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Abstract

Understanding fixed motor pattern diversity across related species provides a window for exploring the evolution of their
underlying neural mechanisms. The electric organ discharges of weakly electric fishes offer several advantages as
paradigmatic models for investigating how a neural decision is transformed into a spatiotemporal pattern of action. Here,
we compared the far fields, the near fields and the electromotive force patterns generated by three species of the pulse
generating New World gymnotiform genus Gymnotus. We found a common pattern in electromotive force, with the far field
and near field diversity determined by variations in amplitude, duration, and the degree of synchronization of the different
components of the electric organ discharges. While the rostral regions of the three species generate similar profiles of
electromotive force and local fields, most of the species-specific differences are generated in the main body and tail regions
of the fish. This causes that the waveform of the field is highly site dependant in all the studied species. These findings
support a hypothesis of the relative separation of the electrolocation and communication carriers. The presence of early
head negative waves in the rostral region, a species-dependent early positive wave at the caudal region, and the different
relationship between the late negative peak and the main positive peak suggest three points of lability in the evolution of
the electrogenic system: a) the variously timed neuronal inputs to different groups of electrocytes; b) the appearance of
both rostrally and caudally innervated electrocytes, and c) changes in the responsiveness of the electrocyte membrane.
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Introduction

Fixed motor patterns are discrete motor patterns that, when

switched on, produce well defined and, coordinated movements or

activities. The term ‘‘fixed’’ implies that the patterns of activity are

stereotyped and relatively constant within and among individuals of

a given species [1]. The electric organ discharges of weakly electric

fish are species-specific fixed motor patterns coordinated by spinal

and peripheral mechanisms [2], [3], [4]. Electrogenesis offers several

advantages as a paradigmatic model of fixed motor pattern. Thus,

for example, the four questions that Tinbergen [5] thought should be

asked of any behavior can be readily investigated with respect to the

electric organ discharge, as described below. Tinbergen’s four

questions concerned: a) organization and causation, b) development,

c) function, and, d) evolution of the neural and peripheral structures

subservient the fixed motor pattern.

a) Organization and causation: The electromotor system is well

suited for analyzing neural coordination mechanisms. Its simplicity

allows one to integrate knowledge obtained using different

approaches, and to investigate the system at different levels of

organization. Work over many years has shown that the electric

organ discharge of pulse gymnotiforms results from the transfor-

mation of a single neural impulse originating from a synchronous

pacemaker into a pattern of electromotive force which results from

the sum of action currents generated by electrogenic cells

(electrocytes) [2], [4], [6]. This knowledge led to the development

of 1) non-invasive techniques permitting the characterization of

the electromotor system in intact live fishes [7], [8], and 2)

computational models for calculating the electric field from these

measured parameters [9], [10].

b) Development: Descriptions of the electric field in the larvae

and juveniles of various species are available from studies in the

wild [11] and in captivity [12–18]. Moreover, complete descrip-

tions of the electric organ, the electromotive force, and electric

field generation in the model species Gymnotus omari sp. nov. from

Uruguay (formerly identified as G. carapo) allow one to explore the

developmental mechanisms responsible for the diversity exhibited

by adult phenotypes [18].

c) Function: The spatiotemporal pattern of electromotive force

generated with each electric organ discharge is the ultimate cause

of the electric fields that serve as carriers for electrolocation [19],

[20] and electrocommunication signals [21]. Extensive reviews of

electrolocation and electrocommunication have been edited by

Fessard [22]; Bullock and Heiligenberg [23] Moller [24] and

Bullock, et al. [25] It has been speculated that the species

specificity of the electric organ discharge is important in enhancing

the signal to noise ratio of self generated signals [26]. This

speculation is based on i) a stereotyped waveform of the carrier

which determines and restricts the range of capacitances that

modifies the local electric organ discharge waveform [27–30]; and
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ii) the observation that the frequency band of electroreceptor

response matches the power spectral density histogram of the

electric organ discharge associated field [31–33]

d) Evolution: Local communities of weakly electric fish usually

exhibit several species [34–38].The analysis of the local carrier,

lead to the hypothesis that the electric organ discharge waveform

generated by caudal region of pulse gymnotids constitutes itself a

signal for recognition of conspecifics [39]. Therefore, electric

organ discharges are suspected of playing an important role in

reproductive isolation among incipient or fully-formed species, and

hence the mechanisms underlying the origins and maintenance of

species diversity [38], [40–42].

In Gymnotus, the most diverse and widespread genus of the New

World order Gymnotiformes [42], the complexity of the electric

organ discharge requires separate but coordinated activation of the

different electrocytes (effector cells) along the length of the fish.

This indicates that the nervous system generates a more complex

pattern of output in controlling the electric organ discharge than is

present in other electric fishes, including both Mormyridae (from

Africa) and other gymnotiform fishes [4], [6].

Species characteristic variations in Gymnotus electric organ

discharges suggest that changes in the effector electric organs or

their motor control systems accompany species-level diversification.

Gymnotus therefore represents a promising model taxon for exploring

the electromotor system correlates of signal diversity. For these

reasons a comparative study of Gymnotus is expected to yield unique

insight into the expression of neural and peripheral devices that

accompany species-level variation in electric organ discharges.

This paper is the first of a series aiming to identify

commonalities and differences among the species-specific electric

organ discharges in the genus Gymnotus. Here we focus on the

characterization of the spatiotemporal fields and patterns of

electromotive forces expressed by three species, G. carapo, G.

coropinae, and G. omari. The first two are common tropical species,

distributed over large areas of northern South America, whereas

the last one, G. omari is a temperate species from Uruguay.

Electrogeneration mechanisms have been most extensively studied

and are best known in G. omari [4], [6], [43–51].

Results

The far-field head-to-tail potentials
The far-field electric organ discharge waveforms of adults from

the three studied species are illustrated in figure 1. G. omari generated

a triphasic electric organ discharge beginning with a long head

negative deflection (comprising two distinct components, that

Trujillo-Cenòz et al. called V1 and V2 [44] and terminating with a

second long head negative deflection (V4 [44]). Pulse duration varied

from 2.603 to 3.687 ms (mean 3.17, n = 15), and the mode of the

spectral density histogram (here referred to as peak power frequency)

from 0.793 to 1.0185 kHz (mean 0.866, n = 15, 27uC).

G. carapo’s and G. coropinae’s electric organ discharges are

substantially shorter lasting, comprising a series of deflections of

successive opposite polarity. These deflections are small at the

beginning, increase up to a maximum and decrease at the end.

These deflections were called by Crampton [38] according to their

ordinal position in the sequence referring always to the main

positive peak P1. The electric organ discharges of G. carapo last

1.764 to 2.184 (mean 2.016 ms, n = 15, 27uC), while those of G.

coropinae were approximately half this duration (range 0.928–

1.455 ms, mean 1.121 ms, n = 15). This was reflected by species-

specific ranges of peak power frequency (G. carapo: mean 1.856,

range 1.606 to 1.961 kHz, n = 15, and G.coropinae: mean 3.014,

range 2.759 to 3.246 kHz, n = 15, 27uC, Fig. 1).

To compare the amplitude of the signals, specimens of G. carapo,

G. coropinae and G. omari were recorded at a standardized

conductivity (30 mScm21) and temperature (24uC) from the center

of a 48628 cm aquarium filled to 4 cm (with fish oriented parallel

to the longest side of the tank). Energy of the far field recordings

was evaluated by the root mean squared value of a 10 ms trace

(Table 1). All specimens of G. omari generated stronger fields than

those generated by G. carapo and these in turn were larger than

those generated by G. coropinae. Because the specimens of G.

coropinae were much smaller than those of G. carapo (see methods)

we normalized the data using the quadratic rule relating length

and field amplitude found in G. omari [18]. The relationships

between rms values still hold after normalization (Table 1; Mann

Whitney/Wilcoxon test for non paired samples, p,0.01).

Analysis of the near-field potentials
Gymnotiform fishes exhibit several generators that are better

revealed by analyzing the near field potentials caused by the

Figure 1. Head to tail electric organ discharges. Electric organ
discharge waveform (a) and spectral power density (b) for 15 adult
specimens of Gymnotus carapo, G. coropinae (both from Surinam), and
G. omari (from Uruguay). Electric organ discharges were plotted with
head positivity upwards, normalized and aligned to the peak amplitude
of the dominant positive peak (P1). Scale bar = 1 ms. We indicate here
the wave components using the two nomenclatures available from the
literature. The nomenclature by Trujillo-Cenòz et al. [44] is based on the
ordinal number of wave components (labeled as V) in the sequence of
deflections observed at the head to tail recordings. These components
were defined not only by their presence in the head to tail recordings
but also by their different origin and mechanisms of generation [6].
Crampton’s [38] nomenclature (used in several species of the genus)
refers only to the ordinal number of each peak (P) in the head to tail
recordings, referring to P1 as the main positive peak. For G. omari,
P0 = V1 + V2, P1 = V3, P2 = V4. The application of a wave components
based nomenclature to the head to tail recordings of G. carapo and G.
coropinae is impossible because head to tail peaks are just the weighted
sum of several waveform components of different origin, and probably
generation mechanisms, which occur overlapped in time. Instead, we
introduce a new nomenclature with a numeral sub index indicating the
temporal order and a literal sub index indicating the spatial origin (r for
rostral, c for central, and t for tail, see Fig. 5 for the pattern of
electromotive forces and Fig. 8 summarizing our hypothesis on the
electric organ discharge generators)
doi:10.1371/journal.pone.0002038.g001
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electric organ discharge [2], [6], [52]. Analysis of the perpendic-

ular components of the electric organ discharge associated electric

fields illustrated how currents flow inward and outward from the

fish body and showed, unequivocally, the presence of multiple

generators. Therefore, two local components of the near electric

field (perpendicular and parallel to the main axis of the fish body)

were simultaneously recorded along a parasagittal line passing

2 mm from the nearest point on the skin (Fig. 2, 3 and 4).

Each of the studied species exhibited characteristic strengths,

activation timings, and locations of the electric organ discharge

components. Several wave components of opposite polarity were

generated concomitantly at different regions of the fish body. This

finding obliged us to unify and make explicit the nomenclature of

electric organ discharge components-taking into account not only

the order of appearance of a component in the electric field

recordings (V1–V4 as described by Trujillo- Cenòz [44] et al. or

P0–P2 as described by Crampton and Albert [38], [42] ), but also

its spatial origin. We maintained the traditional V labeling, and

introduced a sub index letter to indicate the spatial origin of the

component (r for rostral, c for central, and t for tail), including a

sub index to indicate its order.

Selected recordings of the perpendicular fields were superim-

posed (white traces) on color-maps in which all the recorded traces

were represented (Fig 2A, 3A and 4A). In these maps, the spatial

(vertical) and temporal (horizontal) coordinates were represented

in the axes of the map and the amplitude and direction was color

coded (inward blue, outward red). The color maps’ spatial

dimensions and the baseline of the traces were located at the

corresponding position, coded by the schematics of the fish body.

Color scales were monotonically non-linearly adjusted in each case

to maximize contrast. They provide a qualitative notion of the

strength and timing of the sources (yellow-red) and sinks (sky blue-

deep blue) complementary to the other plots. These color patterns

suggested precise sequences of sinks and sources characteristic of

each species. Rather than having a perfect synchronism, there was

a general rostro-caudal shift in the reversal point as the activation

progresses in time (Fig 2B, 3B and 4B).

Consistent with previous results [44], G. omari exhibited four

main electric organ discharge components (Fig 2). i) An early slow

head negative wave component generated at the abdominal

region, referred to as V1r with the sink-source reversal point

(indicated by an arrow) near the anterior end of the anal fin (upper

plot, Fig 2B). ii) A sharp head negative component, referred to as

V2c, with a sink-source reversal point about halfway along the

body and peaking 0.6 ms before the positive peak of the head to

tail field (second plot, Fig 2B). iii) This component partially

overlaps in time with the initiation of the sharp and head positive

spike at the rostral regions. iv) This positive spike, which is the

largest wave component, generated all along the fish’s body. The

duration of its wave subcomponents (rostral, V3r; central V3c; and

tail V3t) are longer than the time shift between them and therefore

they are substantially overlapped. Its reversal point at a time where

all the electric organ is activated occurs at a distance from the

anterior tip of the body, (p) equal to 70% of the fish body length

(indicated by an arrow V3rct third plot, Fig 2B). v) At decay phase

of the positive component of the head to tail electric organ

discharge the V3t component overlaps in time with the starting of a

late head negative component at the head region (V4r). vi) This

late negative component propagates rostro caudally along the fish

body. vii) Its larger generator is at the tail region, peaking about

0.6 after the positive peak of the head to tail field with a reversal

point at p = 85% (V4rct, bottom plot, Fig 2B).

G. carapo exhibited a more elaborated generator (Fig. 3). i) An

early slow head negative wave component was caused by a very

localized sink at the head, and a source distributed over the

abdominal region (reversal point about p = 10–15% , V1r, Fig. 3B,

maximum at 1.2 ms before the head to tail positive peak). ii) About

0.4 ms later, two separated sinks at the head and at the tail regions

occurred, indicating the simultaneous activation of two widely

separated generators in the electric organ (reversal points at p = 20

and p = 75% respectively, 0.8 ms before the head-tail positive

peak). The caudal component partially coincided in time with V1r,

but the field direction was opposed, with inward currents at the tail

opposing outward currents at the central region. These early

waves demonstrate the necessity of a nomenclature extension: V1r

(referring to the rostrally generated and head negative component

present in all species) and V1ct (referring to the early head positive

component in G. carapo). iii) About 0.3 ms before the head to tail

positive peak, a head generator caused a source at the rostral pole

(V3r), while a central generator caused a simultaneous source at

p = 75% of the fish length (V2c). Both generators overlapped

(between p = 15 and p = 50%. iv) Finally, three components of the

main complex (V345) are activated in a rostro-caudal sequence as if

they were part of a positive-negative-positive wave that apparently

propagates rapidly from head to tail (similar to V34 in G. omari).

G. coropinae had an electric organ discharge that was similar but

shorter than that of G. carapo. The different components as

analyzed by transcutaneous current flow included (Fig. 4): i) A very

localized source-sink pair in the head region (V1r) that occurred

1.3 ms before the head to tail positive peak indicating the presence

of a generator at the head region. ii) A very weak head-sided

source-sink pair with a reversal point at P = 80% was present in

some fish (V1t) 0.3 ms before the positive peak of the head to tail

recordings (not shown). iii) Just after (0.2 ms before the head to tail

positive peak) this wave was followed by two spots of activity

indicating the presence of two sources. These two sources, one

located at the head for V3r and the other at the tail for V2c,

drained the current that sank jointly at the central body region. iv)

Table 1. Top row: Comparison between rms values of the head to tail electric organ discharge as measured in the same tank
(4562664) at the same water conductivity and temperature.

G. omari (N = 10, length between 11.6
and 22.5 cm)

G. carapo (N = 6, length between 20.6
and 29.8 cm)

G. coropinae (N = 12, length between
9.9 and 15.3 cm)

Median IQR Median IQR Median IQR

rms value (mV/cm) 40.28 37.56 22.92 4.7 2.59 1.4

normalized rms (mV/cm3) 0.15 0.08 0.051 0.013 0.018 0.005

Bottom row: the same individual values were normalized by the square of the fish’s length according to the findings of Pereira et al [18]. Columns: median and
interquartile range for each species. All these fish were recorded between 10 to 20 days after capture.
doi:10.1371/journal.pone.0002038.t001
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This was followed by a complex V345ct that apparently propagates

from head to tail in a similar way than V34 in G. omari and V345 in

G, carapo.

Analysis of the equivalent electromotive force generated
by the fish’s body

The external electric field results from an equivalent electro-

motive force acting on a distributed external load. Since this

electric source is distributed, we estimated the equivalent

electromotive force of three adjacent portions of the fish’s body.

To do so, we recorded the voltage drop between the boundaries of

these portions when the fish was maintained in air (Fig. 5A). The

rostral body portion comprised the head and abdominal region

(the rostral 28%, in G. coropinae and G. omari and the rostral 25% in

G. carapo) and the caudal body portion comprised the tail region

(the caudal 28%, in G. coropinae and G. omari and the caudal 35% in

G. carapo) while the central portion comprised the middle region of

the fish body. In the three species the peak value for each

component of the regional electromotive force profiles increased

from head to tail (Table 2). The head to tail electric field was

plotted below the air gap results in order to compare and relate the

different electromotive force wave components with the field

components that they generate (Fig 5 B).

The electromotive force profile corresponding to each portion

of the fish body in G.carapo and G. coropinae can be described as

variations on the basically similar pattern observed in G omari.

Among the commonalities we observed were: i) At the rostral

regions, the electromotive force pattern consisted of a smooth slow

head negative wave, followed by a fast positive-negative spike

(V13r); ii) At the central region, a triphasic complex (V234c), with

positive and late negative components of the complex V34

increased as a function of the generator distance from the tip of

the lower jaw (Fig 5A); iii) Likewise, at the tail region, a biphasic

complex (V34t) shows a large peak to peak amplitude (Fig 5A) iv)

The duration of the main positive wave generated in the rostral

regions (V3r) was longer than those generated in rest of the body

(V3ct); this feature, associated with the smoothness of V1r, accounts

for the lower peak power frequency of the electric organ discharge

in the head and abdominal region (Fig. 6). v) The multiphasic

pattern generated at the central region contributed very

substantially to the whole head to tail electric organ discharge

associated field, being largely responsible for the interspecific

differences in peak power frequency (Fig. 6). vi) In all species was

observed a time gap between the activation of the positive spike at

the abdominal region and the activation of the positive spike at the

central and tail regions of fishes’ bodies (compare the timings of

the peaks of V3ct and V3r ; Fig. 5 limits of the gray bands).

The main differences between the rostral electric organ

discharges were: i) The amplitude of V1r was largest in G. omari,

intermediate in G. carapo, and smallest in G. coropinae; while its

duration was significantly shorter in G. carapo. ii) In many

specimens of G. coropinae there was a notch in V3r indicating the

presence of two distinct generators for this component in this

region: one early, relatively smooth and long, and another sharp,

similar in duration to V3ct. iii) While the late negative spike (V4r)

was relatively large and sharp in the two tropical species, it was

very small (if present) in G. omari. iv) A small V5r was observed in

some individuals of the two tropical species (Fig., 5A top traces).

There were three main differences between the waveforms

originating from the central and tail regions of the fish body.

First, the duration of the components generated at the central

and tail regions was largest in G. omari, intermediate in G. carapo

and shortest in G coropinae. This is compatible with the differences

Figure 2. Transcutaneous current pattern of G. omari. Electric
field perpendicular to the main axis of the fish body was recorded along
a line 2 mm parallel to the mid-flank of G. omari. White traces
correspond to the recorded field at equally separated points 2 mm
from the skin on the side of the fish. These traces are superimposed on
a color-map indicating the location of the sources (yellow-red-brown)
and sinks (sky blue-deep blue) along the fish body (vertical axis) as the
electric organ discharge progresses in time (horizontal axis); greenish
correspond to negligible fields. G. omari shows 4 main components: V1r

inverting about the origin of the anal fin; V2c inverting about half of the
body; V3rct and V4ct inverting at the tail region. In this case there is a
close correlation between temporal order and spatial origin of the
components. For the sake of generality we used numeral sub index
indicating the temporal order and a literal sub index indicating the
spatial origin (r for rostral, c for central, and t for tail).
doi:10.1371/journal.pone.0002038.g002
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in the peak power frequency and the span of the power spectral

density histogram (Figs. 1 and 6).

Second, the electrocyte responsiveness appears to be larger in

tropical species since: i) The late negative component (V4ct) was

sharper in these two species than in G. omari; ii) The peak of V4rct

was well correlated toV3rct having significantly different slopes for

each species (G. coropinae, r2 = 0.96 , N = 24, p,0.0001; G. carapo,

r2 = 0.98, N = 12, p,0.0001; G. omari, r2 = 0.81 N = 36, p,0.0001,

Fig 7) and iii) V5 is absent in G omari.

The third and perhaps most striking difference between the two

tropical species and G. omari was the presence of a positive slow

wave (V1ct) generated at the central and tail regions of the fish

body. This was observed in all specimens of G. carapo and in 3 out

of 8 specimens of G. coropinae but was not observed in G. omari

(Fig. 5A). It should be noted that the head to tail electric field

generated by this component in G. carapo, overcomes the

simultaneously occurring V1r of opposite polarity (fig 5B middle

column). This yields as a net result the positive small P21 described

by Crampton [38]. This contrast with G. coropinae in which P21

(sensu Crampton [38]) is the electric field generated by V3r (fig 5B,

right column).

Discussion

Electric organ discharges are stereotyped effector acts which can

be objects of holistic analyses that inform on their underlying

control mechanisms. Combining different methods of analysis

including far field, near field and air gap recordings we found that

the fish body has multiple generators activated in a precise

sequence for three species of Gymnotus. These studies, applied in

the context of interspecific variation within Gymnotus, yielded

information on the organization, function and evolution of

electrogenesis.

Each component in the head to tail results from the sum of the

activities at different regions of the fish body, weighted by a factor

depending on the distance of the electrodes to the fish and on the

constant of attenuation of each region. Earlier components,

generated in small portions of the fish body by relatively small

electromotive forces, have a relative small amplitude in the head to

tail electric organ discharge, but are well defined in the near field.

In contrast, the main complexes generated on the central and tail

regions show high degree of synchronism between homologous

components, and consequently, yield relative large amplitude

components in the head to tail electric organ discharge. In

addition, since the timing of each component at each site of the

electric organ is not the same, components flowing in the same

direction summate and those flowing in opposite direction

subtract. Therefore, the order of the peaks in the head to tail

electric organ discharge does not reflect neither similar spatial

origin nor similar generation mechanism as can be clearly

demonstrated comparing P21 in G. carapo and G coropinae.

Taking into account the results obtained using the combined

study of the near and far electric fields recorded in water and

equivalent electromotive forces recorded when the fish is in the air

we developed an hypothesis on how the different generators of

each fish are represented in the far field for each species (Fig. 8).

Figure 3. Transcutaneous current pattern of G. carapo. Electric
field perpendicular to the main axis of the fish body was recorded along
a line 2 mm parallel to the fish side of G. carapo (same resolution and
color code as in Figure 2). This species shows the more complicated
generator. We refer to each generator referring to its temporal order
(numeral sub index) and spatial origin (literal sub index, r for rostral, c
for central, and t for tail). Times are referred to the positive peak (0 ms).
The first observed activity is caused by a much localized sink at the
head and a source distributed on the abdominal region (reversal point
about 10–15% of the fish length from the jaw, V1r). It is followed by a
distributed activity corresponding to more than one generator. In fact,

two sinks at the head and at the tail regions indicate two simultaneous
spots of activity in the electric organ at about 0.8 ms before the positive
peak (reversal points about 20 and 75%,). Half a ms later the rostral
activity reverses direction while at the central region a more distributed
sink (having its source at the tail) develops. The complex V34ct (labels: 0
and 0.5 ms) has the same profile as in the other species and finally the
electric organ discharge ends with a rebound (label: 1.1 ms, V5).
doi:10.1371/journal.pone.0002038.g003
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What do electric organ discharge patterns tell us about
the organization of the electrogenic systems?

In all three species the rostral region of the fish’s body is

activated significantly earlier than the rest of the body. This

regional discharge, which is similar in the three species, is

characterized by a V134r pattern (sometimes followed by a fifth

component). The long lasting early negative component (V1r), and

the positive component (V3r) together increase the relative weight

of the lower frequency bands of the power spectra (upper

histograms, Fig. 6). On the contrary, the central and caudal

regions show V234 sequences that are similar in their polarity

sequence to that seen in the rostral region, but occurring later, and

in G. carapo and G. coropinae shorter in duration. The central and

caudal region waveforms also show greater differences between

species. These differences in the ranges and modes of the power

spectral density histograms determine the species specificity of the

electric organ discharge. It is important to note that the local

electric organ discharges of the central regions are higher than

those of the caudal regions. This is due to: a) the presence of a V2c

of similar duration to V3c (see below), and; b) the lack of load in the

air gap procedure which prevents a complete expression of V4t

(Rodriguez-Cattaneo, unpublished data).

In the case of a myogenic organ, Paccini’s rule [53] states that the

negativity indicates the active electrocyte face. With the known

exception of Malapterurus, the innervated face is the first to be

activated [54]. As in G. omari, early head negative waves (V1r /V2c)

must result from neural activation of rostral faces; while the main

positive peaks at the tail (V3t) must result from the neural activation

of caudal faces. In the three species, the presence of head negative

waves without previous activity in the same region suggests the

existence of rostrally innervated electrocytes and the presence of

head positive waves without previous activity in other regions suggest

the innervation of caudal faces. It is also likely that, as in G. omari, the

main positive peak (V3 or P1) is likely to result from neural activation

of caudal faces all along the electric organ. On the other hand, late

negative peaks (V4rct) most likely result from action potential

propagation from caudal to rostral faces as suggested by the

amplitude correlation between regional V3 and V4.

One of the most important findings was a weak head positive

V1ct was always present in G. carapo, and sometimes present in G.

coropinae. This component was never present in G. omari and may

correspond to an (as yet), undescribed mechanism. Two

explanations may account for the origin of this component. One

is that the activity of the posterior electromotor nerve is strong

enough to generate an externally observed signal (the presence of

neural electro generation is already known in Apteronotidae [2]

and this activity can be recorded locally in G. omari [7], [8]).

Alternatively, and perhaps more interesting in the evolutionary

sense, it is reasonable to hypothesize (by applying Paccini’s rule)

that there may be a set of electrocytes that are activated early, near

the boundary between the central and caudal thirds of the body.

Finally, the different durations of the complex V345ct in different

species indicates differences in electrocyte excitability as well as in

the timing of electrocyte excitation. Considering the hypothesis

that components with sub index 4 are expressions of the same

Figure 4. Transcutaneous current pattern of G. coropinae. Electric
fields perpendicular to the main axis of the fish body was recorded
along a line 2 mm parallel to the fish side in G. coropinae (same
resolution and color code as in Figure 2). We refer to each generator
referring to its temporal order (numeral sub index) and spatial origin
(literal sub index, r for rostral, c for central, and t for tail). Times are
referred to the positive peak (0 ms). This species is characterized by a
first observed activity caused by a much localized sink at the head
region (note that the reversal point, rostral sink-caudal source, 1.3 ms
before the head to tail peak is located almost about the rostral pole of

the fish). After a relative long period of time (20.2 ms) this wave is
followed by two spots activity indicated by the presence of two sources
(at the head and at the tail) draining the current that sinks along the
central body region. Shortly after the above, the fish’s body becomes
active. The complex V34ct (0 to 0.2 ms) has the same profile as in the
other species. Finally the electric organ discharge ends with a small
rebound wave (0.4 ms, V5).
doi:10.1371/journal.pone.0002038.g004
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cellular mechanism (i.e. the propagation of the action potential

from the caudal to the rostral faces of electrocytes [53], [45], [47]),

their amplitudes are expected to be well correlated with the

amplitude of the corresponding regional components with sub

index 3 (as observed in Fig. 7). The steeper slopes of such linear

relationship and the larger ratios between V3/V4 components in

G. coropinae and G. carapo indicate that the rostral faces of their

electrocytes are more responsive.

The late positive peak is a characteristic of G. coropinae and G. carapo.

Curarization studies may be necessary to test their probable origin on

the reverberant response of more responsive electrocytes to the

caudal activation volley. The delay between V2 and V3 (determined

by neural mechanisms) closely matches the delay between V3 and V4

(determined by electrocyte mechanisms). This indicates that the

species specific differences in power spectra described here are not

only due to changes in electrocyte responsiveness, but also to changes

in neural coordination mechanisms.

What do the electric organ discharge patterns tell us
about the function of the electrogenic systems?

We have discussed in the first section the importance on near

and far field analysis for understanding the electrolocating function

of the electric organ discharge. Having this analysis in mind, one

can discuss what kind of signals are represented in the near fields

and far fields.

The near fields of the studied species show significant

complexity, with different degrees of departure from a common

pattern depending on the body region. Rostrally generated

temporal patterns of electromotive force are more alike between

species and have power spectra shifted to the low frequency range.

They are characterized by a slow negative V1r and a V3r advanced

in phase in reference to the V3ct, and a relatively poorly developed

V45r. These waveforms are best represented in the local electric

organ discharge at the rostral regions, close to where an electric

fovea was described [52]. This observation, together with the

similarity of food items found in the stomachs of several species of

co-occurring Gymnotus from the Amazon basin (Crampton, pers.

obs.) supports the hypothesis that the perceptual space for prey

may be similar among closely related species. In contrast to their

importance in the near field, rostrally generated components are

poorly represented in the far field recordings. These recordings

reflect very much the signals received by other sympatric fish

sharing the same ecological habitats [38]. Thus the diversity

expressed in the electromotive force patterns generated at the

Figure 5. Electromotive force pattern of the three species. A) The air gap technique shows regional variations in the electric organ discharge
electromotive force pattern. Note the presence of a smooth negative component and the advance of the main positive peak in the rostral regions of
all fishes (marked by the widths of the gray bands), and the differences in the total duration of the electric organ discharges. B) A head to tail
recording of the field between two electrodes separated 40 cm is shown below the air gap recordings (gray traces) to show the correspondence
between the different deflections. Insets in red show a magnified version of the same waveforms for better showing the small early components.
Note that different components of opposite polarity generated at different regions may overlap in time. For the sake of generality we name these
components with a numeral sub index indicating the temporal order and a literal sub index indicating the spatial origin (r for rostral, c for central, and
t for tail).
doi:10.1371/journal.pone.0002038.g005
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central and tail regions of the fish’s body are translated to the far

field recordings.

This supports the hypothesis that central and tail regions

provide the species specificity of the communication carrier [39].

Ecologically co-occurring species of gymnotiforms (e.g. G. carapo

and G coropinae) often exhibit non-overlapping ranges of far field

power spectra suggesting that these species may be able to

recognize and discriminate each other on the basis of frequency

components of the electrocommunication carrier. However, in a

higher diversity community from floodplain habitats of the Central

Amazon, Crampton observed overlapping ranges of the power

spectra among three of five co-occurring species [38]. Each of the

five species was partitioned in a multivariate ‘signal space’

representing features of the head to tail electric organ discharge

waveform, suggesting that these species may recognize and

discriminate each other on the basis of both frequency and

temporal components of the electrocommunication carrier.

What are the phenotypic characters that the comparison
between these species reveals as interesting from an
evolutionary point of view?

Our results suggest at least three phenotypic characters of the

electromotor system that are related to signal diversity in Gymnotus:

a) the head negative sources at the rostral (V1r ) and central (V2c)

regions suggesting the presence of rostrally innervated electrocytes;

b) the presence of an early smooth and positive wave at the tail of

G. carapo (and variably in G. coropinae) suggesting a complex degree

of spinal and peripheral synchronization of the discharge and c)

the different relative importance of the non-neurally generated

components V45rct, suggesting species specific variations of the

electrocyte excitability.

The first character listed above, is the presence of an initial early

negative component indicating the existence of rostrally innervat-

ed electrocytes at the head and abdominal regions of G. coropinae,

G. carapo, and G omari. The presence of a pair of coordinated

volleys of neural excitation on their opposite faces can be seen as

an agonist antagonist pattern and may be an example of the

selective benefits of increased complexity of central motor control.

This contrasts with the monophasic discharge of some Gymnotus

species (G.cylindricus and G. maculosus) from Central America. These

fish lack early negative phases, have a less complex discharge, and

probably possess a less complex neural network [42], [55].

The second character listed above, is the presence of a very

distinct component in the central and caudal regions in G. carapo

(V1ct). This component results in a species specific feature in the far

field, and suggests the existence in this species of a) an additional

early electrocyte activation volley that reach the tail region before

the activation of V3r and V2c at more rostral regions, or b) the

presence of a neural electrogenic mechanism in a genus

traditionally consider as having a myogenic electric organ.

Finally, the different duration of the complex V345 indicates

differences in electrocyte excitability, and the parallel adaptation of

the corresponding electromotor control system. These differences

are clearly significant at the tail region, reflecting the electrocyte

responses characteristic of each species (the lowest responsiveness in

G. omari, the highest responsiveness in G. coropinae).

Conclusions
The main differences in the waveform between the three studied

species suggest that electric organ discharge diversity in Gymnotus is

based on: a) the appearance of neural coordination mechanisms

for central triggering of multiple (but phase locked) volleys of

activation of the electric organ; b) the double innervation of the

electrocytes; and c) species specific responsiveness of electrocytes

that are possibly based on their channel repertoire and shape. The

rostral region of the three species generate similar profiles of

electromotive force and local fields, while most of the species-

specific differences are generated at the main body and tail regions

of the fish. This supports a hypothesis of differential (although

partially overlapped) origins of the electrolocation and electro-

communication carriers [39], [56]. Since the electric organ

discharge’s associated fields carry signals for electrolocation and

communication, the species specificity and diversity of these fixed

action patterns might be potentially related to food identification

and recognition in the reproductive context [38]. Our results

suggest that electrolocation or food identification is mediated by a

carrier, or local electric organ discharge waveform, that is very

similar across the three species, whereas electrocommunication or

mate recognition may be mediated by a far field electric organ

discharge that is quite diverse among the different species.

Materials and Methods

All experiments were non invasive. Protocols were approved by

the Instituto de Investigaciones Biológicas Clemente Estable and

followed the guidelines of: a) the Comision Honoraria de

Experimentación Animal (Universidad de la República) b) the

Society for Neuroscience and c) the International Guiding Principles

for Biomedical Research Involving Animals. The fish were

maintained in individual aquaria and fed daily with insect larvae.

Animals were studied within 40 days of capture (mainly during

the first two weeks) using several methods including far field

recordings, near field recordings, and air gap measurements of the

electromotive forces and internal resistances. Far field recordings

were made in a temporary field laboratory from 15 reproductively

mature G. carapo (total length range 182–340) and 15 mature G.

coropinae in Suriname (total length range 100–138), and from 33

mature G. omari in Uruguay (total length range 121–220). Six G.

carapo (length range 206–298 mm), 12 G. coropinae (length range

99–153 mm) and 15 G. omari (length range 123–253 mm) were

used for detailed electric organ discharge analysis in the

Table 2. Peak amplitude of the electromotive force for every
regional component of the electric organ discharge in the
three compared species (mean6standard error).

G. omari (mV) G. carapo (mV) G. coropinae (mV)

Mean6std error,
N = 12

Mean6std error,
N = 4

Mean6std error,
N = 8

V1r 227.564.1 215.165.3 22.660.3

V1c – 14.1611.2 –

V1t – 16.368 –

V2 2161.1632.7 286.1629.8 26.362.3

V3r 131.6616.4 47.8617.3 31.162.8

V3c 748.36176.4 105.2615.5 76.067.13

V3t 2346.36394.9 1294.36314.6 277.1624.6

V4r 212.864.0 216.964.3 211.360.8

V4c 2179.1681.3 278.2623.4 278.567.54

V4t 21666.96448.4 21568.66337.8 2387.7642

V5r – 2.565.0 0.460.1

V5c – 10.762.8 6.8 61.6

V5t – 158.8651.2 30.265.5

doi:10.1371/journal.pone.0002038.t002
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laboratory, including near field and electromotive force record-

ings.

Fish and collecting sites
Gymnotus carapo is the type species of the genus. Until recently,

many species of Gymnotus from throughout South America were

indiscriminately assigned to G. carapo. For example, G. omari, in

which the mechanisms for neural and peripheral organization

were deeply studied [7], [8], [44–52], was for three decades

incorrectly called G. carapo. However, Albert and Crampton’s [57]

redescription of G. carapo restricted this species to the Amazon and

Orinoco basins, the coastal drainages of the Guyana, and some

coastal basins of northeastern Brazil. Gymnotus carapo and G.

coropinae were both originally described from Surinam, and here we

present electric organ discharge data from populations of these

species captured in northern Surinam. Gymnotus coropinae is a widely

distributed species, occurring throughout most of the Amazon and

Orinoco basins and the Guyanas [58]. It occurs sympatrically with

G. carapo throughout much of its range, including in Surinam

where the two species were collected in the same habitat at all

sampled locations.

Gymnotus carapo and Gymnotus coropinae were captured from

rainforest streams in northern Surinam, approximately 5u north of

the equator. At this latitude the photoperiod varies from 11.8–12.4

hrs. Recorded mean daily air temperatures at the Paramaribo

airport in 2006 exhibit a standard deviation of 1.5 from a mean

annual value of 26.9uC (min 16.7, max 32.2 ) Water temperatures

in rainforest streams, generally vary by less than approximately 3

uC over the diel cycle, and throughout the year in shaded, forest

streams (J. Mol, pers.com.).

G. coropinae typically occurs only in small rainforest streams with

low electrical conductivity (6–30 mScm21), relatively high dis-

solved oxygen concentrations (.3 mg/l) and low pH (,6). These

streams are usually well shaded by the rainforest canopy and

contain cool water (ca. 24–27uC). G. coropinae hides during the day

in submerged leaf-litter, marginal root masses, or in crevices in the

substrate, and emerges to forage among underwater structures

during the night.

G. carapo occurs syntopically with G. coropinae, but also occurs in

a wider range of habitats, including shallow lakes and swamps, and

systems with higher electrical conductivity (up to c. 200 mScm21;

J. Mol, pers. com.). In rainforest streams throughout most of

Figure 6. Different regions have a different spectral density. Power spectral density histograms showing that in all species the highest
frequency wave components are generated at the central region of the fish’s bodies. The modes of these histograms (peak power frequencies) are
indicated on each plot. The black curves superimposed to the histograms are the envelopes of the power spectra of the head to tail electric organ
discharge of the same fish normalized to the peak of the histogram for shape comparison. Note that in the two tropical species (G. carapo and G.
coropinae) the power spectrum is shifted to a high frequency range, and that G. coropinae has two modes at the rostral region.
doi:10.1371/journal.pone.0002038.g006
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Suriname, G. carapo and G. coropinae are found together but without

other Gymnotus. A third species G. anguillaris was described from

Northern Suriname, but is extremely rare, or locally extinct (J.

Mol pers. com.), and was not captured during this study. However,

several other gymnotiforms co-occur with G. carapo and G. coropinae.

The following additional species were captured or observed during

a two-week survey of rainforest stream habitats in the region by

WGRC: Electrophorus electricus, Hypopomus artedi, Brachyhypopomus

beebei, Brachyhypopomus brevirostris, Brachyhypopomus n. sp. 1 (‘electro-

pomus’ sensu Sullivan [59]); Brachyhypopomus n. sp. 2, Hypopygus

lepturus, Sternopygus macrurus, Eigenmannia gr. virescens. With the

exception of Hypopomus artedi, which is restricted to the Guyana,

these communities of gymnotiforms strongly resembled those in

similar rainforest stream habitats from the Amazon basin. Gymnotus

omari occurs in small streams and lagoons of the coastal drainages

of Uruguay (but not in neighboring Brazil and Argentina where

additional species of Gymnotus are known).

G. omari typically lives in dense aquatic vegetation such as water

hyacinths. At approximately 35u S, G. omari occurs near the

southernmost limit of the distribution of the order (Rio Salados,

Argentina71). At this temperate latitude, the photoperiod varies

from 9.8–14.5 hr and the seasons are well marked. Average high

and low temperatures in mid-winter (July) are 14 and 6 uC
respectively, and in mid-summer 28 and 17uC respectively (www.

underground.com). Water temperatures in shallow water bodies

frequented by Gymnotus typically vary from around 10–30uC
during the year. G. omari does not co-occur with other species of

gymnotiforms (including other Gymnotus) in coastal drainages, but

co-occurs with Brachyhypopomus pinnicaudatus, B. bombilla, and

Eigenmannia sp. in more northerly and westerly areas [60].

Measurements and representation of electric organ
discharge associated electric fields

Far field analysis. Far fields generated by the electric organ

discharges were recorded as follows: Each fish was held in an

aquarium filled with water from the capture locality and

maintained at 27uC +/20.2uC for at least 12 hours before the

recording. All recordings were taken at 27uC +/20.1uC, and each

fish was allowed 5 minutes to acclimate to the aquarium. The

recording arena was 80 long by 40 cm wide, and filled to 40 cm

depth. Individual fish were placed within a nylon-mesh sock. This

was supported by a mesh cradle suspended in mid-water (20 cm

depth) and positioned equidistant from the tank ends and walls.

Signals were captured using silver/silver-chloride electrodes

placed at the tank ends, and with a ground contact in the

center. The electrodes were connected to a wide-band AC-coupled

differential amplifier (Signal Recovery 5113). Electric organ

discharges were digitized using a National Instruments 6052E

digitizer at a sampling rate of 250 kHz and a resolution of 16 bits.

Electric organ discharges were not recorded from specimens with

a history of damage to the caudal appendage. Measurements of

peak power frequency and signal duration were made using

custom-written MATLAB and Java software designed by W.

Crampton. Electric organ discharge durations were calculated

with the beginning and end of the electric organ discharge taken at

a 1% threshold of the amplitude of the normalized dominant

positive phase. Spectral power density plots were calculated from

65,536-point Fast Fourier Transform.

Near field analysis. Electric fields produced by the electric

organ discharge were recorded with the fish resting in the middle

of a net pen running between the center of the narrow faces

(28 cm) of a plastic tank (45626 cm filled with water up to 4 cm

depth, with conductivity 30 mScm21, temperature 24uC). The

back and forth movements of fish were minimized using stitches to

adjust the net to body length. We used two different procedures: (i)

the longitudinal electric organ discharge fields were recorded using

two silver/silver-chloride electrodes, each placed at the center of

each narrow face of the tank one facing the head and the other

facing the tail; (ii) the near field recordings were measured using a

specially designed probe placed close to the skin of the fish at

different points along its body. The latter technique (described in

detail elsewhere [39], [52]) was used to record local potential

gradients equivalent to orthogonal components of the local electric

field vector at that point. The probe was constructed from three

wires insulated except at their tips Active electrodes were oriented

along horizontal orthogonal axes (longitudinal x, lateral y )

intersecting at the point where the reference was placed. Their

tips were 2.5 mm from the intersection of the axes, and the

Figure 7. The correlations between the two main peaks indicate different responsiveness of the electrocytes. The late negative peaks
(V4) recorded in air gap conditions from 6 regions of the body were plotted as a function of the main positive peaks (V3) recorded from the same 6
regions. It is shown that the relationship between these components is similar in different fish. Different symbols indicate different specimens (G
omari N = 10; G. carapo N = 4; G coropinae N = 10). In G. omari V3 is generally larger than V4 while in G carapo and G. coropinae they are similar. Since
the putative mechanism of V4 is the propagation of the action potential causing V3 to the opposite electrocyte face, changes in the slope indicate
that the responsiveness of the electrocytes is different for each species-the lowest for G. omari, and the largest for G. coropinae.
doi:10.1371/journal.pone.0002038.g007
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orientation was parallel to the longitudinal and horizontal axes of

the fish, with the reference electrode facing the point on the skin

under investigation. We recorded local electric fields at equally

spaced points (5 mm steps) along a parasagittal line passing 2 mm

from the nearest point on the fish skin surface at middle fish

height. The voltage difference between each of the active

electrodes and the reference electrode was measured using high-

input impedance, high-gain differential amplifier (10 Hz to

20 kHz band-pass filter). Recorded waveforms were sampled

(50 kHz or more depending the number of channels recorded, 16

bits) and displayed on a computer screen. Voltage measurements

were considered to be proportional to the voltage gradient along

the orthogonal axes and, therefore, to the horizontal components

of the local electric organ discharge. Each local field orthogonal

component was expressed in V.cm21.

Measurements of the source parameters
To evaluate the spatio-temporal pattern of equivalent electro-

motive force for the fish body we used the air-gap technique [7],

[9] which consist of the simultaneous recording of the voltage drop

generated by different portions of the fish’s body when isolated in

air. Fish were suspended in air using a custom made apparatus

that holds the fish as in a grill. The wires in contact with the skin

were perpendicular to the main axis of the body, one at each

extreme of the fish and the other at the limits of the explored

regions. For the purpose of this report three regions of the fish

body were considered: a) the head and abdominal region (the

rostral quarter of the fish in G. carapo, and the rostral two sevenths

in the other species), the tail region (the caudal quarter of the fish

in G. carapo, and the caudal two sevenths in the other species), and

the central region (the rest of the fish’s body).

Voltages recorded between pairs of wires were amplified to

reach adequate amplitude for similar quantization (always larger

than 8 bits) and sampled at 25 kHz. In the air gap condition, there

was no load, so voltage recordings are good estimators of the

equivalent electromotive forces generated by different portions of

the fish’s body when the electric organ is activated. Data were

presented as time and frequency domain functions. For time

domain analysis, data were aligned taking as a reference the head

to tail electromotive force recording, equivalent to the sum of all

recordings from the different portions of the fish. The amplitude

and timing of each identified component was then directly

measured. Fast Fourier transforms (in house routine) were

calculated from 10 ms traces and spectral power density

histograms were calculated with a bin of 100 Hz.
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