÞdxdy

� l2

Z

O

Z

O2

oðx � yÞlogp2;yð
~IðxÞ � ~BðyÞÞM2ð�ðxÞÞdxdy

� l3

Z

O

Z

O3

oðx � yÞlogp3;yð
~IðxÞ � ~BðyÞÞM3ð�ðxÞÞdxdy

� l4

Z

O

Z

O4

oðx � yÞlogp4;yð
~IðxÞ � ~BðyÞÞM4ð�ðxÞÞdxdy

þ n

Z

jrHð�1Þjdy þ n

Z

jrHð�2Þjdy

þ m

Z
1

2
ðjr�1j � 1Þ

2dy þ m

Z
1

2
ðjr�2j � 1Þ

2dy

ð13Þ

Where ~I ¼ logðIÞ; ~B ¼ logðBÞ. B is the bias field, which satisfies: log(I) = log((J + n)�B) = log(J
+ n) + log(B). J is true signal, n is noise. The proposed method can estimate a bias field when

segmenting images, however, as analyzed above, the method still sensitive to noise without any

spatial information.

2.2.3 Anisotropic spatial information. Baudes et al. [44] have proved that a non-local

neighbor patch contains more information than that of signal pixel in image. Follows this idea,

many proposed methods [45–47] used the non-local neighbor patch information to reduce the

effect of noise. In non-local neighbor patch information based methods, the distance between

patches is defined as:

dðPx; PyÞ ¼
XjPðxÞj

i¼1

ðIðPx;iÞ � IðPy;iÞÞ
2

ð14Þ

Where Px and Py are the neighbor patches centered at x and y, respectively. |P(x)| is the total

number of pixels in the neighbor patch. From Eq (14), we can find that each pixel in the patch

has same weight, which makes the patch information be isotropic. Fig 1(A) shows a part of

simulated brain MR image. The points, marked with red plus (set as A), green plus (set as B)

and blue plus (set as C), belong to GM, WM and GM, respectively. Fig 1B–1D shows the inten-

sities information of the square neighbor patches centered at the corresponding pixels with

size 7 × 7. By using Eq (14), the distance between PA and PB is 97.73, and the distance between

PA and PC is 182.84, means that that the point B is more similar to A than that of C. However,

the point B belongs to WM, which makes that the neighbor patch based method hard to find

accurate results. In order to deal with this problem, we proposed an anisotropic neighbor

Brain MR segmentation based on IACM
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patch inner-relationship:

RxðyÞ ¼

(
e� bkI0ðxÞ� IðyÞk2

2

Z

y2fPxg
e� bkI0ðxÞ� IðyÞk2

2dy
for x 2 fSole pointsg

e� bkIðxÞ� IðyÞk2
2

Z

y2fPxg
e� bkIðxÞ� IðyÞk2

2dy
otherwise

ð15Þ

where I0(x) is the mean intensities of Px without x. β is a nonnegative constant, which is depen-

dent on the standard deviation of the image noise σ, which can be estimated by using the

method in [48]. From Eq (15), it can be found that the pixels in the neighbor patch with similar

intensities to the center pixel will have higher weights, which make the inner-relationship

based neighbor patch be anisotropic and contains more details.

Due to the effect of the noise, the intensities of some pixels are much larger or less

than all other pixels in the neighbor patch and we refer to these pixels as sole points. For a

pixel x, if 1=

Z

y2Px

e� bðkIðxÞ� IðyÞk2Þdy

 !

> T, we regard x as a sole point. T is non-negative con-

stant (the default value is 0.75 in this paper). The distance, calculated by using dðPx; PyÞ ¼
XjPðxÞj

i¼1
ðRx;iðIðPx;iÞ � IðPy;iÞÞÞ

2
, between PA and PB is 4.73, and between PA and PC is 4.68,

which means that the point C is more similar to A than that of B. From the definition in Eq

(15), it can be found that the neighbor patch is anisotropic, which can contain more detail

information.

2.2.4 Level set-type treatment of the HMRF model. As analyzed in our previous work [38],

the energy function (Eq 13) is non-convex, which makes the method easily trap into a local mini-

mum. In order to obtain global mini-mum, we improved the energy function by using the Split

Bregman method [49], which is a technique for solving a variety of L1-regularized optimization

problems, and is particularly effective for problems involving total-variation regularization. In

Fig 1. Analysis of the neighborhood similarities. (a) Initial image; (b-d) are the intensities information of points marked with red plus,

green plus and blue plus, respectively; (e) the inner-relationship in (b).

https://doi.org/10.1371/journal.pone.0183943.g001
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this section, we use two segmentation variables u12 [0,1] and u22 [0,1] to represent the member-

ship functions of four regions: M1(u1,u2) = u1u2, M2(u1,u2) = u1(1−u2), M3(u1,u2) = (1−u1)u2 and

M4(u1,u2) = (1−u1)(1−u2). The HMRF based energy function can be written as:

Eðu1; u2;YÞ ¼
X4

k¼1

Z

� logðpðIðxÞ;HðxÞ ¼ kÞÞMiðxÞdx þ n

Z

jru1jdx þ n

Z

jru2jdx

¼
X4

k¼1

Z

� logðpðIðxÞjHðxÞ ¼ kÞpðHðxÞ ¼ kjHðN ðxÞÞÞÞMiðxÞdx

þ n

Z

jru1jdx þ n

Z

jru2jdx

ð16Þ

When the observed data follows the Gaussian distribution, the Gaussian function can fit the

distribution accurately. However, in brain MR images, the intensities are not always following

the Gaussian distribution, which makes Gaussian distribution based methods hard to find sat-

isfied results. By way of contrast, the Student’s t-distribution [50] has one more parameter,

named as degree of freedom υ. When υ is set as 1, the Student’s t-distribution reduces to be the

Cauchy distribution. The Student’s t-distribution becomes closer to the Gaussian distribution

as υ increases. Hence, Student’s t-distribution can model the observed data more powerfully

and flexibly than Gaussian distribution. Then, p(I(x)|H(x) = k) can be defined by using multi-

variate Student’s t-distribution:

pðIðxÞjHðxÞ ¼ kÞ ¼
G

ukþD
2

� �
jSkj

� 1=2

G
uk
2

� �
ðpukÞ

ðD=2Þ
1þ
ðIðxÞ � mkÞ

T
S� 1

k ðIðxÞ � mkÞ

uk

� �� ukþD
2

ð17Þ

where μ, S and υ are mean vector, covariance matrix and degree of freedom, respectively. In

order to improve the robustness, we introduce the anisotropic spatial information into the

energy function:

Eðu1; u2; m;S; vÞ

¼
X4

k¼1

Z

� logpðIðPxÞ;HðxÞ ¼ kÞMiðxÞdxþ n

Z

jru1jdxþ n

Z

jru2jdx

¼
X4

k¼1

Z

� logðpðIðxÞjHðxÞ ¼ kÞpðHðxÞ ¼ kjHðN ðxÞÞÞÞMiðxÞdx

þn

Z

jru1jdxþ n

Z

jru2jdx

¼
X4

k¼1

Z

� log

G
uk þ D

2

� �

jSkj
� 1=2

G
uk
2

� �
ðpukÞ

ðD=2Þ
1þ
ðIðxÞ � mkÞ

T
S� 1

k ðIðxÞ � mkÞ

uk

� ��
uk þ D

2

0

B
B
@

1

C
C
A

pðHðxÞ ¼ kjHðN ðxÞÞÞ

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

MiðxÞdx

þn

Z

jru1jdxþ n

Z

jru2jdx

ð18Þ

where P0x and R0x are vectors generated from the neighbor patch Px and the inner-relationship

Rx, respectively. b is the bias field.
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In order to obtain a smooth bias field, Li et al. [31–33] model the bias field to be a linear

combination of L smooth basis functions s1,s1� � �sL:

bðxÞ ¼
XL

l¼1

qlslðxÞ ð19Þ

Where ql 2 R, l = 1,� � �,L, are the combination coefficients. Orthogonal polynomials are usually

used as the basis functions, which satisfy:

Z

O

siðxÞsjðxÞdx ¼ di;j ð20Þ

Where δi,j = 1 for i = j and δi,j = 0 for i 6¼ j. Following the idea shown in [31–33], we use the

Legendre orthogonal polynomials as the basis functions. In 2D case, the size of the parameter

is L = (m + 1)(m + 2)/2, where m is the degree of the Legendre polynomials. In 3D case, the

size of the parameter is L = (m + 1)(m + 2)(m + 3)/6. The choice of m depends on prior knowl-

edge of the coil and the expected type. To simplify, the bias field can be written as:

bðxÞ ¼ QTSðxÞ ð21Þ

Where Q = (q1,q2,� � �,qL)T, S(x) = (s1(x),s2(x),� � �,sL(x))T.

Remark 1: Although the local patch information has been used to improve segmentation

methods to reduce the effect of the noise; however, most of the methods use isotropic neighbor

patch information, which makes them easily lose details [51]. Our method can preserve more

detail information by using anisotropic neighbor patch information. Furthermore, we use

HMRF to model the spatial correlation between neighboring pixels/voxels and further

improve the robustness of our method.

Remark 2: Compared to the method in [13], we use a multivariate Student’s t-distribution

to fit the intensity distribution of each region in the image, which can improve the ability to

identify the class for each pixel. In our method, we use the local neighbor patch information to

reduce the effect of noise, which also makes our method can only use one integration, instead

two integrations in the LBF [4] and LGD [19,20], to construct the data term. Our method is

more efficient than LBF and LGD.

Remark 3: In LBF and LGD, the smoothness of the bias field is ensured by using a Gaussian

convolution; however, the parameter of the Gaussian convolution needs to be changed when

the methods segmenting different images. In our method, we use orthogonal polynomials as

the basis functions, which makes our method does not need any Gaussian convolution and

can estimate the bias field, even when the intensity inhomogeneity is severe.

Remark 4: Although Student’s t-distribution has been widely used in segmentation methods

[48] and obtained more accurate results than Gaussian distribution based methods. However,

the Student’s t-distribution is sensitive to noise. Furthermore, the Student’s t-distribution

based methods are sensitive to initialization. In our method, we use the anisotropic patch

information to improve the robustness of the Student’s t-distribution on noise. Furthermore,

in our method, the energy function can be rewritten as convex and calculated by using Split

Bregman Method, which makes our method can obtain accurate results with randomly

initialization.

Remark 5: In our method, the bias field is modeled by using Legendre orthogonal polyno-

mials, which can be found in [31–33]. The methods in [31–33] are based on clustering theories

and have not considering spatial information, which makes the segmentation results be inac-

curate and reduce the accuracy of the estimated bias field. Our method uses the anisotropic
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information and Student’s t-distribution to model local information to improve the accuracy

of the segmentation results and makes the estimated bias field more accurate.

2.2.5 Split Bregman method for minimization of energy. The split Bregman technique

is used to minimize the energy function in a more efficient way and obtain the global minima.

The proposed model thus can improve the robustness and efficiency, while inheriting the

desirable ability to estimate the bias field when segmenting images.

When given Θ and b, we minimize E(u1,u2,Θ,b) with respect to u1 using the gradient

descent method by solving the gradient flow equation as:

@u1

@t
¼ � d u1ð Þ � e1H u2ð Þ � e2 1 � Hðu2Þð Þ þ e3H u2ð Þ þ e4 1 � Hðu2Þð Þ þ nd u1ð Þdiv

ru1

jru1j

� �� �

ð22Þ

Where ei(x) = −log p(I(Px),H(x) = i)
In the same manner, minimizing the energy functional E with respect to u2, we derive the

gradient descent flow:

@u2

@t
¼ � d u2ð Þ � e1H u1ð Þ þ e2H u1ð Þ � e3 1 � Hðu1Þð Þ þ e4 1 � Hðu1Þð Þ þ nd u1ð Þdiv

ru1

jru1j

� �� �

ð23Þ

Without loss of generality, we take ν = 1 and the stationary solution of (22) and (23) coincides with

the stationary solution of [38]:

@u1

@t
¼ � � e1H u2ð Þ � e2 1 � Hðu2Þð Þ þ e3H u2ð Þ þ e4 1 � Hðu2Þð Þ þ nd u1ð Þdiv

ru1

jru1j

� �� �

ð24Þ

@u2

@t
¼ � � e1H u1ð Þ þ e2H u1ð Þ � e3 1 � Hðu1Þð Þ þ e4 1 � Hðu1Þð Þ þ nd u1ð Þdiv

ru1

jru1j

� �� �

ð25Þ

The simplified flow represents the gradient descent for minimizing the energy:

minu12½0;1�;Y;b
E1ðu1;Y; bÞ ¼ n

Z

jru1jdxþ
Z

u1ðxÞe11ðxÞdxþ
Z

ð1 � u1ðxÞÞe12ðxÞdx

minu22½0;1�;Y;b
E2ðu2;Y; bÞ ¼ n

Z

jru2jdxþ
Z

u2ðxÞe21ðxÞdxþ
Z

ð1 � u2ðxÞÞe22ðxÞdx
ð26Þ

8
>><

>>:

Where

e11ðxÞ ¼ ð� logðpðIðPxÞ;HðxÞ ¼ 1ÞÞu2ðxÞ � logðpðIðPxÞ;HðxÞ ¼ 2ÞÞð1 � u2ðxÞÞÞ

e12ðxÞ ¼ ð� logðpðIðPxÞ;HðxÞ ¼ 3ÞÞu2ðxÞ � logðpðIðPxÞ;HðxÞ ¼ 4ÞÞð1 � u2ðxÞÞÞ

e21ðxÞ ¼ ð� logðpðIðPxÞ;HðxÞ ¼ 1ÞÞu1ðxÞ � logðpðIðPxÞ;HðxÞ ¼ 3ÞÞð1 � u1ðxÞÞÞ

e22ðxÞ ¼ ð� logðpðIðPxÞ;HðxÞ ¼ 2ÞÞu1ðxÞ � logðpðIðPxÞ;HðxÞ ¼ 4ÞÞð1 � u1ðxÞÞÞ

:

It has been proved [52] that when u2 is fixed, if û1 is any minimizer of E1, for 8T 2 ð0; 1Þ
we have that the characteristic function

1OCðT Þ
¼ fyjû1ðyÞ > T g

where C is the boundary of the set OC, is a global minimization of E1. It can also be proved that

for fixed u1, the characteristic function 1OCðT Þ
¼ fyjû2ðyÞ > T g is a global minimization of E2.
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Following the idea of [52], we introduce a new vectorial function di =rui and rewrite Eq

(26) as:

min
u12½0;1�;d1

~E1ðu1;Y; d1Þ ¼ n

Z

ðjd1j þ u1e11 þ ð1 � u1Þe12Þdy; such that d1 ¼ ru1

min
u22½0;1�;d2

~E2ðu2;Y; d2Þ ¼ n

Z

ðjd2j þ u2e21 þ ð1 � u2Þe22Þdy; such that d2 ¼ ru2

ð27Þ

8
>>><

>>>:

For simplicity, we only consider the minimization of the energy ~E1, while the minimization

of the energy ~E2 can be solved in the same manner. Adding a new vector p1 ru1 into a qua-

dratic penalty function, we obtain the following optimization function:

ðutþ1
1
; dtþ1

1
Þ ¼ arg min

1�u1�1;d1

n

Z

jd1j þ u1e11 þ ð1 � u1Þe12 þ
g

2
kd1 � ru1 � pt

1
k

2
� �

dy;

ptþ1
1
¼ pt

1
þrutþ1

1
� dtþ1

1

ð28Þ

8
><

>:

For the fixed d1, we can derive the Euler-Lagrange equation of the optimization problem Eq

(28) with respect to u1:

Du1 ¼
1

g
ðe11 � e12Þ � divðp � dÞ; u1 2 ½0; 1� ð29Þ

Where Δ is the Laplacian operator.

In 3D case, by using central discretization for the Laplacian operator and backward differ-

ence for the divergence operator, a fast approximated solution for Eq (28) is:

ðu1Þi;j;k ¼ maxfminfai;j;k; 1g; 0g ð30Þ

where (i, j, k) is the position in image coordinate and

ai;j;k ¼
1

6
ðu1Þi� 1;j;k þ ðu1Þiþ1;j;k þ ðu1Þi;j� 1;k þ ðu1Þi;jþ1;k þ ðu1Þi;j;k� 1

þ ðu1Þi;j;kþ1
�

1

g
ðe11 � e12Þi;j;k þ bi;j;k

� �

;

bi;j;k ¼ dxi� 1;j;k � dxi;j;k � pxi� 1;j;k þ pxi;j;k þ dyi;j� 1;k � dyi� 1;j;k � pyi;j� 1;k þ pyi;j;k þ dzi;j;k� 1
� dzi;j;k � pzi;j;k� 1

þ pzi;j;k:

For the fixed u1, the minimization solution dt+1 is performed by using the following for-

mula:

dtþ1 ¼
rutþ1

1
þ pt

krutþ1
1 þ ptk

max rutþ1

1
þ pt �

n

g
; 0

� �

ð31Þ

Before update u1 and u2, we first need calculate other parameters of the energy function.

For fixed u1, u2 and b, the parameter μ, S and υ can be calculated by taking the derivative of E
with respect to μ, S and υ and setting the results to zero, respectively. For updating μk, we
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have:

@E
@mk
¼

@
X4

k¼1

Z

� log

G
uk þ D

2

� �

jSkj
� 1=2

G
uk
2

� �
ðpukÞ

ðD=2Þ
1þ
ðIðxÞ � mkÞ

T
S� 1

k ðIðxÞ � mkÞ

uk

� ��
uk þ D

2

0

B
B
@

1

C
C
A

�pðHðxÞ ¼ kjHðN ðxÞÞÞ

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

MkðxÞdx

þ n

Z

jru1jdxþ n

Z

jru2jdx

@mk

¼ 0

ð32Þ

It is hard to calculate μk directly from Eq (32). Fortunately, it has been proved that if I fol-

lows the Student’s t-distribution p(μ,S,υ), it can be considered following a Gaussian distribu-

tion N(μ,S/t), where t is a scaling factor following a Gamma-distribution [50,53] and can be

calculated by:

tkðxÞ ¼
uk þ D

uk þ ððR0x � ðIðP0xÞ � bðxÞmkÞÞ
T
S� 1

k ðR0x � ðIðP0xÞ � bðxÞmkÞÞÞ
ð33Þ

So p(I(Px)|H(x) = k) can be written as:

pðIðPxÞjHðxÞ ¼ kÞ ¼
1

ffiffiffiffiffiffiffiffiffi
ð2pÞ

p
Sk
tkðxÞ

�
�
�

�
�
�

1
2

exp
�

1

2
tkðxÞðR

0

x � ðIðP
0

xÞ � bðxÞmkÞÞ
T

S� 1

k ðR
0
x � ðIðP

0
xÞ � bðxÞmkÞÞ

0

@

1

A ð34Þ

Substituting Eq (34) into Eq (32), we can obtain:

@E
@mk
¼

@
X4

k¼1

Z

� log

1

ffiffiffiffiffiffiffiffiffi
ð2pÞ

p Sk

tkðxÞ

�
�
�
�

�
�
�
�

1

2

exp
�

1

2
tkðxÞðR

0

x � ðIðP
0

xÞ � bðxÞmkÞÞ
T

S� 1

k ðR
0
x � ðIðP

0
xÞ � bðxÞmkÞÞ

0

B
B
B
@

1

C
C
C
A

pðHðxÞ ¼ kjHðN ðxÞÞÞ

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

MkðxÞdx

þ n

Z

jru1jdxþ n

Z

jru2jdx

@mk

¼

@
X4

k¼1

Z
1

2
tkðxÞðR

0

x � ðIðP
0

xÞ � bðxÞmkÞÞ
T
S� 1

k ðR
0

x � ðIðP
0

xÞ � bðxÞmkÞÞ

� �

MkðxÞdx

@mk

¼ 0

ð35Þ

Then, we can obtain:

mk ¼

Z

tkðxÞbðxÞMkðxÞIðP
0

xÞdx:=
Z

tkðxÞb
2ðxÞMkðxÞdx ð36Þ
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Where ./ is point division. Similarly, we calculate Sk as:

Sk ¼

Z

tkðxÞMkðxÞðR
0

x � ðIðP
0

xÞ � bðxÞmkÞÞðR
0

x � ðIðP
0

xÞ � bðxÞmkÞÞ
Tdx

Z

MkðxÞdx
ð37Þ

Setting the partial derivative of E with respect to υ and setting the results to zero, we have

ln
uk
2

� �
� c

uk
2

� �
þ 1þ

Z

ðlnðtkðxÞÞ � tkðxÞÞMkðxÞdx
Z

MkðxÞdx
þ c

uk þ D
2

� �

� ln
uk
2

� �
¼ 0 ð38Þ

where cðxÞ ¼ d
dx lnGðxÞ.

For fixed M, μ, S and υ, taking the derivative of E with respect to Q and setting the result to

zero, we have:

@E
@Q
¼

@
X4

k¼1

Z

� log

1

ffiffiffiffiffiffiffiffiffi
ð2pÞ

p Sk

tkðxÞ

�
�
�
�

�
�
�
�

1

2

exp
�

1

2
tkðxÞðR

0

x � ðIðP
0

xÞ � QTSðxÞmkÞÞ
T

S� 1

k ðR
0
x � ðIðP

0
xÞ � QTSðxÞmkÞÞ

0

B
B
B
@

1

C
C
C
A

pðHðxÞ ¼ kjHðN ðxÞÞÞ

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

MkðxÞdx

þ n

Z

jru1jdxþ n

Z

jru2jdx

@Q

¼

@
X4

k¼1

Z
1

2
tkðxÞðR

0

x � ðIðP
0

xÞ � QTSðxÞmkÞÞ
T
S� 1

k ðR
0

x � ðIðP
0

xÞ � QTSðxÞmkÞÞ

� �

MkðxÞdx

@Q
¼ 0

ð39Þ

Then we can obtain:

Q ¼ A� 1W ð40Þ

where A ¼
Z

SðxÞSðxÞT
XK

k¼1
MkðxÞtkðxÞ

�
R0x � mk

�TX� 1

k

�
R0x � mk

�
dx is a L×L matrix, which

is inverse-able and the similar proof of the stability can be seen in [31]. W ¼
Z

SðxÞ
XK

k¼1

MkðxÞtkðxÞ
�
R0x � I

�
P0x
��TX� 1

k

�
R0x � mk

�
dx is a L×1 vector.

For a deep understanding of our method, the computation process of our algorithm is sum-

marized as follows:

Step.1 Initialize u1, u2,Θ and b. In our method, u1 and u2 can be initialized randomly and b is

a matrix of ones.

Step.2 Update Θ by using Eqs (36), (37) and (38).

Step.3 Update Q by using Eq (40).

Step.4 Update u by using Eq (30).
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Step.5 If the distance between the newly obtained level sets and old ones is less than a user-

specified small threshold (in this paper, we set ε = 0.001), stop the iteration; otherwise, go

to Step 2.

Results

In this section, we apply the proposed method to segment the brain MR images into GM,

WM, CSF and background. Unless otherwise specified, the parameters used in our experi-

ments are set as follows: The u1 and u2 are initialized randomly. The size of neighbor patch is

set as 3 × 3. The nonnegative constant β is set as 0.02. The degree of basis functions is set as

m = 4 and hence the number of the basis functions L is 15. ν is set as 100 and γ is set as 1. In

this paper, we conduct the image segmentation task by imposing HMRF on the image pixel

labels. In our experiments, pðHðxÞ ¼ kjHðN ðxÞÞÞ is:

pðHðxÞ ¼ kjHðN ðxÞÞÞ ¼

exp

 
X

y2N ðxÞ
d
�
k � H

�
y
��
!

XK

h¼1
exp

 
X

y2N ðxÞ
d
�
h � H

�
y
��
! ð41Þ

where δ(�) stands for the Kronecker’s delta function and is given as:

dðk � HðyÞÞ ¼
1; if k ¼ HðyÞ

0; otherwise
ð42Þ

(

In this section, we compared our method with other methods on synthetic and clinical

brain MR images.

3.1 Evaluation with 3T Brain MR images

We first test our method on three 3-Tesla brain MR images (show n in the 1st column of Fig

2), which is corrupted with severe intensity inhomogeneity. The segmentation results, bias cor-

rected images and estimated bias fields are shown in Fig 2. It can be found that the intensities

in each brain tissue of the bias corrected images become quite homogeneous and our method

can obtain satisfied results even on weak edges. It demonstrates that the results of our method

are consistent with the expected tissue regions.

Non-brain tissues usually affect the accuracy of the segmentation methods [36], in order to

demonstrate the ability of our method, we test our method on three 3-Tesla brain MR images

with skulls. The initial images, segmentation results, bias corrected images and the estimated

bias fields are shown form left to right in Fig 3. It is clear that our method can still obtain satis-

factory results without being influenced by non-brain tissues.

3.2 Quantitative comparison

In this section, we quantitatively compared the proposed method to three existing segmenta-

tion approaches, including the improved LBF method [37], the improved LGD method [17]

and Zhang’s method [27]. Generally, the parameters for each method are set with the default

values specified in the papers. Please refer to the corresponding references for more details. To

make a fair comparison, the curves are initialized by using k-means method.
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All these methods can reduce the impact of noise and intensity inhomogeneity. Therefore,

we first apply all the methods on the synthetic brain MR images selected from Brain Web

Fig 2. Illustration of (1st column) three 3-Tesla brain MR images, (2nd column) segmentation results

of the proposed method, (3rd column) bias corrected images, and (4th column) their estimated bias

fields.

https://doi.org/10.1371/journal.pone.0183943.g002

Fig 3. Illustration of (1st column) three 3-Tesla brain MR images with skull, (2nd column) segmentation

results of the proposed method, (3rd column) bias corrected images, and (4th column) their estimated

bias fields.

https://doi.org/10.1371/journal.pone.0183943.g003
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containing different levels of noise and the same intensity inhomogeneity. In our experiments,

we use the T1-weighted 1mm brain MR images. Fig 4 shows the segmentation results on the

92th transaxial image of a synthetic image data set from Brain Web. The first column shows

the initial images parameters: noise level 1%, 3%, 5% and 7% (from top to the bottom), respec-

tively. The images have the same intensity inhomogeneity level: 30%. The second column to

the right column show the segmentation results of the improved LBF method, improved LGD

method, MICO (Multiplicative intrinsic component optimization method), the Zhang’s

method and our method, respectively.

The improved LBF method uses the local intensity mean to fit the intensity of local intensity

distribution and thereby achieves much better segmentation results than those of traditional

active contour methods, i.e. PS method. However, this method has not considered any spatial

information, which makes the method still sensitive to noise when the noise level is high.

From the results shown in the second column of Fig 4, we can find that the accuracy of the

improved LBF method decreases when the noise level is increasing. In order to reduce the

effect of noise, the method can change the control parameter of the length term; however,

when the control parameter increases, the length term will makes the method lose detail infor-

mation. The improved LGD method uses a Gaussian distribution to fit the intensities in each

local region and can achieves much better segmentation results than the improved LBF

method. Similar drawbacks of the improved LBF method still exist for the improved LGD

method, which has not any spatial information been considered. It can be seen from the results

shown in the third column of Fig 4 that the improved LGD method is less sensitive to the

Fig 4. Segmentation results on the 92th transaxial image of a synthetic image data set. The first column

shows the initial images with parameters: noise level 1%, 3%, 5% and 7% (from top to the bottom),

respectively. The images have the same intensity inhomogeneity level: 30%. The second column to the right

column show the segmentation results of improved LBF method, improved LGD method, Zhang’s method,

MICO and our method, respectively.

https://doi.org/10.1371/journal.pone.0183943.g004
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noise than that of the improved LBF method, but still sensitive to noise. The Zhang’s method

sets the variances of Gaussian distribution to be a piecewise constant in each region to improve

the accuracy of the improved LGD method. Furthermore, the Zhang’s method uses a constant

kernel to indicate the local region, which is based on a solid theoretical foundation and can

reduce the effect of noise. However, the constant kernel easily makes the method lose details.

From the results of Zhang’s method shown in the fourth column of Fig 4, we can find that the

method can reduce the effect of noise but at the same time it loses some details. The MICO

method [33] uses the Legendre orthogonal polynomials to model the bias field, however, the

method has not considered any spatial information, which makes the method sensitive to

noise and the results can be found in the fifth column of Fig 4. From the results, we can found

that the accuracy is decreasing when the noise level is increasing.

In order to illustrate the problem more clearly, we magnified part of the segmentation

results of all the four methods on the image with noise level 5% and intensity inhomogeneity

level 30%. The details are shown in Fig 5. From left to right show the details of the ground

truth, the result of the improved LBF method, the improved LGD method, the Zhang’s

method, MICO and our method, respectively. It can be found that the improved LBF method,

the improved LGD method and MICO are sensitive to noise, Zhang’s method has mis-seg-

mented some pixels belong to CSF into GM. Comparing with ground truth and segmentations

obtained with other algorithms, the proposed method can visually obtain the best results.

In order to show the robustness on the images with the intensity inhomogeneity, we com-

pared our method with the above three methods on the 92th transaxial image of a synthetic

image data set from BrainWeb. The initial images with parameters: intensity inhomogeneity

level 40%, 60%, 80% and 100% (from top to the bottom in Fig 6), respectively. The images

have the same noise level: 3%. The improved LBF method has considered the bias field when

utilizing the local intensity means to fit the intensity of local intensity distribution and can esti-

mate the bias field when segmenting images. The improved LBF method uses a Gaussian ker-

nel as the local spatially weighted function to control the radius of local region, which also

preserves the smoothness of the bias field. In order to obtain more accurate result, the radius

of the Gaussian kernel cannot be set too large, which makes the estimated bias field inaccurate

when the intensity inhomogeneity in the image is severe. Form the results of the improved

LBF shown in the second column of Fig 6, we can find that the accuracy decrease s when the

intensity inhomogeneity level increases. Similar drawbacks exist for the improved LGD

method (see the third column of Fig 6). Compared with the Gaussian kernel used in the im-

proved LBF method and improved LGD method, the Zhang’s method uses a constant kernel

to indicate the local region. The constant kernel can reduce the effect of noise; however, as ana-

lyzed above, the constant kernel also may lose details. The estimation of the bias field in all

these three methods are based on local region information, which makes these methods easily

be affected by the intensities of the pixels in each local region and cannot be smoothed enough.

MICO uses the Legendre orthogonal polynomials to model the bias field, which makes it

Fig 5. Details of the segmentation results on the 92th transaxial image of a synthetic image data set

with parameters: noise level 5% and the intensity inhomogeneity level: 30%. The second column to the

right column show the segmentation results of improved LBF method, improved LGD method, Zhang’s

method, MICO and our method, respectively.

https://doi.org/10.1371/journal.pone.0183943.g005
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possible for the method to obtain more smoothly bias fields. From the result, we can still find

that the method is sensitive to noise.

From the results shown in Fig 6, it can be found that the accuracies of all these three are

affected when the intensity inhomogeneity level increases. In order to illustrate the problem

more clearly, we magnified part of the segmentation results o f all the four methods on the

image with noise level 3% and intensity inhomogeneity level 80% and the details are shown in

Fig 7. From left to right show the details of the ground truth, the result of improved LBF

method, improved LGD method, Zhang’s method, MICO and our method, respectively. It can

be found that comparing with the ground truth and segmentations obtained with other algo-

rithms, the proposed method can visually obtain the best results.

Fig 6. Segmentation results on the 92th transaxial image of a synthetic image data set. The first column

shows the initial images with parameters: intensity inhomogeneity level 40%, 60%, 80% and 100% (from top

to the bottom), respectively. The images have the same noise level: 3%. The second column to the right

column show the segmentation results of improved LBF method, LGD method, Zhang’s method, MICO and

our method, respectively.

https://doi.org/10.1371/journal.pone.0183943.g006

Fig 7. Details of the segmentation results on the 92th transaxial image of a synthetic image data set

with parameters: noise level 3% and the intensity inhomogeneity level: 80%. The second column to the

right column show the segmentation results of improved LBF method, LGD method, Zhang’s method, MICO

and our method, respectively.

https://doi.org/10.1371/journal.pone.0183943.g007
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For quantitative comparison, we use Js values as a metric to evaluate the performance of

these methods. The Js is defined as the ratio between intersection and union of two sets S_1

and S_2

JSðS� 1; S� 2Þ ¼
jS� 1 \ S� 2j

jS� 1 [ S� 2j
ð43Þ

where S_1 is the segmentation result and S_2 is the ground truth. A more accurate result

should have a higher Js value. In order to show the robustness and accuracy of our proposed

method, we applied the above three methods and our method on whole simulated MRI data

sets from BrainWeb with different noise levels and intensity inhomogeneity levels. The accu-

racy is measured by using the means and standard deviations of Js values on WM, GM and

CSF. The average results are listed in Table 1. In this table, we set NxFy as image data with

noise level x% and intensity inhomogeneity level y%. From the values, it can be found that our

proposed method has the best means of Js values, which indicates that our method is more

accurate than other methods. It also can be found that the standard deviations of our method

are much lower than the others, which proved that our method has the best robustness. We

also find that our method has the highest mean Js values of CSF, which illustrates that our

method can preserve more details.

In the next experiment, we compare the proposed method to above three segmentation

methods on clinical T1-weighted brain MR images selected from IBSR. Fig 8(A) shows the

18th image from IBSR (1_24]) and the corresponding ground truth is shown in Fig 8(B). It

can be found that Fig 8(A) has low contrast and severe intensity inhomogeneity. Due to the

effect of the severe intensity inhomogeneity, the improved LBF method (ILBF) trapped into

local optima and mis-segmented some pixels belong to GM into WM, which can be found in

Fig 8(C). The improved LGD method can also obtain more accurate result by using local

Gaussian distribution to fit the local intensity distribution. However, the improved LGD

method used local variance information, which is unstable [27] and makes the method mis-

Table 1. Js values (mean ± standard deviation) for the segmentation results on simulated T1-weighted brain MR images. (%).

Image Tissues ILBF [37] ILGD [17] Zhang’s [27] MICO [33] Our method

N1F30 WM 93.62±4.78 95.21±3.75 92.83±3.05 93.77±3.09 96.33±2.27

GM 92.09±3.92 92.14±3.06 91.35±4.04 92.41±2.91 93.52±3.06

CSF 91.97±3.84 92.10±2.51 90.21±4.24 92.14±3.25 93.21±1.92

N3F30 WM 92.46±4.25 93.95±3.95 91.96±4.84 92.01±4.33 95.76±2.31

GM 91.52±3.58 92.10±3.53 91.14±3.20 91.10±3.77 93.27±2.07

CSF 91.09±3.92 91.89±3.42 89.23±4.16 89.77±4.75 93.09±2.30

N3F60 WM 92.39±4.73 93.89±3.07 91.93±4.36 91.67±3.41 95.70±2.72

GM 91.43±4.09 92.00±3.93 91.06±3.68 91.01±4.22 93.26±2.63

CSF 91.01±3.21 91.79±4.03 89.16±3.77 89.43±3.66 93.10±2.67

N3F100 WM 92.21±4.92 93.81±3.33 91.89±3.96 91.48±3.01 95.68±3.01

GM 91.30±5.19 91.14±3.17 91.02±4.03 90.40±2.72 93.21±2.42

CSF 89.63±4.06 91.46±4.95 89.11±4.88 89.25±4.01 92.99±2.93

N5F30 WM 89.43±6.24 91.09±4.96 91.27±5.03 87.25±3.69 94.07±4.03

GM 87.26±3.57 89.33±4.61 90.52±4.06 86.38±5.21 92.28±2.80

CSF 86.75±3.07 88.69±6.27 89.27±5.14 85.01±6.39 92.03±1.92

N7F30 WM 78.68±10.02 87.82±8.66 90.06±4.58 75.58±9.95 93.27±5.12

GM 72.49±5.71 86.60±4.23 88.27±5.07 70.22±11.25 92.43±2.91

CSF 78.34±6.07 87.09±3.97 87.96±3.63 72.66±8.77 91.12±3.30

https://doi.org/10.1371/journal.pone.0183943.t001
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segmented some pixels belong to GM into WM. The Zhang’s method used the piecewise con-

stant variances of the Gaussian distributions in each region and can preserve some details.

However, the method uses constant kernel to convolution, which makes the method hard to

find accurate results when segmenting images with low contrast. Form the result shown in Fig

8(E), we can find that Zhang’s method has lost some details. Fig 8(F) shows the segmentation

result of MICO. The MICO uses global means information of the intensities, which makes the

method sensitive to low contrast and mis-segmented some pixels belong to GM into WM. Fig

Fig 8. Segmentation results on clinical brain MR images. (a) is the 18th image of 1_24], (b)-(g) show the

ground truth, the segmentation results of improved LBF method, improved LGD method, Zhang’s method,

MICO and our method, respectively. (g) is the 30th image of 2_4]. (i)-(n) are the ground truth, the segmentation

results of improved LBF method, improved LGD method, Zhang’s method, MICO and our method, respectively.

https://doi.org/10.1371/journal.pone.0183943.g008

Brain MR segmentation based on IACM

PLOS ONE | https://doi.org/10.1371/journal.pone.0183943 August 30, 2017 20 / 28

https://doi.org/10.1371/journal.pone.0183943.g008
https://doi.org/10.1371/journal.pone.0183943


8(H) shows the 30th image from IBSR (2_4]), which has intensity inhomogeneity and severe

low contrast. The ground truth is shown in Fig 8(I). The improved LBF method only uses the

local mean information, which makes the method sensitive to low contrast. Similar drawbacks

can be found in the improved LGD, zhang’s method and MICO. In our method, we use aniso-

tropic patch information and multivariate Student’s t-distribution to fit the intensity distribu-

tion to improve the accuracy. Furthermore, the bias field is estimated by using basis functions,

which makes our method more robust to severe intensity contrast. The average mean of JS val-

ues of the eight methods on the whole data sets (1_24] and 2_4]) form IBSR are listed in

Table 2. Because there are only small pixels be-long to CSF are contained in IBSR data sets, we

only list the Js values for WM and GM. From the average Js values shown in Table 2, we can

find that our method obtains the most accurate results.

In the next experiment, we use coefficient of variance (CV) as a measure to evaluate the per-

formance of the algorithms for intensity inhomogeneity correction [35]. The CV is defined as

a percentage and calculated from the average and standard deviation of selected tissue. A good

algorithm can obtain low CV values for the bias corrected intensities within each segmented

region. We compared our method with improved LBF method, improved LGD method and

Zhang’s method on two 3-T brain MR images with intensity inhomogeneity (first one is from

IBSR 2_4] and another one is from 15_3]) and a 7-T brain MR image, which has severe inten-

sity inhomogeneity. Fig 9 shows the bias field corrected images and the corresponding bias

field. The second column to right column shows the results of improved LBF method,

improved LGD method, Zhang’s method, MICO and our method, respectively. Form the

results, it can be found that the bias fields estimated by using the improved LBF method,

improved LGD method and Zhang’s method are not smooth enough. That is because all three

method use convolution to preserve the smoothness of the methods. MICO and our method

can obtain more smooth and accurate bias filed by using the basis functions to model t he bias

field. To make a fair comparison, the segmentation results are obtained by using Fuzzy C-

means Clustering method when calculating the CV values. The values of CV are listed in

Table 3. It can be seen that our method can obtain the smallest CV values, which indicates that

the bias corrected images obtained by using our method are more homogeneous than others.

Our model is also superior in terms of computational efficiency. The mean CPU times for

20 simulated MR image data sets and 20 standard sets of real brain MR data are listed in

Table 4, which were recorded from our experiments with Matlab code run on a Lenovo com-

puter, with i7 processor, 2.40 GHz, 7.88G RAM, with Matlab 7.1 on Windows10. The sizes of

these images are also shown in this table. The computation time of our method was less than 1

sec on 2D images and less than 4 minutes on 3D images, which is much faster than the other

methods. This demonstrates the significant advantage of our model in terms of computational

efficiency.

Table 2. Js values (mean ± standard deviation) for the segmentation results on simulated T1-weighted brain MR images. (%).

Imgae Tissues ILBF [37] ILGD [17] Zhang’s [27] MICO[33] Our method

1_24] WM 76.98±8.26 84.04±8.00 82.06±5.43 78.01±9.11 88.04±2.92

GM 62.67±10.39 71.54±5.64 76.82±8.01 61.88±9.01 78.29±3.01

2_4] WM 73.86±7.64 74.28±5.28 62.18±5.07 75.85±6.98 82.87±4.55

GM 61.75±8.88 60.46±7.02 53.85±3.32 63.52±8.25 72.52±3.67

https://doi.org/10.1371/journal.pone.0183943.t002
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3.3 Segmentation on 3D image data

In this section, we test our method on 3D image data. Fig 10 shows the segmentation results of

our method for the BrainWeb Data with noise level 3%, intensity inhomogeneity level 80%. In

this experiment, the initial surfaces are initialized randomly, which can be seen in Fig 10(A).

Fig 9. Illustration of two 3-T intensity inhomogeneity corrupted brain MR images and one 7-T brain

MR images (1st column). The second column to right column show the results of improved LBF, improved

LGD, Zhang’s method, MICO and our method, respectively. The odd rows show the bias field corrected

images. The even rows show the corresponding estimated bias fields.

https://doi.org/10.1371/journal.pone.0183943.g009

Table 3. CV values for the bias corrected images. (%).

Imgae Tissues ILBF [37] ILGD [17] Zhang’s [27]. MICO[33] Our method

2_4] WM 7.26 6.87 10.74 6.35 6.17

GM 17.72 17.19 16.08 16.27 16.02

15_3] WM 7.72 7.70 10.11 6.82 6.74

GM 13.31 13.32 12.42 12.34 12.17

7-T WM 23.54 19.52 19.25 19.21 19.14

GM 29.19 24.35 23.32 22.59 20.92

https://doi.org/10.1371/journal.pone.0183943.t003
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In order to illustrate the evolutions of the surfaces, we presented the corresponding contour

evolution of three slices in different axis for the 3rd, 5th and 7th iteration results. From the

results, we can find that our method can obtain the satisfactory result in 7 iterators even with

randomly initialization. Fig 11 shows the segmentation of our method on a 3D clinical brain

MR image from ISBR 2.0(7#), which has intensity inhomogeneity and low contrast. The left

column shows the ground truth of GM and WM. The right column shows the segmentation

results of our method. From the results, we can find that our method can obtain the satisfac-

tory result.

Discussion and conclusion

In this paper, we proposed a novel automatic variational level set based segmentation and bias

field estimation method for human brain MR images. This method successfully overcomes the

drawbacks of existing active contour methods, including limited robustness to weak edges,

noise, intensity inhomogeneity and limited accuracy to details, by proposing improved aniso-

tropic spatially information to reduce the effect of noise and preserve more details; utilizing

multivariate Student’s t-distribution to fit the intensity distribution of the image to improve

Table 4. CPU time (in second) for the segmentation.

Imgae ILBF [37] ILGD [17] Zhang’s [27]. MICO[33] Our method

181 × 181 112.24 0.68 3.52 0.32 0.70

181 × 217 115.82 0.73 3.84 0.43 0.76

256 × 256 132.57 0.86 4.27 0.47 0.87

256 × 256 × 171 4280.25 275.68 - 428.81 292.64

https://doi.org/10.1371/journal.pone.0183943.t004

Fig 10. 3D segmentation results of WM, GM and CSF on T1-weighted 1mm brain MR images from

BrainWeb with parameters: noise level 3% and intensity inhomogeneity level: 80%. (b)-(d) show the

results of the 3rd iteration, 5th iteration and 7th iteration, respectively.

https://doi.org/10.1371/journal.pone.0183943.g010
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the robustness; using the HMRF to construct data term to incorporate more spatial informa-

tion. In order to obtain more accurate and smoothed bias field, we use a linear combination of

orthogonal basis functions to model the bias field. To find the global optimal and make the

results independent of the initialization of the algorithm, we reconstructed the energy function

to be convex and calculated it by using the Split Bregman algorithm. Our statistical results on

both synthetic and clinical images show that the proposed method can overcome the difficul-

ties caused by noise, weak edges and intensity inhomogeneity, and outperforms other several

state-of-the-art methods.

The degree of basis function determines the accuracy and stability of the bias field correc-

tion. A lower degree will make the estimated bias field inaccurate when the intensity

Fig 11. 3D segmentation results of WM, GM on T1-weighted clinical brain MR image. Left column shows the ground truth and the right column

shows the results of our method.

https://doi.org/10.1371/journal.pone.0183943.g011
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inhomogeneity is severe. A large degree will make our method inefficient, unstable and easily

trap into local optima. Our experiments showed that the degree of basis functions up to 4 suffi-

ciently models the bias field.

One challenge of the method presented in this paper is how to set the parameter β in Eq

(15). The β depends on the size of neighbor patch. A much bigger β will make the weights of

the other pixels in neighbor patch be smaller than that of the center pixel, which will decrease

the robustness to noise. On the other side, a much smaller β will make the weights of all pixels

in the neighbor patch be similar, which makes the neighbor information isotropic and lose

details. In most regions, the intensity distances between the neighbor pixels to the center are

always less than a certain threshold. After experimented on more than 100 data sets, we found

that the results are accurate enough for the β = 0.02 when the patch size is 3×3. One possible

extension of this work is to optimize β throughout the image automatically. Moreover, the

selection of the patch size should be set based on the amount of noise and the details in the

image. Improving the method with adaptive patch size selection will be another direction in

the future of work.

Since the magnetic resonance imaging technology has been proposed, it has been widely

used to analyze the pathologies. For brain pathologies, tumors, Alzheimer disease, Parkinson,

etc., can be treated, the important open questions for brain MR image segmentation methods

are how to find the boundaries of the special tissues, such as the hippocampal, amygdala and

basal ganglia, which have similar intensities with their neighbor tissues. In order to deal with

this problem, many approaches have been suggested to utilize multi-modality information

[54], registration methods [55], etc. However, the use of multi-modality or atlas information

makes the methods more complex. Thus, addressing such questions is out of the scope of this

paper and subjects of future research.
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