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Abstract

Motivation: Population admixture is an important subject in population genetics. Inferring population demographic
history with admixture under the so-called admixture network model from population genetic data is an established
problem in genetics. Existing admixture network inference approaches work with single genetic polymorphisms.
While these methods are usually very fast, they do not fully utilize the information [e.g. linkage disequilibrium (LD)]
contained in population genetic data.

Results: In this article, we develop a new admixture network inference method called GTmix. Different from existing
methods, GTmix works with local gene genealogies that can be inferred from population haplotypes. Local gene
genealogies represent the evolutionary history of sampled haplotypes and contain the LD information. GTmix per-
forms coalescent-based maximum likelihood inference of admixture networks with inferred local genealogies based
on the well-known multispecies coalescent (MSC) model. GTmix utilizes various techniques to speed up the likelihood
computation on the MSC model and the optimal network search. Our simulations show that GTmix can infer more ac-
curate admixture networks with much smaller data than existing methods, even when these existing methods are
given much larger data. GTmix is reasonably efficient and can analyze population genetic datasets of current interests.

Availability and implementation: The program GTmix is available for download at: https://github.com/yufeng
wudcs/GTmix.

Contact: yufeng.wu@uconn.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Population demographic history is a complex interplay of various
processes, such as population divergence and isolation, population
size changes, migration and admixture. The simplest population
demographic history model is the population tree model (similar to
phylogenetic tree for species evolution on the high level), which only
models population divergence. In practice, however, the population
tree model is often too simplistic for most population genetic study.
One key missing aspect of the population tree model is gene flow. In
this article, we focus on population admixture, which is one of the
most important types of gene flow. Population admixture is often so
widespread that admixture has to be addressed in most demographic
history studies. Human populations for example are known to be
strongly influenced by admixture throughout the human history
(Patterson et al., 2012; Price et al., 2007). When admixture is con-
sidered, population history becomes a network (called admixture
network). In addition to modeling population divergence, admixture
network has admixture nodes that model admixture events. See
Figure 1a for an illustration of admixture network.

As demographic history is not directly observable, it is highly de-
sirable to infer population history with admixture (i.e. admixture
network) from extant population genetic data (Lipson et al., 2013;
Pickrell and Pritchard, 2012). Inferring admixture networks from

population genetic data is challenging computationally. First, the
space of admixture networks can be very large even for moderate
number (say ten) of populations and small number (say two) of ad-
mixture events. There are over 34 million rooted binary trees with
ten taxa. With admixture, the number of possible networks is very
large (see, e.g. Cardona and Zhang, 2020). Moreover, the effect of
admixture on population genetic data is subtle and is not easily de-
tectable. Meiotic recombination further complicates the situation by
breaking the linkage between genetic polymorphisms.

A natural population genetic model for admixture network infer-
ence is the coalescent model (Kingman, 1982). Coalescent process
determines stochastically how sampled alleles coalesce in a popula-
tion. As there are multiple populations in an admixture network, the
underlying coalescent is the multispecies coalescent (MSC). MSC is
the fundamental genetic model for the study of multiple closely
related populations (species) (Rosenberg, 2002). MSC can be
extended to allow gene flow (see, e.g. Yu et al., 2012). Under the
MSC model, one can (at least in principle) perform likelihood-based
inference of admixture networks. However, inference based on
MSC is computationally intensive (Rosenberg, 2002). Therefore,
existing methods for inferring admixture networks usually perform
inference with allele frequencies at individual polymorphic sites on
somewhat simplified genetic models. For example, the TreeMix ap-
proach (Pickrell and Pritchard, 2012) infers admixture networks
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from allele frequency data based on a Gaussian approximation of
genetic drift. MixMapper (Lipson et al., 2013), another method for
network inference, has similar high-level approach as TreeMix.
Both TreeMix and MixMapper are fast to handle large genetic data
and can be useful for admixture network inference. However, there
are several downsides of these existing methods. First, only working
with allele frequencies at individual polymorphisms may potentially
lose information, especially the linkage disequilibrium (LD) among
nearby sites. Moreover, these approaches are based on approxima-
tions of the underlying genealogical process, which may not very ac-
curately model the MSC process. Our experience indicates that
TreeMix and MixMapper, while useful, do not provide very accur-
ate inference results in some of our simulations.

In this article, we present a new method for inferring admixture
networks from population genetic data. Our new method is named
GTmix (which stands for Gene Tree-based admixture network infer-
ence). The following summarizes the main features of GTmix.

1. GTmix works with haplotypes, rather than individual polymor-

phisms. This allows GTmix to exploit the LD information in

genetic data, which is not considered by TreeMix and

MixMapper. GTmix does not directly perform inference from

haplotypes. Instead, GTmix takes input in the form of gene

genealogies T ¼ ðT1;T2; . . . ;TmÞ that are inferred from the

given haplotypes. Here, Ti is the inferred gene genealogy at a site

si, which represents the evolutionary history of haplotypes at si.

Due to recombination, genealogies at different loci may be dif-

ferent. Gene genealogy is arguably more informative than indi-

vidual genetic polymorphisms. Even though a genealogy Ti is

only for a specific site si, genealogies at nearby sites tend to be

similar and thus implicitly contain the LD information. A trad-

itional view in population genetics is that while gene genealogy

is informative, there is little power in inferring gene genealogies

from genetic data largely due to recombination (see, e.g. Wilson

and McVean, 2006). Recently, however, local genealogy infer-

ence is being actively studied and applied in population genetics.

There are several existing tools for inferring gene genealogies

from population haplotypes (Kelleher et al., 2019; Mirzaei and

Wu, 2017; Rasmussen et al., 2014; Speidel et al., 2019). Among

these tools, RENTþ (Mirzaei and Wu, 2017; Wu, 2011) is effi-

cient and easy to use. So we use RENTþ for local genealogy in-

ference in this article.

2. GTmix is a maximum likelihood approach: it aims at finding an

admixture network N opt such that PrðT jN optÞ is maximized.

Here, PrðT jN Þ ¼
Qm

i¼1

PrðTijN Þ (based on the assumption the in-

dependence of each Ti). PrðTijN Þ is the probability of observing

the genealogy Ti for the admixture network N under the MSC

with admixture (MSCA) model. In general, computing PrðT jN Þ
under the MSCA model is computationally challenging. Building

on the recent algorithmic progress in efficient probability com-

putation on the MSC model (Pei and Wu, 2017; Wu, 2012,

2016), GTmix implements several approaches to speed-up the

likelihood computation on the MSCA model. By working on the

MSCA model, GTmix performs admixture network inference on

an arguably more rigorous model than existing methods (such as

TreeMix).

3. GTmix can be configured to infer admixture networks with arbi-

trary number of admixture events, although the running time

will be longer with larger number of admixture events. It can

infer recent admixture (i.e. that forms an extant population) and

also ancient admixture (i.e. that forms an ancestral population).

GTmix is reasonably efficient computationally. In phylogenetics,

there exists methods [most notably the program Phylonet (Wen

et al., 2018)] for inferring phylogenetic networks (somewhat

Fig. 1. Illustration of admixture network. (a) An admixture network. Four populations. C is admixed. (b) and (c) Two population trees in this network. (d) and (e) Two gene

genealogies, each from a different loci. Leaves of gene genealogies: population haplotypes. Two sampled haplotypes per population: haplotypes a1 and a2 are from the popula-

tion A, haplotypes b1 and b2 are from the population B and so on. Darkened dots: mutations (following infinite sites model). (f) Haplotypes for the two genealogies

Inference of population admixture network i327



related to admixture networks) based on the MSCA model. Our

experience indicates that GTmix can perform likelihood-based

inference on data with significantly larger number of taxa and

haplotypes than what are allowed by existing approaches such

as Phylonet.

Through simulation, we show that while GTmix is not as fast
as existing methods such as TreeMix, GTmix is more accurate
than existing methods in most simulations we performed. In par-
ticular, GTmix can infer more accurate admixture networks under
most settings using much smaller data than existing methods, even
when those existing methods use much larger data than GTmix.
Our results suggest that inferred genealogies can indeed be inform-
ative for population demographic history inference. Also
coalescent-based probabilistic inference with local genealogies can
potentially be more accurate than existing methods using single
polymorphisms.

2 Background

2.1 Admixture network
Admixture network is conceptually similar to phylogenetic network
as studied in the Phylogenetics literature (Huson et al., 2010;
Morrison, 2011). Admixture network is a natural extension to the
population tree model (see, e.g. Wu, 2015). Admixture network (or
simply network) is a directed acyclic graph N , and is leaf-labeled by
a set of populations. Moreover,

1. Admixture nodes are nodes in N with two incoming edges. The

two ancestral nodes of an admixture node are called the source

populations.

2. For a network N , when only one of the incoming edges of each

admixture node is kept and the other is deleted, we always ob-

tain a tree T. This tree is called the population tree. There can be

multiple populations trees contained in a network.

Note that in admixture network, a node refers to a population.
An admixed node has two incoming edges, which originate from
two source populations of the admixed population. Thus, for an ad-
mixture node v in a network, there are two ancestral nodes: the left
parent [denoted as Left(v)] and the right parent [denoted as
Right(v)]. Throughout this article, we assume each admixture is
two-way (i.e. formed by two ancestral populations). More general
admixture (involving three or more ancestral populations) can in
principle be modeled as a chain of two-way admixture events.

Population tree. Recall that a population tree T is contained in a
network N when we remove one of the two incoming edges at each
admixture node. Suppose there are na admixture nodes in N . There
are 2na population trees contained in N . For example, in Figure 1,
there are two population trees contained in the network, as shown
in Figure 1d and e. Note that population trees do not capture all the
possible demographic histories in N . This is because population tree
assumes that all lineages from an admixed population follow either
the left or right admixture branches when coalescing at a locus. But
this is not necessarily the case at an admixture event. Despite this
shortcoming, GTmix relies on population trees for likelihood com-
putation because it is computationally more efficient to work with
population trees than with a network.

Branch length. Branches in a network have lengths in the stand-
ard coalescent units. In this article, we assume population sizes re-
main constant within a single branch of N . Note that different
branches may have different population sizes. The admixture net-
work model accommodates this using the standard coalescent unit
(which converts the absolute time to the number of generations
based on the effective population size) for branch lengths in the net-
work, rather than the absolute time.

Admixture proportions. At each admixture node v, there is an
admixture proportion f0ðvÞ where 0 � f0ðvÞ � 1. f0ðvÞ refers to the
proportion of alleles of population v originating from the left parent

Left(v). f1ðvÞ ¼ 1:0� f0ðvÞ is the proportion of alleles of v from the
right parent.

Genealogy and multispecies coalescent. Gene genealogy and
MSC are central to GTmix. Due to the lack of the space, relevant
background information is given in Supplementary Materials.

3 Materials and methods

3.1 The high-level approach of GTmix
We assume haplotypes H from np populations are given. We further
assume the number of admixture events na is known. Note that, this
is a standard assumption in existing admixture network inference
literature. Our goal is inferring the maximum likelihood admixture
network N with na admixture nodes for these populations from H.
One natural approach is finding N that maximizes the likelihood
PðHjN Þ of H. However, computing PðHjN Þ is challenging. GTmix
uses the following techniques to develop a practical coalescent-
based maximum likelihood inference approach.

1. GTmix works with local genealogies T (which are inferred from

H), instead of with H directly. Before using GTmix, we first use

a local genealogy inference tool [e.g. RENTþ (Mirzaei and Wu,

2017)] to infer local gene genealogies T from H. The main bene-

fit of working with inferred genealogies is that computing the

likelihood of T is easier than directly computing the likelihood

of H for N . Also local genealogies T , while noisy, capture the

important LD information. The number of local genealogies can

be very large in practice. GTmix uses a filtering scheme to

choose possibly more reliable gene genealogies for inference.

2. GTmix infers N opt that maximizes PrðT jN optÞ. PrðT jN Þ is com-

puted approximately. That is for each T 2 T , Pr(T) is computed

by summing up the (weighted) probability of T for each popula-

tion tree in N . The probability of T for a population tree is com-

puted using the fast algorithm in Pei and Wu (2017) that

computes gene tree probability approximately. GTmix imple-

ments effective methods to perform network search, including a

new method for constructing initial networks from gene

genealogies.

3.2 Inferring local gene genealogies
For local genealogy inference from haplotypes, GTmix is tested with
genealogies inferred by the program RENTþ (Mirzaei and Wu,
2017), although other tools (e.g. Kelleher et al., 2019; Speidel et al.,
2019) can be used as well. RENTþ infers a (rooted binary) geneal-
ogy for each binary polymorphic site within a locus. The total num-
ber of local genealogies can be very large because there can be a
different genealogy at each site. This makes it infeasible to perform
likelihood-based inference with all genealogies as computing the
probability of a genealogy is not trivial. To develop a practical
method, GTmix samples a subset of genealogies (trees) using a two-
stage approach: (i) it first chooses a subset of (likely more reliable)
trees from inferred trees at each locus and (ii) it then chooses a
smaller subset of trees from the list of trees from all loci. Note that,
we assume haplotypes are divided into (independent) regions (loci),
where each locus can contain many polymorphic sites.

3.2.1 Choosing genealogies from each locus

GTmix uses the following simple method called TreePicker for pick-
ing a subset of gene genealogies from potentially a large number of
local genealogies inferred by RENTþ. TreePicker works with haplo-
typesHi from the ith locus and a list of genealogical trees T i inferred
by RENTþ from Hi. TreePicker chooses a fixed number nT trees
from T i as follows.

1. TreePicker first divides the polymorphic sites within the ith locus

into nT equal-sized segments.
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2. For each segment, TreePicker chooses one genealogy Ti 2 T i

which ‘matches’ the largest number of polymorphisms within

this segment.

Recall that a (binary) polymorphic site implies a split (biparti-
tion) of sampled haplotypes under the infinite sites model. We say a
tree T matches a polymorphic site if there is a clade of T whose
leaves are exactly those on one side of the split implied by this site.
While local genealogies inferred by RENTþ do have useful infor-
mation, these trees also have significant noise. Intuitively, an
inferred genealogy T tends to be more reliable if it matches more
polymorphic sites. This is because polymorphic sites are given as in-
put and presumably correspond to clades in gene genealogies. A
local genealogy is likely more reliable if it matches more
polymorphisms.

3.2.2 Choosing a subset of trees to use for inference

GTmix takes a list of trees chosen by TreePicker as input. The
number of input trees can still be large, and these genealogies can
still be noisy. Before GTmix starts the inference, it first chooses a
subset of up to K trees (by default, K¼500) from the input trees.
The basic idea is removing input trees that are significantly differ-
ent from the rest of trees. This is because such trees are more like-
ly to contain errors. GTmix takes the following simple approach
for choosing trees for inference. It first analyzes input trees and
calculates the frequencies of the clades in the trees. Then, it scores
a tree by clade frequencies: a tree T is assigned a scoreQ

C2CladesðTÞ freqðCÞ. Here, Clades(T) is the set of all clades of the
tree T and freq(C) is the estimated frequency of the clade C in all
trees. GTmix chooses up to K trees with the highest scores. The
main rationale behind this tree-picking step is that the number of
true genealogical trees within a region is likely to be relatively
small. This is because the number of recombinations (and other
population demographic events such as admixture and incomplete
lineage sorting) within a small region is likely small. Thus, a local
genealogy is likely to be more reliable if it shares more topological
features with other genealogies.

3.3 Gene tree probability computation for admixture

network
GTmix takes a list of inferred genealogies T ¼ fT1; . . . ;TKg as in-
put. The most important aspect for inferring admixture network N
is computing PðT jN Þ under the multispecies coalescent with admix-
ture (MSCA) model. Assuming the independence of genealogies,

PðT jN Þ ¼
QK

i¼1 PðTijN Þ. Computing PðTijN Þ for a network N is
not trivial (see, e.g. Yu et al., 2012). The main difficulty for comput-
ing PðTijN Þ is that the number of feasible coalescent histories can be
very large under the MSCA model. To develop a practical method
that can work with relatively large data, GTmix takes an approxi-
mation here: instead of computing the probability of Ti for N ,
GTmix computes the probability of each population tree Ti in N
and then use a weighted sum of these probability as an approxima-
tion of PðTijN Þ. While this is only an approximation, our experience
indicates this allows reasonably accurate and efficient inference of
admixture network.

To be specific, we consider all possible population trees in N .
Each population tree is obtained by picking one of the left and right
admixture edges at admixture node v with probabilities mv and
1:0�mv, respectively. Let the embedded population trees within N
be T N ¼ fTN ;1; . . . ;TN ;kg. Let na be the number of admixture nodes

in N . A population tree TN ;j is associated with a binary vector Dj

of length na. Dj½a� ¼ 0 (Dj½a� ¼ 1, respectively) if the left (right, re-
spectively) incoming edge is chosen to obtain TN ;j. Here, each TN ;j
has a probability of being the population tree: PðTN ;jÞ ¼Qna

i¼1 m
1�DjðiÞ
vi ð1�mvi

ÞDjðiÞ. Here, vi is the ith admixture node. Recall
that branches in N have lengths. Trees in T N are derived from N
and so have branch lengths too. In contrast, we assume genealogical
trees in T are topologies only [as assumed in Rosenberg (2002) and
Degnan and Salter (2005)]. Thus,

PðTijN Þ �
X2na

j¼1

PðTN ;jÞPðTijTN ;jÞ (1)

PðTijTN ;jÞ is exactly the gene tree probability of a gene tree topology
for a fixed population tree with branch lengths (Degnan and Salter,
2005; Rosenberg, 2002). GTmix uses the approximate gene tree
probability algorithm in Pei and Wu (2017). This is because this al-
gorithm is much more scalable than exact gene tree probability algo-
rithms in Degnan and Salter (2005) and Wu (2012, 2016). Note that
even we had computed the exact PðTijTN ;jÞ, Equation 1 is still only
an approximation. This is because Equation 1 implicitly assumes all
lineages at an admixture node are inherited from a single parent.
This may not be the case with admixture. To see this, we again look
at the network in Figure 1a and the gene tree in Figure 1d. Suppose
at the time of admixture, lineages c1 and c2 remain un-coalesced.
Then, Equation 1 ignores the situation where for example c1 is from
the left and c2 is from the right. We adopt this approximation be-
cause: (i) computing gene tree probability for a population tree is
much faster than computing gene tree probability for a network and
(ii) empirical tests suggest that this approximation appears to pro-
vide reasonably accurate inference.

3.4 Finding the maximum likelihood admixture network
GTmix finds the maximum likelihood admixture network with na

admixture events (where na is assumed to be known) using a simple
iterative procedure:

1. Construct an initial network N init with na admixture nodes from

the inferred gene genealogies T . LetN opt  N init.

2. Find the set of admixture networks S that are similar topologic-

ally to N opt and have na admixture nodes.

3. Let N 2 S that maximizes the likelihood PðT jN Þ. If

PðT jN Þ > PðT jN optÞ, set N opt  N , and go to step 2.

Otherwise, stop.

3.4.1 Constructing the initial network

GTmix constructs an initial network N init from T as follows. It first
constructs a network N 0 without admixture nodes (i.e. a population
tree) by neighbor joining (NJ). The detailed procedure is given in
Supplementary Algorithm S1 (in Supplementary Materials). To run
the NJ algorithm, GTmix first estimates the pairwise distance be-
tween each pair of populations pi and pj based on T . Intuitively, if
haplotypes from two populations are closely related in a genealogy,
this offers a hint that these two populations may be closely related
in the admixture network. More specifically, the pairwise popula-
tion distance between pi and pj is estimated based on the average dis-
tance between one haplotype from pi and one from pj (in terms of
the number of edges separating these two haplotypes on an inferred
genealogy). Note that, a haplotype corresponds to a leaf in T .

GTmix then adds na admixture nodes to N 0 by choosing proper
leaf nodes in N 0 and turning them into admixture nodes. That is the
initial admixed populations are extant populations in N 0. Note that
ancestral admixture events (i.e. admixture at ancestral populations)
are accommodated during the network search stage. GTmix relies
on the so-called minimum deep coalescent (MDC) (Maddison,
1997; Page and Charleston, 1997) to identify likely admixed extant
populations. Briefly, MDC is a statistic that measures the topologic-
al deviation of the given gene trees from a consensus tree based on
the MSC model. Refer to the studies by Page and Charleston (1997)
and Maddison (1997) for more details on MDC. While MDC is
known to have issues in phylogenetics (see, e.g. Felsenstein, 2004),
we use MDC due to its simplicity and efficiency.

The key idea of GTmix for identifying the likely admixed extant
populations from T is that admixed extant populations tend to
make gene genealogies deviate significantly from the standard MSC
process. Intuitively, an admixed population tends to lead to gene
genealogies that are quite different from those arising from the
standard MSC process. Suppose we discard all haplotypes from the
admixed population in the gene genealogies. The (reduced) gene
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genealogies tend to have a better fit to the standard MSC process.
GTmix uses the MDC statistic to measure how well gene genealo-
gies fit the standard MSC process. More specifically, suppose a
population p is a candidate for admixed extant population. We first
compute the MDC score (denoted as MDC) of the original T . Then
we discard all gene lineages from the population p in all trees of T .
We call the reduced genealogies T 0. We then compute the MDC
score (denoted as MDCp) on T 0. As each tree in T 0 is a subtree of
the corresponding tree in T ; MDCp � MDC. We expect MDC�
MDCp for admixed population p to be significantly larger than
MDC�MDCp0

for an un-admixed population p0. This leads to
Algorithm 1 for finding likely admixed extant
populations.Constructing initial network N by adding admixture
nodes. For each likely admixed extant population pa 2 Pa, GTmix
modifies N 0 by adding one admixture branch into pa to make pa an
admixture node. GTmix considers all possible admixture source
populations that can be ancestral to pa according to the current net-
work. Each choice leads to a network N pa

. Then it chooses one
source population that gives the maximum probability PðT jN pa

Þ.
After this step, we obtain the initial networkN init.

3.4.2 Search over the space of networks

GTmix searches for the set of topologically similar networks S from
the current network N . Networks in S are obtained by applying one
nearest neighbor interchange (NNI) to the current network. More
specifically, consider each branch b ¼ ðvp; vcÞ in N , where node vp

is the parent of node vc. Let vs be the sibling of vc, and vsp be the sib-
ling of vp. Then after applying one NNI on b, we obtain a new net-
work with vsp being the sibling of vc and vs being the sibling of vp.
That is, the NNI swaps vs with vsp which leads to a new network
N 0. We perform NNI on all branches in N to obtain S.

3.5 Simulation
To test the performance of GTmix, we first generate random admix-
ture networks. Then we simulate haplotypes on these admixture net-
works. There are a number of parameters in the simulation, which
are shown in Table 1. Each parameter has a default value.

3.5.1 Admixture network simulation

We first generate random admixture networks with np popula-
tions. Here, np ¼ 4; 6;8 and 10. For each np, we simulate 10 ran-
domly generated networks. We add one additional population as
the outgroup (our experience shows that without outgroup,
TreeMix appears to perform poorly especially in network root-
ing.). That is, the total number of populations is np þ 1. A net-
work has na admixture nodes, where na ¼ 1 (default) or 2. We
focus on networks with more recent admixture in the simulation.
In most of our simulations, we choose extant populations (leaves
of a network N ) as admixed populations. This is because in many
genetics study, admixture is relatively recent. See Section 4.1.6 for
results on networks with more ancient admixture. We arbitrarily
order internal nodes in the simulated network N , subject to the
topological constraints imposed by the network. Then, each in-
ternal node vi (i.e. the ith node in the order) is assigned a time
ti ¼ i� ts where ts is the time interval between events. All leaf
nodes have zero time. The outgroup is assigned a relatively large
time to, which by default is 0.3. The default value of ts is 0.02 in
the standard coalescent unit. Each admixture node v is associated
with an admixture proportion mv. By default, mv ¼ 0:5. See
Supplementary Materials for the list of simulated networks with
four and six populations.

3.5.2 Haplotype simulation

For each simulated admixture network N , we simulate a set of hap-
lotypes using the program ms (Hudson, 2002). For each population,
we simulate nc haplotypes. By default, nc ¼ 4. We simulate nL loci
for each setting. By default, nL ¼ 500. For each locus, we set the mu-
tation parameter h (by default, h¼50), and the recombination par-
ameter q (by default, q¼50) with region length being 500 000 base

pairs. The island model with population admixture implemented in
ms is used to simulate the haplotypes on a specific admixture
network.

4 Results

Due to the lack of space, some results are provided in
Supplementary Materials.

4.1 Results on simulated data
At present, GTmix cannot run on data with large number of popula-
tions and/or large number of haplotypes per population. Thus, we
run GTmix with relatively small number of haplotypes per popula-
tion (by default, four haplotypes per population). TreeMix and
MixMapper are designed to work with data with relatively large
number of haplotypes. For comparison, we run TreeMix and
MixMapper on two settings: (i) the ‘small’ data: the same data as
given to GTmix and (ii) the ‘large’ data: simulated data with much
larger number of haplotypes per population (by default, 100 haplo-
types per population, i.e. 25 times of the small data). Note that, the
number of combinations of different parameters is very large.
Therefore, when we evaluate the effect of a particular parameter, we
keep all other parameters to be the default values. GTmix is run
with 500 local trees by default. For smaller data, sometimes GTmix
is run with 2000 local trees.

Table 1. A list of parameters and their default values used in the

simulation

Description Symbol Default

Number of populations (excluding the outgroup) np 6

Number of admixture nodes in a network na 1

Time interval between events (in coalescent units) ts 0.02

Admixture proportion at admixture node v mv 0.5

Number of haplotypes per population nc 4/100

Number of loci nL 500

Mutation parameter h 50

Recombination parameter q 50

Length of locus (in bp) L 500 000

Note: Small data with four haplotypes per populations. Large data with

100 haplotypes per population (only for TreeMix/MixMapper).

Algorithm 1 Identifying likely admixed extant populations

from genealogies T

1: Let P be the set of all populations.

2: for k ¼ 1 . . . na do

3: Compute the MDC score (denoted as MDC) for T .

4: for each p 2 P do

5: Construct reduced genealogies T p by discarding line-

ages from p (and cleaning up the trees so that trees

remain to be binary).

6: Compute the MDC score (denoted as MDCp) on T p

7: end for

8: Let pa  argmaxp2PðMDC�MDCpÞ. P ¼ P � fpag.
T  T pa

. Add pa to Pa (the list of likely admixed extant

populations).

9: end for
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4.1.1 Metrics for benchmarking admixture network inference

In this article, we use the following two metrics for comparing the
topology of the inferred networkN and that of the true networkN 0.

1. Best-match population tree inference error. Recall that a net-

work N with na admixture nodes contains 2na population trees.

Assuming N and N 0 have the same number of admixture nodes,

we compare the 2na population trees T inN with the 2na popula-

tion trees T 0 in N 0. Here, we need to match each tree T 2 T
with a tree T 0 2 T 0. There are 2na ! ways of matching T with T 0.
For example when na ¼ 1, there are two ways of matching;

when na ¼ 2, there are 24 ways of matching. The so-called

Robinson–Foulds (RF) distance is used to compare a pair of

matched trees T and T 0. The RF distance is equal to the number

of clades (subtrees) that are in T but not in T 0. The RF distance

is normalized to be between 0 and 1. For each matching, we

take the average RF distance of all matched pairs of trees as the

inference error. We take the smallest average RF distance over

all matchings as the best-match inference error.

2. Percentage of correctly inferred admixed populations. It can be

biologically important to identify which populations are

admixed. This is measured by the average percentage of correct-

ly inferred admixed populations.

4.1.2 Network inference accuracy

4.1.2.1 Varying number of populations. We run GTmix, TreeMix
and MixMapper on data with varying number of populations (from
4 to 10). We sample four haplotypes for each population. We also
run TreeMix and MixMapper with large data (100 haplotypes per
population). We sample 2000 local genealogies for 4, 6 and 8 popu-
lations, and 500 genealogies for 10 populations. Sampling more
trees can somewhat increase inference accuracy, but running time is
longer (see Section 4.1.5). Figure 2 shows the results. GTmix is sig-
nificantly better than TreeMix and MixMapper on small data in
terms of topology inference. As expected, TreeMix and MixMapper
perform better on large data than on small data. Still, GTmix with
small data is still more accurate in topology inference than TreeMix
and MixMapper with large data in most cases. Moreover, GTmix is
significantly more accurate in admixed population inference than
TreeMix and MixMapper.

4.1.2.2 Varying number of haplotypes per population. We evalu-
ate the performance of GTmix when the number of haplotypes per
population varies. Six populations are simulated. Due to the compu-
tational difficulty, GTmix only runs on data with up to 8 haplotypes
per population. For comparison, TreeMix and MixMapper are run
on data with up to 100 haplotypes per population. Figure 3a shows
the results. As expected, when the number of haplotypes increases,
all methods tend to be more accurate. On the same data, GTmix is
consistently better than TreeMix and MixMapper. GTmix can be
more accurate with smaller data than TreeMix and MixMapper
even the latter are run with much larger data. For example, the top-
ology inference error of GTmix with 8 haplotypes per population is
about 0.077, whereas the errors are about 0.11 and 0.17, respective-
ly, for TreeMix and MixMapper with 100 haplotypes per
population.

4.1.2.3 Two admixture events. By default, a single admixture
event is simulated. To evaluate more complex demographic scen-
arios, we simulate two admixture events for six populations (plus

(a)

(b)

Fig. 2. Admixture network inference with varying number of populations. GTmix:

four haplotypes per population (sample 2000 trees for np ¼ 4; 6 and 8, and 500

trees for np ¼ 10). TreeMix and MixMapper: small data (four haplotypes per popu-

lation, denoted as ‘S’) and large data (100 haplotypes per population, denoted as

‘L’). (a) Average best-match RF distance between inferred networks and true net-

works. (b) Average admixture population inference accuracy. X-axis: number of

populations

Fig. 3. Inference with varying number of haplotypes and number of admixture events. (a) Varying number of haplotypes per population. GTmix: 2–8 haplotypes per popula-

tion. That is, GTmix is not run for 10, 50 and 100 haplotypes. TreeMix and MixMapper: 2–100 haplotypes per population. X-axis: number of haplotypes (alleles) per popula-

tions. (b) With two admixture events; topological error and admixture population inference accuracy. Six populations. TreeMix is run with both small (S) and large (L) data
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one outgroup). We compare GTmix (with small data) with TreeMix
(with small and large data). The results are shown in Figure 3b. We
can see that GTmix outperforms TreeMix in both topological infer-
ence and admixture population inference significantly even when
the latter is run with large data.

4.1.3 Phasing

So far we use the true simulated haplotypes. In practice, haplotypes
are usually inferred from unphased genotypes. We now evaluate the
performance of GTmix on inferred haplotypes. Note that, phasing
accuracy can be affected by recombination rate. We simulate data
with varying recombination rates (with the default mutation param-
eter of 50). We randomly pair up two simulated haplotypes to form
a genotype. Then we use the program Beagle (Browning and

Browning, 2007) to phase the genotypes to obtain phased haplo-
types. We compare the topological inference error of networks
inferred with both the true haplotypes and the phased haplotypes.
The results are shown in Figure 4. When recombination rate is low,
phasing error appears to have marginal effects on the inference ac-
curacy. When recombination rate is high (say 250), there is a signifi-
cant reduction in inference accuracy.

4.1.4 Network inference efficiency

We show the running time of GTmix under various settings in
Figure 5. The running time of TreeMix and MixMapper is not
shown here as these single polymorphism-based methods are much
faster than GTmix. The purpose here is investigating the scalability
of GTmix. The running time of GTmix apparently grows exponen-
tially with regard to both the number of populations and the number
of haplotypes per population. In contrast, GTmix scales well with
regard to the number of loci. Overall, although GTmix is still com-
putationally intensive on relatively large data, it can be applied on
many data of current interests.

4.1.5 Varying the number of genealogies for inference

The running time in Figure 5c does not grow linearly with regard to
the number of loci. The main reason is that GTmix use a fixed num-
ber (K) of trees from the given set of trees in inference. Here, the de-
fault value of K is 500. The choice of K can affect both the running
time and also the accuracy of GTmix. To investigate the effect of the
value of K, we test GTmix with varying K values (from 100 to
5000) with six populations and four alleles per population. Figure 6
shows the results. There is a clear trade-off between inference accur-
acy and efficiency with regard to the number of sampled trees.
Overall, larger K values tend to produce more accurate inference

Fig. 4. Topological inference error on phased and true haplotypes. X-axis: recom-

bination rate used in data simulation

Fig. 5. Running time (in seconds) of GTmix with varying number of populations, number of haplotypes per population and number of loci

Fig. 6. Effect of the number (K) of sampled trees for inference on accuracy and running time. (a) Network topology inference error (best-match RF distance) and admixture

population inference accuracy (% of correctly inferred admixed populations) with varying values of K. (b) Running time (in seconds) with varying values of K
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results, although the running time will be longer. In practice, there-
fore, it may be beneficial to use larger K as long as the running time
remains acceptable.

4.1.6 Inference of ancestral admixture

We now evaluate the performance of GTmix on admixture inference
of ancestral admixture events. Here, we simulate admixture net-
works with a single admixture event where the admixture event is
ancestral to two or more extant populations. The numbers of simu-
lated networks are three for np ¼ 4, and five for np ¼ 6. These net-
works are shown in Supplementary Materials. For each network, we
simulate ten sets of haplotypes as replicates. We sample four haplo-
types for each populations. For comparison, we run TreeMix with
the same (small) data as GTmix and also with large data (with 100
sampled haplotypes). The topological accuracy results are shown in
Table 2. In comparison with Figure 2a, both methods tend to per-
form less accurately for inferring ancestral admixture events than
more recent admixture events. Nonetheless, our results show that
GTmix outperforms TreeMix on the inference of ancestral admix-
ture events. It appears that the accuracy of TreeMix for inferring an-
cestral admixture events does not show significant improvements as
the data amount increases.

4.2 Results on the 1000 Genomes Project data
The 1000 Genomes Project (The 1000 Genomes Project
Consortium, 2015) has released haplotypes of 1092 individuals
from 26 populations in Phase 3 integrated variant set release. The
1000 Genomes Project defines five super populations: African, East

Asian, European, South Asian and Admixed American. We pick two
populations from each of these super populations. Namely, we pick
the following ten populations: Americans of African Ancestry in SW
USA (ASW), Yoruba in Ibadan, Nigeria (YRI), Han Chinese in
Beijing, China (CHB), Japanese in Tokyo, Japan (JPT), Utah
Residents with Northern and Western European Ancestry (CEU),
Iberian Population in Spain (IBS), Gujarati Indian from Houston,
Texas (GIH), Indian Telugu from the UK (ITU), Mexican Ancestry
from Los Angeles USA (MXL) and Puerto Ricans from Puerto Rico
(PUR). We create two test datasets, one small and one large. (i) The
small data contain haplotypes from two randomly chosen diploid
individuals (i.e. four haplotypes) from each population. We sample
up to 50 loci from chromosomes 1 to 10 as follows: for each
chromosome, randomly sample up to 50 regions of 100 kbp each,
which are evenly located as 3 Mbp apart. (ii) The large dataset con-
tains haplotypes from twenty diploid individuals (i.e. ten times as
many as the small data) from the whole genome (i.e. all single nu-
cleotide polymorphisms or SNPs are used). To reduce noise, any
polymorphic sites with non-binary alleles are discarded.

We run GTmix to infer an admixture network with two admix-
ture events on the small dataset only. Here, GTmix is run without
specifying any outgroup. It takes about 34 h for GTmix to find the
optimal network in a computer cluster (with 2.1 GHz CPU). The
network is shown in Figure 7a. For comparison, we run TreeMix
with the whole genome data on all 22 autosomes. Recall that
GTmix is run with data from a fraction of chromosomes 1 to 10.
We perform preprocessing to discard rare variants: only polymor-
phisms with minor allele frequencies of 5% or larger are kept (If
rare alleles are kept, our simulation results show that the con-
structed network by TreeMix appears to be less accurate.). This
leaves total 7.63 million SNPs in the data. Note that this is about 50
times more data than what is used by GTmix. Our results show that
if TreeMix is run without specifying proper outgroup, the inferred
network appears to be rooted in an obviously wrong position (see
Supplementary Fig. S5). The resulting network by TreeMix is shown
in Figure 7b, where we use YRI as the outgroup. We note that the
networks inferred by GTmix and TreeMix share many key topo-
logical properties. For example, both networks have MXL and PUR
as admixed. Also populations from the same super population tend
to be close in the network. On the other hand, the two networks
also differ in some aspects. The network by GTmix, as expected, has
IBS to be closely related to the source populations involved in both
inferred admixture, while the other ancestral populations involved
are closely related to CHB/JPT. While the true admixture network

Table 2. Topological inference error for networks (for 4 and 6 popu-

lations) with ancestral admixture events for GTmix and TreeMix

(with 10 replicates)

np ¼ 4 np ¼ 6

G T(S) T(L) G T(S) T(L)

Topology inf. error 0.20 0.37 0.29 0.30 0.34 0.35

Note: G: GTmix. T(S): TreeMix with the same data as GTmix (4 haplo-

types per population). T(L): TreeMix with large data (100 haplotypes per

population).

Fig. 7. Inferred admixture network for ten populations from the 1000 Genomes Project by GTmix and TreeMix. GTmix is run with small data with two diploid individuals

per population at randomly chosen regions of the first ten chromosomes, while TreeMix is run with the whole genome data with twenty diploid individuals per population

(more than 50 times more data than that used by GTmix). Square box: admixture nodes (with inferred admixture proportions; the displayed admixture proportion is for the

left source population). Each branch in the GTmix result has the estimated branch length (in the standard coalescent unit)
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for these populations is not known, at least some aspects of the
TreeMix’s network do not agree with the commonly accepted
human demographic history. For example, the TreeMix network
shows MXL and PUR are both descendants from an ancestral ad-
mixture between some ancestral European and some ancestral
African population; then MXL is involved in admixture with an an-
cestral Asian population. While MXL and PUR may have different
admixture history, such ancestral admixture may not be very likely.
To summarize, our results show that GTmix can provide inform-
ative inference of admixture networks on real data.

5 Conclusion and discussion

In this article, we develop a new approach called GTmix for infer-
ring population admixture networks with local gene genealogies
inferred from haplotypes. The following summarizes our findings.

1. Results of GTmix show that maximum likelihood inference of ad-

mixture networks can be practical for data that was previously

believed to be not feasible (Pickrell and Pritchard, 2012). While

GTmix may only find local maxima, empirical results show that

GTmix can still provide reasonably accurate inference.

2. While likelihood-based inference such as GTmix is inherently

more computationally demanding than existing single

polymorphism-based methods, GTmix can produce more accur-

ate inference results using only a small percentage of data than

existing single polymorphism-based methods. While human pop-

ulations in the 1000 Genomes Project have relatively large sample

sizes, population sample sizes can be much smaller in other popu-

lation genetics studies. GTmix can be useful for such datasets.

Another advantage of GTmix is that its rooting of networks is

usually more accurate than that of TreeMix.

GTmix builds on several published approaches (Mirzaei and
Wu, 2017; Pei and Wu, 2017; Wu, 2012). The main contribution of
GTmix to network inference methodology is that GTmix introduces
several practical techniques that significantly speed up the computa-
tionally intensive likelihood-based network inference, and achieves
reasonably good empirical performance. One common problem for
GTmix and all existing admixture network inference methods is
that the number of admixture events is assumed to be known. In
principle, it would be useful if a method can also infer the optimal
number of admixture events. Inferring the number of admixture
events is a model selection problem in statistics, which is likely to be
an important problem for future network inference research.

The main computational bottleneck for likelihood-based meth-
ods is still the computation of the likelihood under the coalescent
process. Scaling up likelihood-based inference will need further im-
provement in algorithmic efficiency of coalescent likelihood
computation.
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