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Abstract

Deep learning (DL) is a subset of artificial intelligence (AI), which uses multilayer neural networks modelled after the
mammalian visual cortex capable of synthesizing images in ways that will transform the field of glaucoma. Autonomous DL
algorithms are capable of maximizing information embedded in digital fundus photographs and ocular coherence
tomographs to outperform ophthalmologists in disease detection. Other unsupervised algorithms such as principal
component analysis (axis learning) and archetypal analysis (corner learning) facilitate visual field interpretation and show
great promise to detect functional glaucoma progression and differentiate it from non-glaucomatous changes when compared
with conventional software packages. Forecasting tools such as the Kalman filter may revolutionize glaucoma management
by accounting for a host of factors to set target intraocular pressure goals that preserve vision. Activation maps generated
from DL algorithms that process glaucoma data have the potential to efficiently direct our attention to critical data elements
embedded in high throughput data and enhance our understanding of the glaucomatous process. It is hoped that Al will
realize more accurate assessment of the copious data encountered in glaucoma management, improving our understanding of
the disease, preserving vision, and serving to enhance the deep bonds that patients develop with their treating physicians.

Introduction

The field of artificial intelligence (AI) began around 1950
when Turing pointed out that computer programs simulat-
ing cognitive functions like game play could be written [1].
In the 1980s, machine learning (ML), a subset of Al,
achieved the objective of actually learning patterns in data
without explicitly being programmed, but this subset of
Al did not greatly impact medicine, probably because
clinicians could readily outperform such algorithms.
Around 2010 the artificial neural networks of ML were
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replaced with networks that functioned like neurons with
receptive fields that efficiently integrated high throughput
data and the subset ML called deep learning (DL) emerged
(Fig. 1). In a short time, DL algorithms have rivalled and
even outperformed pre-existing algorithms in medicine and
other disciplines. DL applications are diverse, ranging from
the prediction of earthquake aftershocks [2] to the
advancement of drug discovery [3]. In healthcare, DL has
been used to ascertain time of stroke onset [4], assess cancer
lesions and metastases [5—7], and recognize numerous other
conditions. In ophthalmology, DL applications aid in the
detection of glaucoma [8—11], diabetic retinopathy (DR)
[12-15], age-related macular degeneration [16-18], and
retinopathy of prematurity [19, 20]. Remarkably, a myriad
of products employing Al algorithms for the detection of
conditions ranging from atrial fibrillation via the Apple
watch to autonomous recognition of DR from digital fundus
gained FDA approval in 2017 and 2018 [21]. The 2020
issue of Eye spotlights innovation and the incredible pro-
gress being made in the field of glaucoma. This review
emphasizes advancements in glaucoma related to AL
After providing an overview of Al, this paper reviews the
applications of DL to glaucoma, including (1) detection of
the glaucomatous disc from fundus photographs and optical
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Deep Learning
The ability of a machine to learn
using multilayer neural networks,
modeled after the visual cortex.

Machine Learning
The ability of a machine to learn without
needing to be explicitly programmed

Artificial Intelligence
The ability of a machine to mimic
human cognitive functions

Fig. 1 The relationship between deep learning, machine learning, and
artificial intelligence is depicted. Artificial intelligence is the broadest
classification and deep learning is the narrowest classification of the
three. Machine learning is a type of artificial intelligence. Deep
learning is a type of artificial intelligence as well but is also a machine
learning classifier

coherence tomography, (2) interpretation of visual fields
and recognition of their progression, and (3) clinical
forecasting.

Al, machine learning, and DL

In earlier forms of Al that did not use ML, a machine only
learns when explicitly programmed. The machine is taught
through a series of if-then statements that specify how the
machine should act. For example, let us assume a person
wants a computer to play checkers. To teach the computer,
the person indicates where the computer should move based
on specific circumstances in the game. Under these condi-
tions, the computer will not likely be better at checkers than
the person.

In contrast, ML describes the ability of a machine to
learn something without needing to be explicitly pro-
grammed [22]. Samuel coined this term in attempting to
make a computer play checkers better than him. ML
allowed the computer to adapt to the game as it played out.
As a result, the computer improved its own performance
and learned to play checkers better than Samuel.

The ‘deep’ in DL, the newest subset of ML, refers to the
many hidden layers in its computer neural network. The
benefit of more hidden layers is the ability to analyse more
complicated inputs, including entire images. DL also uses a
general-purpose learning procedure so that features do not
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need to be engineered individually [23]. Of vital impor-
tance, the DL algorithm is inspired by the organization of
the visual cortex, giving it a particular advantage in per-
ceiving visual inputs.

DL and visual cortex neural networks

DL networks are modelled after visual cortex neural net-
works. As a result, there are multiple features that artificial
and biological networks share, including the use of edge
detection and a high degree of spatial invariance, which
refers to the ability to recognize images despite alterations
in viewing angle, image orientation, image size, scene
lighting, etc. [24]. Early layers of the visual cortex are
considered edge detectors [25] because they have dedicated
orientation- and position-specific cells, as initially described
by Hubel and Wiesel [26]. A cell might respond to a bar
with a vertical orientation, but if the bar is rotated 30°, the
cell may no longer respond. DL utilizes small receptive
fields that act like flashlights to learn about edges of objects
and where the objects have empty space.

There are multiple architectural similarities between
biological and artificial neural networks, including their
degree of connectivity and their learning procedure. In the
visual cortex, every neuron in a particular layer is not
connected to every neuron in the next layer. While this
breadth of connectivity would be useful, it is not feasible
because of evolutionary constraints on human brain size.
Artificial neurons in DL networks have the same con-
nective architecture as biological neurons, a feature that
reduces computational burden. DL networks further reduce
computational complexity and minimize the amount of
computer memory use by employing matrix multiplication
with predetermined filters. Another architectural similarity
between biological and artificial neural networks is the
condensation and summation that occurs at the end of the
DL algorithm that is akin to what happens in level V1 of
the cerebral cortex. Finally, DL and cortical computation
have both feedforward and feedback arms (the latter is
called backpropagation) [27, 28]. In backpropagation, a
network adjusts the weights of its different inputs to ensure
the actual output of the algorithm matches its expected
value [28].

DL algorithm

DL consists of three essential stages, (1) training, (2) vali-
dating, and (3) testing. A machine is first given a training
dataset, or sample data that the machine fits its algorithm to.
A validation dataset then evaluates how well the model
fits the training set and the model is manually adjusted
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accordingly. In order to assess how well the algorithm
works, the machine is ultimately given a testing dataset.

DL and glaucoma

Glaucoma is a leading cause of irreversible blindness, with
a global prevalence of 3.5% and a global burden of
76 million affected people in 2020 [29]. Early detection and
treatment can preserve vision in affected individuals.
However, glaucoma is asymptomatic in early stages, as
visual fields are not affected until 20-50% of corresponding
retinal ganglion cells are lost [30, 31]. Considerable work is
needed to improve our ability to detect glaucoma and its
progression as well as optimize treatment algorithms in
order to preserve vision in these patients. While great strides
have been made in understanding the various glaucoma
subtypes, the avalanche of existing imaging and visual field
data will need to be synthesized in new ways to improve our
understanding of glaucoma and derive better treatments.
Glaucoma, like the field of ophthalmology in general, is
heavily image based and Al is poised to address many of
these challenges.

DL and detection of the glaucomatous disc

Assessment of optic nerve head (ONH) integrity is the
foundation for detecting glaucomatous damage. The ONH
is a site where ~1 million retinal ganglion cell axons con-
verge on a space with average area of 2.1-3.0 mm? prior to
radiating to higher visual pathways [32]. Given the variance
in ONH anatomy [33], it can be challenging to identify the
glaucomatous disc both in the clinical and screening setting.

Feature Learning
A

In fact a study showed that agreement on the detection of
ONH damage from fundus photographs among experts is
only moderate [34]. Difficulties in detecting the glauco-
matous disc from fundus photographs can be compounded
by variations in image capture platform, exposure, focus,
magnification, state of mydriasis, and presence of non-
glaucomatous disease. DL has made considerable inroads in
detecting glaucomatous disc damage from digital optic
nerve photographs. Figure 2 shows the DL procedure
applied to detection of the glaucomatous disc. Here the
input layer is an optic nerve image, which mathematically
can be depicted as a 3-dimensional pixel array with length,
width, and colour channels (Red—Green—Blue). The input
image is assigned a clinical consensus ground truth label
like ‘glaucoma’ or ‘no glaucoma’. The output of one hidden
layer becomes the input of the next hidden layer. The output
layer is a classification label that the algorithm gives the
image based on the properties it identifies during DL.
There are two stages of DL: feature learning and clas-
sification. Feature learning is an iterative procedure of
convolution, pooling, and activation, followed by back-
propagation (Fig. 2). Classification consists of probability
conversion and clinical labelling. The feature learning
iterative procedure is applied at each hidden layer. Each
layer is analysed piecewise, in blocks called image patches
or receptive fields. Convolution, pooling, and activation
occur at each image patch until the entire layer is analysed.
The first step, convolution, is synonymous with matrix
combination. The input matrix, or the image being analysed,
and the feature matrix, or the feature being extracted from
the image, are combined. Convolution then produces a
feature map. A feature map shows the important features of

Classification

Backpropagation

\/——J%

Input Hidden Layers 1- 4

Convolution

M Pooling
Il Activation

Fig. 2 The deep learning procedure applied to glaucomatous disc
detection is depicted. The input layer, or the image, is analysed and
gives rise to the output layer, or the classification label. There are two
stages of deep learning analysis: feature learning and classification.
Feature learning is an iterative procedure of convolution, pooling, and
activation that is applied at each hidden layer. In order to classify the
image based on what is deduced from feature learning, probability

P(glaucomatous) = 90%

> —> “Glaucoma”
P(non-glaucomatous) = 10% "

Probability

. Output
Conversion

conversion is performed. The probability value produced is used to
classify the input image. Prior to classification, backpropagation
occurs to compare the predicted probability value to the actual prob-
ability value and calculate the corresponding error. In the case of
glaucoma detection, the final probability value is used to classify the
input image as glaucomatous or normal
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the input image and excludes the irrelevant parts of the
input image.

The final two stages of the iterative procedure are pool-
ing and activation. Pooling consists of streamlining the
matrix to its most important parts, which are passed on to
the next hidden layer. The most common type of pooling is
called max pooling. In max pooling, the image patches with
the highest intensity pixels are maintained and all other
image patches are removed. Pooling isolates the most
relevant features of the given hidden layer. Activation fur-
ther streamlines by setting negative matrix values to 0.
Probability conversion produces a probability value based
on what remains in the matrix. This probability value will
later be used to clinically classify the input image. Prior to
classification, backpropagation, which implements gradient
descent, occurs. Backpropagation compares the predicted
probability value to the actual probability value and calcu-
lates the corresponding error. Backpropagation subse-
quently updates each feature matrix value recursively in
order to compute the most accurate probability value. Based
on the final probability value, the input image is clinically
labelled. In the case of glaucoma detection, the final prob-
ability value is used to classify the input image as glauco-
matous or normal.

Common metrics that assess DL algorithms are sensi-
tivity, specificity, accuracy, precision, positive predictive
value, negative predictive value, and area under the receiver
operating curve (AUC) [35]. AUC is calculated using sen-
sitivity and specificity [36]. AUC is intended for binary
classifiers only [36]. As a result, AUC can be used as a
metric when images are classified into two categories, such
as ‘glaucoma’ or ‘no glaucoma’.

Investigators have assembled large numbers of images
into training, validation, and testing datasets to successfully
train DL algorithms to detect a cup-disc ratio (CDR) at or
above a certain threshold (either CDR of 0.7 or 0.8) with
AUC 20.942 [10, 12] (Table 1). In an alternative approach,
investigators have assigned a glaucoma status based on a
consensus of ancillary data associated with the input disc
photograph and also reported remarkable good results
(AUC 20.872). [9, 37-40] In this way, a DL algorithm
could be tailored to identify the optic disc associated with
manifest visual field loss, a highly meaningful endpoint that
circumvents the issue that larger discs will naturally have
larger cups and could be a source of false positive screening
results. Furthermore, investigators have applied DL to
assessments of OCT. A study detecting early glaucoma with
OCT using DL showed a higher AUC (0.937) than other
machine learning methods including random forests (AUC
0.820) and support vector machine model (AUC 0.674)
(Table 1) [8]. Finally, in a highly innovative approach,
Medeiros et al. assigned the average nerve fibre layer
thickness from an OCT paired to a fundus photo and trained
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Table 1 Summary of glaucoma detection studies using deep learning

Sensitivity ~ Specificity

AUC

No. of Images

Disease definition

Race/Ethnicity

Imaging type

0.872
0.920
0.830

0.942  0.964
0.986 0.956
0.910 0.840

197,085
48,116
14,822

CDR 0.8+

Chinese, Malay, Indian

Fundus images

Ting et al. [12]
Li et al. [10]
Christopher

et al. [43]

CDR 0.7+

Chinese

Fundus images

Glaucoma (mild or moderate-to-severe functional loss)

White, Black, Asian

Fundus images

0.965

3620
3312

Glaucoma

Japanese

Fundus images

Shibata et al. [9]

0.900

Glaucoma, glaucoma suspect

Japanese

Fundus images

Phan et al. [42]

0.802

0.872 0.813
0.944

Glaucoma (early, moderate, or severe) 1399

Japanese

Fundus images

Masumoto et al. [39]
Medeiros et al. [37]

32,820
9282

Glaucomatous visual field loss

White, Black

Fundus images and OCT scans

0.933

Glaucomatous visual field loss

White, Black
Japanese

Fundus images and OCT scans
OCT

Thompson et al. [40]

Asaoka et al. [8]
Li et al. [45]

0.937 0.825 0.939

2132
4012

Early glaucoma

0.932

0.966 0.826

Glaucoma

Chinese

Visual fields

OCT ocular coherence tomography, CDR cup-disc ratio, AUC area under the curve
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a DL to predict average NFL thickness from a test fundus
photo [37]. The correlation between predicted and observed
retinal nerve fibre layer (RNFL) thickness values was high
(r=0.83) and the AUC for glaucoma detection from
the DL prediction of RNFL thickness was 0.944. Such a
machine-to-machine learning approach removes the sub-
jectivity associated with the ground truth labels for disc
photographs and gives the photo the added value of an
estimated RNFL thickness. Using a similar approach, this
research team also assigned a Bruch’s membrane opening
minimal rim width (BMO-MRW) value, defined as the
minimal distance from the internal limiting membrane to the
inner opening of Bruch’s membrane opening, to fundus
images and yielded similar results in terms of detecting
glaucoma [40]. BMO-MWO is an OCT biomarker that may
be as sensitive or more sensitive in detecting glaucoma.
There is considerable pixel information embedded in digital
fundus photographs and DL algorithms are being used to
leverage that information.

Structural disc features that clinicians use to detect
glaucomatous optic neuropathy include increased CDR,
RNFL thinning, neuroretinal rim thinning and notching,
excavation of the cup, optic cup vertical elongation,
parapapillary atrophy, disc haemorrhage, nasal shifting of
central ONH vessels, and baring of the circumlinear vessels
[41]. To confirm glaucoma, a clinician inspects these fea-
tures on ONH and RNFL exam. In contrast, it is unknown
whether DL algorithms evaluate these features. In fact, the
exact mechanism DL models use to predict in glaucoma
algorithms is unclear. As a result, DL algorithms have been
called ‘black boxes’ [35]. Heatmap analysis and occlusion
testing have shed light on how DL works. Both heatmap
analysis and occlusion testing visually represent the weights
of fundus image components as contributors to the algo-
rithm’s prediction [37]. Heatmap analysis has identified the
optic disc as the region that algorithms primarily use to
classify [37, 40, 42]. In addition, occlusion testing has
identified the neuroretinal rim as the main predictive factor
in differentiating normal from glaucomatous eyes [43].

Al and visual field interpretation

Computerized automated visual field testing represented a
real advancement in mapping the island of vision and
allowed visual field testing to be a cornerstone in diag-
nosing and monitoring glaucoma. Various platforms were
developed and computerized algorithms generated useful
outputs containing reliability parameters, retinal sensitivity
arrays across visual space that were adjusted for age-
matched controls, and global indices that provide sum-
maries regarding the island of vision. Visual fields, as
opposed to digital fundus photographs or OCTs, are low
2-dimensional datasets that represent a functional assay of

the entire visual pathway. They are also subject to short-
and long-term fluctuation. While computerized visual field
printouts are extremely informative, they lack certain
features that would make them more useful to clinicians.
Specifically, current algorithms do not differentiate glau-
comatous versus non-glaucomatous defects and artefacts.
Furthermore, they do not quantify the degree of defects in
a regional manner.

In 1994, Goldbaum et al. [44] created a two-layer neural
network that analysed visual fields. This network cate-
gorized normal eyes and glaucomatous eyes with sensi-
tivity (65%) and specificity (72%), comparable to two
glaucoma specialists. The pioneering work of Goldbaum
et al. employed an unsupervised ML learning strategy that
could be broadly classified as axis learning, i.e. principal
component analysis and independent component analysis.
DL has been used to further leverage retinal sensitivity
data contained in visual fields. For example, these algo-
rithms have been effective in the automated differentiation
of glaucoma and preperimetric glaucoma [11]. Asaoka
et al. showed that a DL classifier exhibited a higher AUC
(0.926) in detecting glaucomatous visual field loss than
other machine learning classifiers, including random for-
ests (AUC 0.790) and support vector machine (AUC
0.712) (Table 1) [11]. DL algorithms are also better able to
detect glaucoma using visual fields than clinicians. Li et al.
found that DL was more accurate (0.876) than ophthal-
mology residents (0.593-0.640), attending ophthalmolo-
gists (0.533-0.653), and glaucoma experts (0.607-0.663)
at differentiating glaucomatous visual field from non-
glaucomatous visual fields [45]. Li et al. suggested that
there are patterns, possibly between adjacent and distant
test points, that DL algorithms are able to detect that
clinicians do not appreciate.

Current computerized packages do not decompose
visual field data into patterns of loss. Visual field loss
patterns are due to compromise of various structures ran-
ging from the cornea to the occipital cortex. Furthermore,
glaucomatous patterns ultimately have topological corre-
spondence to discrete regions of the ONH [46]. Keltner
et al. offered a visual field classification system based on
manual inspection of visual fields generated in the ocular
hypertension study (OHTS), but made no attempt to
quantify these patterns [47]. More recently, an unsu-
pervised algorithm employing a corner learning strategy
called archetypal analysis was developed to classify
quantitatively the regional patterns of loss without the
potential bias of clinical experience [48]. In this study,
13,321 Humphrey visual fields were subjected to unsu-
pervised learning to identify archetypes, or prototypical
patterns of visual loss. All archetypes obtained through
this algorithm corresponded to the manual OHTS classi-
fiers. Archetypal analysis provides a regional stratification
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MD: -13.7 dB; PSD: 13.2 dB;
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Fig. 3 The visual field shown depicts an inferior arcuate defect that is decomposed quantitatively into an inferonasal defect (46%), inferior
altitudinal loss (40%), and an inferior paracentral defect (15%) as per archetypal analysis

of a visual field along with coefficients that weigh each of
these regional patterns of loss. In Fig. 3, an inferior visual
field defect is decomposed into an inferonasal step (46%),
an inferior altitudinal defect (40%), and an inferior para-
central pattern of loss (15%). Subsequent chart review of
visual fields from patients with weighting coefficients >0.7
for each archetype yielded expected clinical findings [49].
For example, patients with high weighting coefficients for
an archetype consistent with advanced glaucoma were
more likely to have high CDRs than patients with high
weighting coefficients for other archetypes. Furthermore,
archetypal analysis was useful in predicting reversal of a
glaucoma hemifield test back to normal after two con-
secutive ‘outside normal limit’ results largely because it
accounted for lens rim artefacts and non-glaucomatous
loss patterns [50].

Detecting visual field progression and Al

Saeedi et al. identified a high degree of variation in pre-
dictions of visual field progression across existing conven-
tional algorithms that are used in randomized trials and in
clinical practice [51]. This lack of agreement underscores an
opportunity for Al algorithms to track visual field pro-
gression. In fact, Wang et al. calculated the rate of change in
the weighting coefficients generated from archetypal ana-
lysis to a large visual field database with serial tests and
used the consensus of three glaucoma specialists with
access to clinical data as the reference standard. They found
an accuracy of 0.77 for archetypal analysis to detect pro-
gression, a value exceeding the mean deviation slope (0.59),
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the permutation of pointwise linear regression (0.60), the
Collaborative Initial Glaucoma Treatment Study scoring
(0.59), and the Advanced Glaucoma Intervention Study
scoring (0.52) [52].

Figure 4 shows consensus on visual field progression
based on conventional algorithms, the clinical reference
standard, and archetypal analysis. In Fig. 5, a patient with
6.3 years of follow-up was regarded to have progressed
clinically on the basis of deepening of a superior nasal
step. The change in mean deviation slope was small
and the permutation of pointwise linear regression, the
Collaborative Initial Glaucoma Treatment Study score,
and the Advanced Glaucoma Intervention Study scoring
did not designate the visual field tests as worsening;
however, archetypal analysis found a significant increase
in the coefficient for the superior nasal step archetype
(archetype 3).

Clinical forecasting and Al

In the Collaborative Initial Glaucoma Treatment Study, Janz
et al. documented that patients with newly diagnosed
glaucoma harbour fears of blindness after they receive this
diagnosis [53]. The aggregate blindness rates from glau-
coma are not high; for example, the rate of monocular
blindness from glaucoma in the Salisbury Eye Evaluation
study was 1.4% [54]. Nonetheless, patients and physicians
alike would benefit from accurate forecasting to identify
disease prognosis.

Kalman filtering is a forecasting method that has been
used in numerous fields. During the Apollo missions in the
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Fig. 4 The visual field shown
depicts a superior altitudinal
defect and is a clear example of
visual field progression. The
figure shows consensus of
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1960s, the National Aeronautics and Space Administration
used Kalman filters to map out the trajectory of astronauts to
the Moon [55]. In more recent years, Kalman filtering has
been used for clinical forecasting. Clinical forecasting refers
to the generation of a personalized prediction for disease
trajectory [56]. Forecasting models can be updated using
data from subsequent clinic visits, leading to more accurate
predictions [57]. By using a Kalman filter model for patients
with glaucoma, researchers were able to detect glaucoma
progression 57% earlier than they would have using a yearly
monitoring system [57]. The same model then accurately
predicted disease progression in patients with normal tension
glaucoma [58]. A third study used Kalman forecasting to
predict personalized, target intraocular pressure levels for
patients [59]. Personalized patient recommendations can be
produced based on the Kalman forecasting method, which
can help clinicians in decision-making.

Limitations of DL

DL is considered a ‘black box’ in that its predictive
mechanism is unknown [60]. In the field of retinal disease,
the most notable example of opening the ‘black box’ was
reported by De Fauw et al. who provided a framework

Superior Altitudinal Defect

-_— T
-38 dB 0dB 38 dB
allowing for inspection of the particular OCT feature used
to detect referable retinal disease [61]. Ultimately, learning
image features under consideration in classification of dis-
ease or determination of disease progression may be
instructive in making clinicians better observers of clinical
data and could be used to train current and future genera-
tions of glaucoma specialists.

DL algorithms are only as good as the images inputted
into them. Algorithms have low sensitivity and specificity in
analysing fundus images with poor image quality. In a
recent study, fundus images of poor quality that were not
removed from the dataset were found to decrease the AUC
by 0.1 [42]. Another limitation of DL is that images with
less severe disease manifestations, including glaucoma
suspect and early glaucoma, can be more difficult for DL
algorithms to classify [39, 42]. Algorithms are thus better
able to detect more severe cases of glaucoma. DL also has
difficulty analysing images with multiple comorbid eye
conditions. False negative classifications have occurred
when glaucoma is present with age-related macular
degeneration, DR, or high myopia [10]. Consequently,
myopic eyes are sometimes excluded from analysis
[62, 63]. Considering that Asians have a high prevalence of
myopia [64, 65] and glaucoma [66, 67], devising a way to
include myopic eyes in DL models is vital. Another
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Fig. 5 The visual field shown
depicts a superior nasal step and
is a subtle example of visual
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limitation is the lack of information about the use of DL
algorithms in heterogeneous samples. Thus far, algorithms
have been used in mostly homogenous groups where ima-
ges from only a few races and ethnicities were inputted.

In order for DL algorithms to predict with high sensi-
tivity and specificity, a large number of images must be
included [37, 38]. There are time constraints and techno-
logical difficulties associated with obtaining and storing
many images. Furthermore, it may be necessary for such
databases to be continuously updated to remain relevant and
prevent system-wide failure of the algorithms. Also, a high
AUC for an Al algorithm does not necessarily translate into
important clinical impact and this must be kept in mind as
Al begins to permeate the field of glaucoma.

An initial test indicates that tampering with an image in
minor ways can undermine the DL classification. Specifi-
cally, it is possible that changing a few pixels can lead to the
misclassification of an image [68]. Lynch et al. changed
pixels in fundus photos exhibiting DR. These changes were
undetectable to the human eye, so ophthalmologists still
judged these photos as exhibiting DR. In contrast, the pixel
changes caused the algorithm to mis-categorize half of the
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DR photos as normal [68]. While this finding has not been
confirmed in other studies, it is a potential issue.

Conclusions

Although there are limitations, the future for DL applica-
tions in glaucoma is bright. In a few short years, tens of
applications of DL specific to glaucoma have been pub-
lished in peer-review publications. In addition to the sub-
jects discussed here we suspect the use of Al in optical
coherence tomography angiography interpretation will be
forthcoming. We anticipate applications will emerge that
will accomplish relevant clinical functions with high sen-
sitivity and specificity across different patient platforms and
different races/ethnicities.

It is interesting to speculate on what is possible in this
new DL era. We envision that Al will greatly impact out-
patient glaucoma screening, glaucoma management, and
will allow for remote disease monitoring. These develop-
ments will empower the patient to take charge of their
disease and enlighten the provider about the glaucomatous
process. Glaucoma Al algorithms that meet regulatory
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approval (currently there are none) will likely be embedded
in the electronic medical record to facilitate outpatient
management. We can imagine an eye care provider logging
on to view their schedule and being met with a pre-visit
synthesis of a patient’s prior optic nerve and visual field
data. The provider would also be notified if the patient was
flagged to have glaucoma that is progressing and likely
needs a change in target IOP. This Al assessment would
also be updated based on additional data that are gathered
during the patient visit and may also incorporate ancillary
genetic and other medical information.

Al methods could be applied to teleretinal screening
programs in non-ophthalmic settings like primary care
offices. In this model, manual detection of the glaucoma-
like disc would be replaced by algorithms that assess the
disc, allowing for effective triage of the patient.

Finally, there is a great need to facilitate remote glau-
coma monitoring whereby patients collect their own IOP
data with anaesthesia-free and accurate tonometers [69],
although more effort will be needed to make home-
tonometry available at lower costs. Remote monitoring
will be facilitated by home visual field testing that could be
achieved using virtual reality [70], which controls for
ambient lighting and distance between the eye and stimulus
presentation, although fixation monitoring may still be an
issue. Ultimately, nonmydriatic self-retinal imaging without
the need for expensive smartphone attachments may be
realized as the imaging capability of these pervasive
handheld devices improve [71]. Of course, the tools for
remote disease monitoring will require validation and the
ability of DL algorithms to synthesize remotely acquired
data will need to be assessed. However, once reliable,
remotely generated glaucoma data are available and ana-
lysed by DL algorithms, a new era of glaucoma manage-
ment will begin. Interestingly, in the United States, Centres
for Medicare and Medicaid Service code for remote disease
monitoring is available, essentially anticipating that such a
trend will happen [72]. It will be up to the clinicians to lead
the way and determine how to implement Al in meaningful
ways for our glaucoma patients worldwide.
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