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Abstract: A major challenge in structural health monitoring (SHM) is the efficient handling of big
data, namely of high-dimensional datasets, when damage detection under environmental variability
is being assessed. To address this issue, a novel data-driven approach to early damage detection
is proposed here. The approach is based on an efficient partitioning of the dataset, gathering the
sensor recordings, and on classical multidimensional scaling (CMDS). The partitioning procedure
aims at moving towards a low-dimensional feature space; the CMDS algorithm is instead exploited
to set the coordinates in the mentioned low-dimensional space, and define damage indices through
norms of the said coordinates. The proposed approach is shown to efficiently and robustly address
the challenges linked to high-dimensional datasets and environmental variability. Results related to
two large-scale test cases are reported: the ASCE structure, and the Z24 bridge. A high sensitivity to
damage and a limited (if any) number of false alarms and false detections are reported, testifying the
efficacy of the proposed data-driven approach.

Keywords: structural health monitoring; data-driven method; high-dimensional data; classical
multidimensional scaling

1. Introduction

Civil structures such as buildings, bridges, towers, subways, tunnels, dams are valu-
able structural systems that play a crucial role in social life and transportation networks.
Damage and deterioration/aging processes are serious hazards to the safety and health of
these structures. In recent times, structural health monitoring (SHM) has become a key tool
to assess the integrity and health of such structures. Vibration-based SHM methodologies
are reliable approaches to monitor the dynamic characteristics of the systems and detect
structural damage [1–3]. Generally speaking, there are two possible approaches to the
SHM problem: model-based, and data-driven methods.

A model-based method needs an accurate numerical (e.g., finite element) model of
the real structure in order to define the physical properties and/or modal parameters as
information regarding the relevant virgin or undamaged state. By exploiting the experi-
mentally measured dynamic characteristics obtained via a sensor network deployed over
the structure, it is possible to detect, locate and quantify possible damage patterns by
means of model updating procedures [4,5]. These procedures attempt to reduce the dis-
crepancy between the outputs of the numerical model and the real-life data [6]. One major
disadvantage of these methods is that model updating is typically necessary even before
attacking the damage detection problem, to allow for epistemic uncertainties. Furthermore,
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this makes it difficult, if not impossible, to collect information linked to a large number of
mode shapes. Hence, model reduction techniques appear to be necessary.

In contrast, a data-driven method handles raw vibration measurements without any
of the limitations that are typical of the model-driven approach. Data-driven methods can
be implemented either in an offline or online fashion, see [7,8]. Most of the data-driven
methods are based on statistical pattern recognition [9–11]. The main idea behind this is
to extract damage-sensitive features from the vibration measurements acquired through
various types of sensors, such as, e.g., optical fibers [12,13], piezoelectric transducers [14],
or MEMS [15]. The design of optimal sensor placement has to be performed, starting with
data acquisition [16,17].

Time series analysis is a powerful method for modeling the measured structural
vibrations and extracting the mentioned damage-sensitive features [18]. In this regard, the
AutoRegressive (AR) time series representation is one of the most effective methods. Due
to major benefits, such as simplicity, sensitivity to damage, compliance with output-only
setups without any requirement of input data (in terms of, e.g., excitation forces), and
independence of the excitation source, AR modeling is widely used in data-driven SHM
applications [19–22].

Once damage-sensitive features have been extracted from the dataset, the final step
of a data-driven SHM method is to analyze the features themselves for decision-making,
providing outcomes in terms of early damage detection, localization, and quantification. At
this stage, different techniques can be adopted, including statistical distance metrics (e.g.,
the Mahalanobis distance [23,24] or the Kullback–Leibler divergence [10,21,25]), Bayesian
approaches [26,27], artificial neural networks [28,29], principal component analysis [30,31],
and clustering [32–34]. In spite of their applicability, they may not perform efficiently
when damage-sensitive features are of a high-dimensional nature, namely in the presence
of big data to process; this leads to a time-consuming and unreliable decision-making
process [10,35]. Although reductions in the size of datasets is the standard choice to
address the big data issue, a major concern is related to the fact that important information
regarding the structural health may be lost due to data reduction.

Another challenging issue within the context of SHM is provided by environmental
variations (e.g., in terms of fluctuations of temperature, wind speed, humidity, etc.), that
can give rise to subtle changes in the vibration responses that mask those actually caused
by damage. As the features extracted from the structural response can also be sensitive to
environmental variability, damage detection may suffer from false alarms and erroneous
damage detection results [36]. Even though research activities have already investigated
how to cope with the effects of such environmental variability, this is still an open challenge,
especially when the extracted features are high-dimensional ones.

Accordingly, the main objective of the present study is to propose a novel data-driven
method for damage detection, addressing the limitations linked to high-dimensional data,
with the ability to process data without any concerns regarding the loss of information
about the structural state. This method is based on a simple, yet effective data partitioning
strategy and on classical multidimensional scaling (CMDS), which gives this method the
ability to work in low-dimensional feature spaces and define proper indices for damage
detection. To the best of the authors’ knowledge, here, the CMDS algorithm is used for the
first time in the context of damage detection. A great advantage of the proposed method is
the efficiency in dealing with high-dimensional data under strong environmental variability,
while also providing reliable and accurate damage detection outputs. These conclusions are
arrived at by assessing the performance of the approach against two well-known, full-scale
benchmark examples: the American Society of Civil Engineers (ASCE) structure, and the
Z24 Bridge.

The remainder of the paper is organized as follows. In Section 2, the CMDS procedure
is discussed in order to obtain insights into the properties of the algorithmic coordinates
characterizing the structural state. Section 3 provides details regarding the subdivision
of the high-dimensional feature samples and the computation of the damage indices. In
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Section 4, outcomes are discussed for the two aforementioned benchmark real-life cases,
pointing out the accuracy and reliability of damage estimation. Finally, Section 5 gathers
some concluding remarks on the proposed approach, and provides suggestions for future
research to further improve the proposed SHM scheme.

2. Classical Multidimensional Scaling

Multidimensional scaling (MDS) is a statistical data analytics strategy that quantifies
the (dis)similarity between datasets through distances in a low-dimensional space, to make
them accessible for visual inspection and exploration. For observations featuring different
correlation levels, the MDS representation is given for the plane that collects samples
with the highest values of the correlation itself [37]. MDS hence provides a graphical
visualization that enables the inspection of the structure in the dataset.

In CMDS, it is assumed that the dissimilarities between datasets are provided as
pairwise distances between pairs of objects; relevant coordinates to measure these distances
are searched for. The CMDS algorithm, thus, takes the distance matrix Dn×n from a multi-
variate dataset Xn×r as the input, and returns a coordinate matrix Un×q (with q < n) [37].
Here, q is automatically set by finding the smallest space in which the inter-point distances
collected in Dn×n, which are therefore relevant to all the n points, are zero [38]. For this
purpose, the Euclidean-squared distance (ESD) is adopted to measure pairwise distances
among all the data points. According to this scheme, pairwise ESDs are given for all the
row vectors of the matrix Xn×r, and are then collected in the matrix Dn×n.

Given the multivariate dataset Xn×r, which is made of n row vectors x1, x2, ..., xn of r
variables, the ESD between xj and xk is defined as follows:

d2
E(j, k) =

(
xj − xk

)(
xj − xk

)T. (1)

where j, k = 1, . . . , n. In this way, the marginal means are removed from the multivariate
dataset. By computing the distances for all the possible vector pairs in X, the distance
matrix D is obtained as:

Dn×n =


0 d2

E(1, 2) d2
E(1, 3) · · · d2

E(1, n)
d2

E(2, 1) 0 d2
E(2, 3) · · · d2

E(2, n)
...

...
...

...
...

d2
E(n, 1) d2

E(n, 2) d2
E(n, 3) · · · 0

. (2)

The distance matrix D is next transformed into the matrix B, by applying a double-
centering operation according to:

Bn×n = −1
2

Jn×nDn×nJn×n (3)

where the centering matrix Jn×n is defined as:

Jn×n = In×n −
1
n

1n×1(1n×1)
T. (4)

In Equation (4), In×n denotes an n-by-n identity matrix and 1n×1 is an n-dimensional
vector with unitary entries.

The MDS coordinates are then obtained from B by means of the following eigen-
decomposition:

Bn×n = Qn×nΛn×nQT
n×n (5)
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where Q and Λ are the orthogonal eigenvector and diagonal eigenvalue matrices, respec-
tively. Let the first q eigenvalues be collected in Λn×q, and the corresponding eigenvectors
collected in Qn×n; the coordinate matrix U of CMDS is finally given by:

Un×q = Qn×nΛ
1
2
n×q. (6)

Since the coordinate matrix U is obtained from the distance matrix D, whose entries
have been provided by the ESD, in order to set q, it is necessary to find the smallest space
with zero inter-point distances, without the adoption of any additional technique. By
means of Equation (1), as the distance of a vector from itself is always zero, moving to all
the r vectors of matrix X, one can automatically figure out that q = r.

It is worthy of note, that the CMDS algorithm is based on the eigen-decomposition
of Equation (5), which means that it may resemble a principal component analysis (PCA).
However, the two algorithms actually differ, as detailed in the following. In general, the
input to the PCA is provided by the original data samples; the PCA algorithm handles
these data and projects them onto the directions characterized by the highest variance.
As discussed above, the input to CMDS is instead represented by the pairwise distances
among the original data samples; this allows one to design a distance network. The output
of CMDS is represented by projections of the samples onto reduced-order planes or spaces,
wherein distances are preserved [39]. Further to this, it is worth stressing that PCA can
be considered as a parametric algorithm, and the number of principle components to
be retained in a reduced order model is its main hyperparameter to be set. Here, by
hyperparameter we mean any unknown component/parameter of the algorithm that
affects the model performance that plays a prominent role and therefore must be set
properly. In contrast, CMDS is a non-parametric algorithm, which means that it does not
rely upon unknown parameters to be set at the implementation level. This conclusion
stems from the fact that the only parameter to set is q, which is automatically determined
by the procedure. Accordingly, CMDS is expected to prove to be more efficient than PCA
for the current purposes.

3. Proposed SHM Data-Driven Method via CMDS

Early damage detection, representing the first stage of damage diagnosis, is mainly
intended to ascertain whether a damage pattern has been triggered anywhere in the
structural system. This stage of SHM aims at assessing the global state of the structure, so
as to distinguish any damaged condition from the normal, healthy or virgin state. Although
this process is simpler than those related to the other levels of damage diagnosis (namely
damage localization and quantification), it may turn out to be difficult to carry out if
the features extracted from the structural vibrations are high-dimensional ones and if
environmental variability causes deceptive changes in them, in a way similar to damage.
The proposed data-driven method initially exploits a simple but effective partitioning
strategy, leading to low-dimensional feature spaces and effective outputs for damage
detection, to then feed the CMDS algorithm for damage detection.

Let Xn×r and Zm×r be the sets of damage-sensitive features related to the healthy and
current states of the structure, respectively. In these sets, n and m are the numbers of feature
samples (e.g., AR residuals or modal frequencies), and r denotes the number of variables
(e.g., the number of sensors deployed over the structure) related to the state of interest. As
the matrices include high-dimensional feature samples, in other words as n� r and m� r,
the CMDS algorithm yields large matrices D, J, B and U. The direct use of this algorithm
may, thus, lead to a time-consuming and computationally inefficient strategy for SHM.

To deal with the feature sample size problem, low-dimensional sets of the same
features must be obtained by partitioning the matrices X and Z into p sub-sets X∗1 . . . X∗p and
Z∗1 . . . Z∗p, featuring a (far) smaller number of samples. To set p, the criterion here adopted
is based on the SHM method performance in terms of Type I and Type II errors. To this
purpose, a set of values of p are defined and the error rates are computed for the undamaged
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and also the current states; finally, the value leading to the smallest amount of errors is
selected. This iterative procedure is described in the flowchart in Figure 1. It is noteworthy
that, in this procedure, the distance values for decision-making are computed only once
the optimal value of p has been obtained, see stage (c). Accordingly, the risks related to
false alarm (Type I) and false detection (Type II) errors are automatically minimized. In the
following, all the steps of the procedure are described in detail.

Figure 1. Graphical flowchart of the proposed classical multidimensional scaling (CMDS)-based
structural health monitoring (SHM) method: (a) iterative loop related to the undamaged condition,
(b) iterative loop related to the current state, (c) decision-making strategy based on the chosen number
p of partitions. The yellow boxes are specifically related to the CMDS algorithm.

Regarding the two iterative loops (a) and (b) for the undamaged and current states
to be compared, the available feature matrices X and Z are partitioned into two sets of
smaller ones of sizes l × r and h × r, respectively, where l � n and h � m. With such
low-dimensional feature sets to handle, the CMDS algorithm is adopted to determine the
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relevant distance matrices: for all these partitions, the distance matrices turn out to be of
sizes l × l and h × h, respectively. With the CMDS algorithm, the l × r coordinate matrices
U1, . . . , Up for X∗1 , . . . , X∗p and the h × r coordinate matrices Ū1, . . . , Ūp for Z∗1 , . . . , Z∗p are
obtained through Equations (3)–(6).

The matrix vectorization technique is next employed to convert the coordinate matrices
into vectors u1 . . . up and ū1, . . . , ūp, respectively, featuring l* and h* samples, where
l* = l × r and h* = h × r. The sought indices for damage detection are finally given by the
l2-norms of these vectors, according to:

du(i) =

√√√√ l∗

∑
k=1
|ui(k)|2 (7)

dc(i) =

√√√√ h∗

∑
k=1
|ui(k)|2 (8)

where I = 1, . . . , p, and subscripts u and c, respectively, denote the undamaged and current
states of the structure. The norm values are all collected in a damage indicator vector d,
defined in the following form:

d2p×1 =
[

du dc
]T. (9)

where du = [du(1), . . . , du(p)] and dc = [dc(1), . . . , dc(p)] are the corresponding p-dimensional
vectors related to all the partitions in the two states to be compared.

By means of vectors du and dc, along with a threshold limit, it is possible to ascertain
the effects of p on the number of Type I and Type II errors in the iterative loops of the
procedure. Even if damage indices are computed and compared with the threshold limit
during these stages, nothing is done regarding the final decision-making to assess the
current structural state. Regarding loop (a), since data and features refer to the undamaged
condition, only Type I errors need to be checked. In loop (b) instead, for any new infor-
mation collected and related to the current and unknown state, the distance values in dc
are computed and compared with the threshold limit set with the undamaged state. Since
this iterative loop is intended to optimize the dataset partitioning, both Type I and Type II
errors are assessed by means of the results attained in loop (a); this is necessary since, as
already remarked, the current state is unknown and can be either undamaged or damaged.

In what precedes, the threshold is set on the basis of the entries in vector du and
regarding the undamaged state. If these values are assumed to be normally or nearly
normally distributed, the standard confidence interval based on a significance level can
be used to define the threshold. For instance, by a 5% significance level, an upper bound
on the 95% confidence interval for the l2-norms of the vector du provides the threshold
value as:

ø95% = ¯u + 1.96 œu (10)

where µu and σu are the mean value and standard deviation of the entries of du. Accord-
ingly, the l2-norm values of du are all expected to fall below the threshold limit, while if
the structure has undergone any damage the l2-norm values in vector dc are supposed to
exceed the same threshold, to warn about damage occurrence.

Once the optimal value of p has been selected by minimizing the classification errors,
decision-making for early damage detection is carried out on the current state by comparing
the entries in dc with the threshold limit, as reported in stage (c) of Figure 1. In compliance
with the proposed procedure, in the following results section, the charts regarding the
damage indicator vector will provide the first p values related to the normal condition, all
to fall below the threshold limit stating that the structure is undamaged. In case of damage
occurrence, the next p values relevant to the current state will show a drift away from
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those corresponding to the normal condition, and exceed the threshold limit if classification
errors do not show up.

4. Experimental Validation
4.1. ASCE Structure—Phase II

The effectiveness of the proposed method is first assessed against the experimental
datasets relevant to the four-story steel structure of the second phase of the ASCE prob-
lem [40]. This structure consists of a 2-bay-by-2-bay steel frame, which is 2.5 × 2.5 m
in plan and 3.6 m tall. The members were made of hot-rolled 300 W grade steel, with a
nominal yield stress of 300 MPa. In each bay, the bracing system was represented by two
threaded steel rods with a diameter of 12.7 mm, placed in parallel along the diagonal.

To obtain a realistic mass distribution, four 1000 kg slabs were placed on the first,
second, and third floors, while four 750 kg slabs were placed on the fourth one. On
each floor, two of the masses were placed off-center to increase the degree of coupling
between the translational motions of the structure. The structure was subjected to a random
excitation via an electro-dynamic shaker, placed on the fourth floor. The vibration responses,
in terms of acceleration time histories, were acquired with 15 accelerometers (with three of
them for each story) and a frequency of data acquisition of 250 Hz. Table 1 provides the
sensor numbering and their locations for this benchmark problem: Sensors #1–3 are not
listed in it and are not considered here, since they were mounted on the basement of the
structure and did not provide relevant information concerning its dynamics.

Table 1. ASCE problem: sensor numbering and locations [19].

Direction
Floor No.

1 2 3 4

West 4 7 10 13
Center 5 8 11 14

East 6 9 12 15

During the tests, the damage was simulated by removing several braces from the
east, southeast, and north sides of the structure, or by loosening bolts at the beam–column
connections. In this work, only the damage patterns caused by removing the bracing
systems from the east and southeast sides have been considered, see Table 2. Response
modeling and feature extraction were first performed by time series analysis, via an AR
model. The AR residuals at all sensor locations, regarding both the undamaged and
damaged states, were then adopted as damage-sensitive features. Additional details about
the residual-based feature extraction algorithm based on AR modeling and other time
series analyses, can be found in [19].

Table 2. ASCE problem: structural features of the undamaged and damaged conditions.

Case No. Condition Description

1 Undamaged Full braced structural system
2 Damaged Elimination of braces from the east side at all floors
3 Damaged Elimination of braces from the south-east corner at all floors
4 Damaged Elimination of braces from the south-east corner at the first and fourth floors
5 Damaged Elimination of braces from the south-east corner at the first floor

The Leybourne–McCabe (LMC) hypothesis test was then adopted to ascertain the
stationarity of the vibration signals and also the compatibility with the proposed modeling
strategy [41]. As outputs, the LMC test provides the null (H0) or alternative (H1) hypothesis,
a probability value (p-value), a critical value (c-value) and a test statistic (Q). The AR model
is suitable for a univariate time series if the p-value is larger than a significance limit (α), or
if the test statistic is smaller than the c-value. For example, under a customarily adopted
5% significance level (namely, for α = 0.05), p-value > 0.05 and/or Q < c-value = 0.1460 the
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mentioned stationarity of the time series is ascertained. Table 3 lists the LMC test statistics
for all the sensor locations of Cases 1–5, based on such 5% significance level: since all the
values of Q are smaller than the c-value = 0.1460, the measured vibration responses can
be considered stationary in all the cases, and conform to an AR model. This model thus
appears to be accurate for the current feature extraction purposes.

Table 3. ASCE problem: Leybourne–McCabe (LMC) test statistics for all sensors and Cases 1–5 of
Table 2.

Sensor No.
Case No.

1 2 3 4 5

4 0.0001 0.0004 0.0001 0.0001 0.0001
5 0.0057 0.0024 0.0012 0.0009 0.0012
6 0.0019 0.0002 0.0001 0.0001 0.0026
7 0.0002 0.0008 0.0001 0.0001 0.0002
8 0.0011 0.0015 0.0005 0.0005 0.0003
9 0.0145 0.0011 0.0061 0.0042 0.0402

10 0.0002 0.0003 0.0001 0.0002 0.0002
11 0.0011 0.0003 0.0009 0.0003 0.0003
12 0.0002 0.0001 0.0001 0.0002 0.0003
13 0.0069 0.0025 0.0019 0.0031 0.0198
14 0.0051 0.0023 0.0007 0.0007 0.0041

Next, the AR model order has to be set. The determination of an optimal order is
of paramount importance for the process of feature extraction via time series modeling,
in order to avoid issues related to a poor goodness-of-fit. In this work, the approach
proposed in [19] has been adopted, to obtain the mentioned model order at each sensor
location and for the undamaged Case 1. This algorithm is based on the residual analysis
by the Ljung–Box hypothesis test, to assess the correlation between the model residuals.
As an appropriate model order should enable the time series representation to generate
uncorrelated residuals, their uncorrelatedness was selected as the criterion to set the model
order [19].

If the residual sequences of the time series model are uncorrelated, the p-value provided
by the Ljung–Box Q (LBQ) test becomes larger than the significant limit, while the test
statistic remains smaller than the c-value. The smallest model order to satisfy these selection
criteria was chosen as the order to use for feature selection purposes. Table 4 displays the
model orders for sensors #4–15 and Case 1, as well as the obtained p-values: all the p-values
are shown to be larger than the 5% significance limit, with the H0 hypothesis satisfied at all
sensor locations. By adopting such model orders, the coefficients of all the AR models for
the undamaged state have been then estimated by the least-squares technique. Finally, the
model residuals for Cases 1–5 have been extracted and handled as the damage-sensitive
features by means of the residual-based extraction technique described in [19].

In the next step, the residual samples at all the sensor locations for Case 1 (undamaged
state) and Cases 2–5 (current states) have been collected into two different sets, to provide
the feature matrices X and Z, see Section 3. These matrices collect n = m = 24,000 samples (as
rows) and r = 12 variables (as columns). Before classifying Cases 2–5 as damaged states or
not, it is necessary to set the optimal number p of partitions: the ten sample values reported
in Table 5 have been investigated. In the table, results are reported for each of them in
terms of number and percentage of Type II errors for Cases 4–5 (Table 5); results are instead
not reported for Cases 2–3, since no errors at all were encountered, independently of p. As
all the distance values relevant to Case 1 have been shown to fall below the threshold limit,
without Type I errors, the optimal value of p has been set accordingly on the basis of the
rates of Type II errors only. Focusing on Cases 4 and 5, values p ≤ 20 are shown to yield
the best performances: hence, p = 20 has been adopted in the current analysis. The feature
matrices X and Z were then subdivided into 20 sub-sets X∗1 . . . X∗20 and Z∗1 . . . Z∗20, each of
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which consisting of 1200 samples (l = h = 1200) and, again, 12 variables. The 1200-by-1200

distance matrices D∗1 . . . D∗20 for X∗1 . . . X∗20, and
¯
D
∗

1 . . .
¯
D
∗

20 for Z∗1 . . . Z∗20 were computed
using the ESD technique.

Table 4. ASCE problem: AutoRegressive (AR) orders and relevant p-values obtained via the LBQ test
for each sensor location in Case 1.

Sensor No. Order p-Value

4 98 0.1295
5 81 0.1048
6 141 0.0799
7 158 0.0581
8 109 0.2513
9 77 0.3833
10 113 0.2376
11 96 0.1437
12 92 0.2812
13 74 0.0794
14 77 0.1027
15 116 0.1778

Table 5. ASCE problem: effect of the number p of partitions of the matrices X and Z on the occurrence
and percentage of false damage detections for Cases 4 and 5.

No. p of Partitions
Case No.

4 5

10 0 (0%) 0 (0%)
20 0 (0%) 0 (0%)
30 0 (0%) 2 (6.67%)
40 0 (0%) 2 (5%)
50 0 (0%) 4 (8%)
60 1 (1.67%) 8 (13.34%)
70 1 (1.42%) 10 (14.28%)
80 1 (1.25%) 18 (22.50%)
90 1 (1.11%) 18 (20%)

100 1 (1%) 21 (21%)

To visually compare the entries of these distance matrices relevant to the undamaged
and damaged states, Figures 2 and 3 show the exemplary cases of the first partition in
Cases 1, 2, and 5. As reported in Figure 2, there are clear differences between the distance
values gathered by the two matrices for Cases 1 and 2. The damage in the second case

led to remarkable increases in the distance values in the matrix
¯
D
∗

1 . On the contrary, by

comparing the entries of D∗1 and
¯
D
∗

1 , respectively, related to Cases 1 and 5 and shown in
Figure 3, it is difficult, if not impossible, to ascertain the presence of damage in the latter
one due to the very similar values reported. The results have been shown for distances in

the first partitions, collected in D∗1 and
¯
D
∗

1 , but they were very similar when also using the
others. This brings us to the conclusion that the direct comparison of the distance values
may be neither efficient nor informative, and the proposed data-driven approach for early
damage detection therefore appears to be necessary.

Once the distance matrices for all the partitions regarding both the undamaged and
the damaged conditions have been determined, the coordinate matrices U1 . . . U20 and Ū1
. . . Ū20 can be computed according to Equations (3)–(6), each one gathering 1200 samples
and 12 variables, where q = r = 12 has been automatically set without any hyperparameter
optimization tool, as explained in Section 2. The matrix vectorization technique was
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adopted next to obtain the vectors u1 . . . u20 and ū1 . . . ū20, each one accordingly made
of l* = h* = 14,400 data points. The l2-norms of these vectors were finally computed to
assemble vector d, featuring 40 distance values for each damage case, among which, the
first 20 entries are part of the vector du and the remaining 20 ones are instead associated
with the vector dc, see Equation (9).

Figure 2. ASCE problem: comparison between the distance values in matrices (a) D∗1 for Case 1, and (b)
¯
D
∗

1 for Case 2.

Figure 3. ASCE problem: comparison between the distance values in matrices (a) D∗1 for Case 1, and (b)
¯
D
∗

1 for Case 5.

The results of the damage detection procedure are displayed in Figure 4, where all the
damaged states reported in Table 2 are compared with the undamaged one; in these graphs
and similar ones to follow, the horizontal lines refer to the threshold limit computed via
the 95% confidence interval of the entries in du, see Equation (10), resulting in τ95% = 9.6.
Irrespective of the damage case, plots show that there are clear deviations in the distance
values gathered by dc above the threshold, therefore, indicative of damage occurrence;
the other way around, the values in du all fall below the threshold limit, to represent the
undamaged state from which τ95% has been computed. Such results clearly prove the
capability of the proposed method to accurately distinguish between undamaged and
damaged states, and thereby detect damage, while also addressing the usual limitations
induced by handling high-dimensional feature samples. In the present case, as all the
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residuals of the AR models at the 12 sensor locations are adopted, damage detection is
carried out via 40 distance samples only, in place of the 24,000 original ones in matrices X
and Z.

Figure 4. ASCE problem: damage detection via the proposed CMDS method using p = 20 partitions: damage (a) Case 2, (b)
Case 3, (c) Case 4, and (d) Case 5.

To assess the effects of the number p of partitions on the damage detection results,
Figure 5 provides the results in the case of p = 100 partitions used: it can be observed that,
again, no values relevant to the first 100 samples (undamaged state) exceed the threshold
limit. The distance values relevant to dc are instead all larger than the threshold in plots
5(a) and 5(b) for the damage in Cases 2 and 3, while some false detections can be observed
in plots 5(c) and 5(d) for the damage in Cases 4 and 5. It must be noted that no (Type I)
false alarms were encountered; for no partitioning was the undamaged state mistakenly
classified as damaged. Additionally, no (Type II) false detections, namely damage states
falsely classified by the method as undamaged, were reported for Cases 2 or 3 with any
value of p. On the one hand, it can be thus emphasized that the use of only a few partitions
is also preferable in order to reduce classification errors; on the other hand, Type I errors in
all the cases turned out to be zero, testifying the great capability of the proposed method to
provide no false alarms.

The other important aspect of our dimensionality reduction procedure is its efficiency
in terms of computing time. Figure 6 shows this computing time related to the iterative
loops of the procedure, at varying values of p. Results reported here were obtained with
a computer featuring an Intel Core i5-5200@2.20 GHz CPU and 8 GB RAM. It can be
observed that the smaller the value of p, the longer the time to run over the loops due
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to the higher number of samples to handle, and for which, pairwise distances must be
computed. It is worth mentioning that, despite the rather limited performance of the
computer used to run the analyses, the computing time was always constrained to a few
seconds; only for p = 10 did the entire procedure last around 3 min. Hence, even if the
current procedure is proposed in an online fashion, it can be considered performative
enough to be re-implemented in the future within an online damage detection approach.

Figure 5. ASCE problem: damage detection via the proposed CMDS method using p = 100 partitions: damage (a) Case 2,
(b) Case 3, (c) Case 4, and (d) Case 5.

As already mentioned, one of the further advantages of the proposed data-driven
approach is to provide samples with a normal or nearly normal distribution, which is best
suited for the threshold limit determination via the confidence interval. Figure 7 collects
the Q-Q plots of the l2-norm values in du, that are used for threshold determination, again
at a varying number of partitions: it clearly emerges that all the sets of the l2-norms have
distributions rather close to the normal one. This capability thus clearly demonstrates the
reliability of the obtained threshold limits for damage detection.

Besides damage detection, the performance of the proposed data-driven method in
estimating the level of damage severity was investigated, using—once more—a varying
number of partitions. Figure 8 focuses on the p samples of the vector dc relevant to Cases
2–5. In the charts, the dashed circles highlight (minor) errors in estimating the level of
damage severity. More precisely, the l2-norm values concerning the damage Case 2 are
almost always larger than the corresponding values relevant to the other cases; this means
that Case 2 features the highest level of damage severity. According to the description of
the damaged states in Table 2, this looks reasonable because Case 2 was characterized by
the elimination of more bracing systems than damage Cases 3–5. In contrast, the l2-norm
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values associated with Case 5 are the smallest and therefore point to the lowest level of
damage severity.

Figure 6. ASCE problem: effect of the number p of partitions on the computing time relevant to the
iterative loops of the proposed method.

Figure 7. ASCE problem: normality assessment through Q-Q plots of the l2-norm values in du, at
varying number p of the partitions.
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Figure 8. ASCE problem: estimation of damage severity for Cases 2–5, see Table 2, at varying number of partitions (a) p = 20,
(b) p = 30, (c) p = 40, and (d) p = 50.

It can thus be concluded, that the l2-norm values increase by increasing the level of
damage severity, from Case 5 to Case 2. Therefore, the proposed data-driven method
based on the CMDS algorithm was not only able to detect damage accurately, but was also
capable of estimating the level of damage severity properly. It was also shown that some
erroneous estimates of the damage level have been obtained for analyses featuring p = 30,
40 and 50: accordingly, as the best performance was obtained with p ≤ 20, a few partitions
only should be used if possible. Furthermore, it must be kept in mind that, although the
use of few partitions reduces the error rates, it also provides a small, or even too small
set of damage indices to be handled at the decision-making stage, and therefore, may not
provide adequate outputs. In spite of the similarity in the error rates relevant to solutions
linked to p = 10 and p = 20, the latter solution furnishes more damage indices than the
former and, thus, enables a more robust decision to be made about damage occurrence.
Therefore, a tradeoff between conflicting outcomes in terms of classification errors and
output adequacy represents the criterion to adopt for setting the number of partitions in
the proposed CMDS-based method.

4.2. Z24 Bridge

The Z24 Bridge is a well-known benchmark for long-term SHM [42]. The structure
was a post-tensioned box-girder concrete bridge, composed of a main span of 30 m and
two side-spans of 14 m, as shown in Figure 9. The bridge was demolished in 1998 to build
a new one with a larger side span; before being demolished, it was instrumented and,
through a long-term continuous monitoring program, the effects of the environmental



Sensors 2021, 21, 1646 15 of 22

variability on damage detection were assessed. Every hour, environmental effects in terms
of temperature, wind characteristics, humidity, etc. were measured at several locations with
an array of sensors. Acceleration time histories were also acquired with 16 accelerometers
located along the bridge with different spatial orientations. Progressive damage tests,
including settlement, concrete spalling, landslides, concrete hinge failure, anchor head
failure, and the rupture of tendons were carried out to mimic realistic damage scenarios in
a controlled way, with the monitoring system always running.

Figure 9. Z24 Bridge: (a) longitudinal section and (b) top view, adapted from [42].

Starting from the raw data, a modal analysis based on the frequency domain decom-
position (FDD) technique was carried out to extract the frequencies of the four fundamental
vibration modes and assess their variations due to the environmental conditions. The
resulting set of data consists of 3932 measurements, out of which the first 3470 refer to
the undamaged, normal condition, and the last 462 ones are associated with the damaged
state. Figure 10 collects the exemplary time histories of the modal frequencies relevant
to the first and fourth modes: in the plots, the oscillations in the values related to the
normal condition were induced by temperature fluctuations in cold periods; these results
have clearly testified the high sensitivity of the natural frequencies to the environmental
variability. A data normalization procedure based on an auto-associative artificial neural
network (AANN) [43] was then adopted to remove such environmental variability from
the variation in time of the vibration frequencies and obtain feature samples linked to the
damage state only. In compliance with standard approaches in machine learning, 90% of
the frequency data regarding the normal condition were handled as the training set, thus
including 3123 samples of the four variables (that are the modal frequencies). The last
remaining 10% of the frequency values regarding the normal condition, as well as all the
values linked to the damaged state were instead handled as the testing set, consisting of
809 samples of the four variables.
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Figure 10. Z24 Bridge: time histories of the monitored vibration frequencies (NC: Normal Condition, DC: Damaged
Condition), relevant to the (a) first and (b) fourth modes.

The adopted feed-forward AANN architecture consists of three hidden layers repre-
senting the mapping, bottleneck, and de-mapping stages, with network outputs that aim at
reproducing the corresponding inputs. In the mapping layer, a nonlinear transfer function
(namely a sigmoidal one) was used at the neuron level to map the input data onto the
bottleneck layer. While the bottleneck layer plays an important role in the functionality of
multilayer feedforward networks, as it enforces an internal encoding and a compression of
the input data, the relevant type of transfer function does not greatly affect the generality
of the network. In the de-mapping layer, again, a non-linear transfer function has been
used to decode or de-map the bottleneck compressed data and extract the output data. As
the aim of the AANN is to reconstruct the input data, which emerge at the output layer
featuring the same size of the input, it provides a filtered version of them. The AANN, thus,
represents a smart algorithm for filtering out noise, outliers, and any type of variations in
the data due to environmental and/or operational variability [43]. As far as the network
hyperparameters are concerned, the number of neurons in each hidden layer was set
according to the approach described in [44] and based on the final prediction error. It has
turned out that the said number of neurons for the mapping, bottleneck and de-mapping
layers has to be, respectively, set to 22, 3, and 22. Finally, as far as the training of the AANN
is concerned, the Levenberg–Marquardt back-propagation algorithm was adopted.

To attain data normalization, the AANN was trained to learn the correlations among the
features in the training dataset. Once the network was trained to filter out the environmental
variability, the residuals between coupled input and output sets were handled as damage-
sensitive features for the normal condition. The feature matrix X for the undamaged state was,
thus, built and consisted of n = 3123 residual samples, each one made of the aforementioned
r = 4 variables. The same procedure was adopted to extract the residuals for the testing set; in
this case, the AANN already trained for the normal condition was used to manage the feature
set Z, consisting of m = 809 samples of the same r = 4 variables, where q = r = 4 was again
automatically set according to the discussion provided in Section 2.

The proposed data-driven method was then adopted to detect damage. Based on
the conclusions drawn for the previous case study regarding the effects of the number of
partitions, feature matrices X and Z were subdivided into p = 20, 30, 50, 75, 100, 120, 150, and
200 partitions. Next, to next set the optimal partitioning, the iterative loops of the procedure
were run at the varying value of p and the rates of Type I, Type II and total errors were
obtained as reported in Table 6. Accordingly, the best performance is shown by the solution
featuring p = 20, with just one error in the entire dataset classification. It can be also seen
that the error rates increase by increasing the number of partitions. As already pointed out,
smaller values of p lead to fewer damage indices to deal with at the decision-making stage,
and therefore, reduce the error rates. This outcome turns out to be linked to the handling of
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smaller sets of damage indices, leading to an easier decision-making process by interpreting
and comparing the outputs with each other and with respect to the threshold, distinguishing
damaged from undamaged states. For this reason and within certain limits, one can conclude
that the use of a small number of partitions provides more reliable results. Though not shown,
it must be mentioned that Type I and total error percentages obtained with p = 10 turned out
to be larger than those reported for p = 20, as the relevant damage index dataset does not
prove adequate for decision-making. Hence, for this specific case study relevant to the Z24
Bridge, p = 20 was targeted as the best choice for damage detection.

Table 6. Z24 Bridge: effect of the number p of partitions on the occurrence and percentage of Type I,
Type II, and total errors in detecting damage.

No. p of Partitions Type I Type II Total

20 1 (3.57%) 0 (0%) 1 (2.5%)
30 2 (4.65%) 0 (0%) 2 (3.34%)
50 4 (5.55%) 0 (0%) 4 (4%)
75 4 (3.63%) 2 (5%) 6 (4%)

100 5 (3.50%) 2 (3.51%) 7 (2.5%)
120 5 (2.81%) 2 (3.22%) 7 (2.92%)
150 8 (3.63%) 4 (5%) 12 (4%)
200 7 (2.43%) 4 (3.57%) 11 (2.75%)

For the case p = 20, Figure 11 compares the values of entries of the distance matrices of

the 10th partition (namely of D∗10 and
¯
D
∗

10), regarding the normal and damaged conditions.
It can be seen that there is a clear variation between the values corresponding to the
two conditions. The proposed methodology was then adopted to ease and speed up the
comparison of the two states. After having obtained the distance matrices for all the
partitions, the coordinate matrices U1 . . . Up and Ū1 . . . Ūp and their vector forms u1 . . .
up and ū1 . . . ūp were computed, to finally obtain the l2-norm values and assemble the
vector d associated with each partition.

Figure 11. Z24 Bridge, p = 20: comparison between the distance values in matrices (a) D∗10 for the

normal condition, and (b)
¯
D
∗

1 for the damaged condition

The results for varying the number of partitions are shown in Figure 12, where the
horizontal lines refer, again, to the threshold limits τ95% related to the confidence interval of the
entries in du. It can be seen that the majority of the training samples for the normal condition in
d (marked by the blue stars) fall below the threshold limits. Additionally, the values associated
with the validation data, namely the testing samples for the normal condition (marked in the
charts by the green triangles) do not exceed the thresholds and behave in a way similar to the
training data. Conversely, most of the values related to the damaged state—namely, the testing
data for the damaged condition (marked by the red squares)—are larger than the threshold
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limits. This outcome clearly, again, proves the great capability of the proposed data-driven
method, ruled by the partitioning strategy and by the CMDS algorithm, to provide an accurate
damage detection and, thus, robustly distinguish the damaged state of the structure from the
normal condition, even under a strong environmental variability.

Figure 12. Z24 Bridge: damage detection via the proposed CMDS method at varying number of partitions (a) p = 20,
(b) p = 30, (c) p = 50, (d) p = 75, (e) p = 100, (f) p = 120, (g) p = 150, (h) p = 200.
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The computing time required to perform the iterative loops of the method is shown
against the number of partitions in Figure 13. As discussed with reference to the previous
case, the cost of the procedure decreases by increasing the number of partitions, due to
the reduction in the number of samples in each partition used for the pairwise distance
calculation. Even more than in the other case, independently of p, the cost is shown to be
extremely limited, if not negligible.

Figure 13. Z24 Bridge: effect of the number p of partitions on the computing time relevant to the
iterative loops.

Finally, a comparison is reported between the results of the proposed CMDS-based
method and those of the PCA technique [45], to prove the superior performance of the
former. As discussed in Section 2, PCA is a parametric approach and the number of princi-
ple components to be retained in the analysis must be set. This number was determined
with the aim to attain 90% of the variance in the training data; accordingly, the principal
components retained in the analysis are linked to the eigenvectors, whose eigenvalues
overall allow one to attain the mentioned critical threshold of 90% of the variance [46]. The
corresponding results of damage detection are depicted in Figure 14. This outcome has
been arrived at by handling the same normalized features exploited by the CMDS-based
method, after normalization via the AANN, and used as training and testing data samples.
Moreover, the outputs of the PCA-based method are based on the Euclidean norms of the
residuals between the original normalized features and the reconstructed features obtained
via the PCA [45]. It can be observed that a rather large number of outputs (termed dPCA in
the figure) regarding the normal condition exceed the threshold, thereby leading to false
alarm or Type I errors. Conversely, some outputs associated with the damaged state fall
below the threshold limit, leading—in those cases—to false detection or Type II errors.
The comparison between the results relevant to damage detection and those collected
in Figures 12 and 14, proves that the proposed CMDS-based method is superior to the
PCA-based one, not only because it does not require procedure to set any hyperparameter
during the analysis, but also in terms of the smaller error rates obtained.
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Figure 14. Z24 Bridge: damage detection via the classical PCA method.

5. Conclusions

In this paper, a data-driven method based on data partitioning and classical multidi-
mensional scaling has been proposed to efficiently and robustly detect damage in structural
systems, in the presence of environmental variability. The present study focused on the
accuracy and robustness of the method, while also delivering clues to avoid, or reduce
to a minimum, false alarms and false damage detection errors. The effectiveness of the
proposed method was assessed via two well-known large-scale benchmark examples: the
ASCE structure, and the Z24 bridge. The former one has been considered to also show the
capability of the approach to classify the severity of damage; while the latter one has been
instead adopted to show how the approach, in conjunction with an AANN to preprocess
the data, can provide a highly accurate prediction of damage detection by filtering out
environmental variability.

Within an unsupervised SHM strategy, for the ASCE structure, each sensor output
was fitted with an AR model, which assured accuracy in compliance with the Leybourne–
McCabe and the Ljung–Box tests; model residuals were then handled as the high-dimensional
damage-sensitive features. For the Z24 bridge, the long-term monitored modal frequencies
were instead adopted as model features under strong environmental variability.

For both the case studies, the matrices gathering the damage-sensitive features relevant
to the undamaged state (from data collected in the training stage of the SHM procedure)
and to the current states (from data collected instead in the damage detection stage of the
SHM procedure) were decomposed into smaller subsets. The CMDS coordinates were
then recast as damage detection indices based on the relevant l2-norms, in a partition-wise
fashion. Finally, early damage detection was formulated by assessing the drifts of the
l2-norm values in the monitoring stage, away from the baseline set during training. The
issue of optimal data partitioning, to maximize the method performance, has also been
addressed. The offered methodology can also be seen as a data compression strategy,
since damage has been assessed by solving a problem of the same order of the number of
subdivisions of the original multivariate datasets, in place of the original order proportional
to the number of the acquired measurements.

The results testify that the proposed methodology is highly successful in detecting
damage, and distinguishing damaged states from undamaged ones. It has been further
shown that the use of a small number of partitions of the original multivariate datasets



Sensors 2021, 21, 1646 21 of 22

seems to provide more reliable results, particularly for the Z24 bridge. Moreover, a com-
parison between the proposed CMDS-based method and the classical PCA technique has
shown that the former is superior, as it can be classified as a non-parametric procedure and
as it leads to smaller error rates. The ASCE problem has been instead characterized by the
best performance in terms of rates of damage detection errors. For both the analyses, the
computational cost of the iterative stages of the proposed method was shown to decrease
by increasing the number of partitions.

In future work, an investigation will be reported on the effects of the said number of
partitions on the time required to process the datasets and provide the vectors of damage
indicators. This investigation will be supported by an analysis of the computational
complexity of all the algorithmic stages, in order to also discuss the possible parallel
implementation of the entire procedure. A deeper exploitation of the MDS coordinates
and of the damage indicators will be also attempted, in order to account for the correlation
within and across the datasets and help estimate damage location and amplitude. Moreover,
since the proposed CMDS-based SHM method handles the data acquired by the sensor
network within an offline strategy, a version for online damage detection will be studied.
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