
Primary cilia and ciliary signaling pathways in aging and age-
related brain disorders

Rong Maa,b, Naseer A. Kutchya,c, Liang Chend,e, Douglas D. Meigsa, Guoku Hua,*

aDepartment of Pharmacology and Experimental Neuroscience, University of Nebraska Medical 
Center, Omaha, NE 68198-5880, USA

bDepartment of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong 
University of Science and Technology, Wuhan, 430030, China

cDepartment of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine, St. 
George’s University, Grenada

dDepartment of Computer Science, College of Engineering, Shantou University, Shantou, 
Guangdong 515063, China

eKey Laboratory of Intelligent Manufacturing Technology, Ministry of Education, Shantou 
University, Shantou, Guangdong 515063, China

Abstract

Brain disorders are characterized by the progressive loss of structure and function of the brain as a 

consequence of progressive degeneration and/or death of nerve cells. Aging is a major risk factor 

for brain disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic 

lateral sclerosis (ALS), and stroke. Various cellular and molecular events have been shown to play 

a role in the progress of neurodegenerative diseases. Emerging studies suggest that primary cilia 

could be a key regulator in brain diseases. The primary cilium is a singular cellular organelle 

expressed on the surface of many cell types, such as astrocytes and neurons in the mature brain. 

Primary cilia detect extracellular cues, such as Sonic Hedgehog (SHH) protein, and transduce 

these signals into cells to regulate various signaling pathways. Abnormalities in ciliary length and 

frequency (ratio of ciliated cells) have been implicated in various human diseases, including brain 

disorders. This review summarizes current findings and thoughts on the role of primary cilia and 

ciliary signaling pathways in aging and age-related brain disorders.
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1. Introduction

Aging is a sum of the dynamic changes occurring in biological, physiological, 

environmental, psychological, behavioral, and social processes in an organism. An aging 

brain manifests changes in its structure and functioning. At the cellular level, there is an 

extensive loss of functioning in brain cells due to phenomena such as cellular senescence 

and stem cell exhaustion (Bartzokis et al., 2003; Hedden and Gabrieli, 2004; Lopez-Otin et 

al., 2013; Yankner et al., 2008).

Aging is a major risk factor for various age-associated brain disorders such as Alzheimer’s 

disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), stroke, etc. 

(Park et al., 2020). AD is a progressive loss of brain cell connections, whereby their 

degeneration and death severely impact memory and brain functioning (King et al., 2020). 

PD is a severe decrease in dopamine levels due to neuronal degeneration and gliosis in 

the substantia nigra pars compacta (SNpc), affecting movement coordination (Chai and 

Kohyama, 2019). ALS is characterized by progressive muscle weakness that is caused 

by nerve cell breakdown and loss of physical functioning (Rojas et al., 2020). Stroke is 

caused by impaired blood supply resulting in damage to the brain, which often leads to 

incoordination in walking, speaking, and understanding and numbness of the face, arm, and 

leg (Abdullahi et al., 2018). Studies have demonstrated a strong correlation of age with 

the development of brain disorders, including AD and PD (Aarsland et al., 2017; Cao et 

al., 2019; Kalia and Lang, 2016; Mattson et al., 2004; Scheltens et al., 2016) and stroke 

(Krishnamurthi et al., 2013).

Emerging studies have demonstrated that primary cilia play a pivotal role in brain 

development and brain disorders (Park et al., 2019). Primary cilia are essential for synapses 

of newborn neurons and defects in primary cilia lead to the shortening of dendrites of 

neurons and their failure of integration into the adult brain (Kumamoto et al., 2012). In 

addition, PD and ALS are also linked to defective primary cilia (Gazea et al., 2016). Primary 

ciliary signaling pathways such as Sonic Hedgehog (SHH) and Wnt pathways have been 

shown to contribute to the progress of these disorders (Gazea et al., 2016). The current 

review will summarize the profound role of primary cilia and ciliary signaling pathways in 

AD, PD, ALS, and stroke.

2. Primary cilia and ciliary signaling

Primary cilia are present in various mammalian cells, including stem, epithelial, endothelial, 

muscle, and various brain cells (Venkatesh, 2017). Primary cilia are non-motile tubular 

structures composed of nine microtubules with 9 + 0 axoneme arrangement, while motile 

cilia are tubular structures of two central microtubules surrounded by nine microtubules 

with 9 + 2 axoneme arrangement (Satir and Christensen, 2007). Primary cilia harbor various 
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G protein-coupled receptors (GPCRs) that can sense extracellular chemical, osmotic, and 

mechanical stimuli. Primary cilia thus play a crucial role in signal transduction (Dummer et 

al., 2016; Hilgendorf et al., 2016). Defects in primary ciliary length and morphology often 

result in dysregulation of signaling transduction and cellular functionality, which in turn 

contribute to the development of various diseases termed ciliopathies (Ocbina et al., 2011).

Primary cilia are essential organelles for the transduction of the Hedgehog (Hh) signaling 

pathway (Fig. 1). In the absence of Hh ligand, PTCH (a 12 transmembrane domain receptor 

of Hedgehog ligand) interacts with Smoothened (SMO) and inhibits translocation of SMO 

into the primary cilia. This leads to phosphorylation and cleavage of full-length glioma-

associated oncogene (GliFL) to Gli repressor (GliR). Following nuclear translocation, GliR 

binds to the promoter regions of Hh target genes and represses transcription of these genes 

(Jenks et al., 2018). In the presence of extracellular Hh, it binds to PTCH and relieves SMO 

inhibition. The released SMO enters the tip of the primary cilium, where it represses the 

Suppressor of Fused (SuFu). This leads to the modification of GliFL to Gli activator form 

(GliA) and nuclear translocation of GliA and activation of the Hh target genes (Jenks et al., 

2018). (See Table 1.)

The basal body of primary cilia harbors several components of the Wnt signaling pathway, 

such as Wnt receptors – FRIZZLED transmembrane proteins, Dishevelled (DVL), β-catenin, 

GSK3B, AXIN, and adenomatosis polyposis coli (APC) (Rimkus et al., 2016). In the 

absence of canonical Wnt stimulation, the GSK3B-AXIN-APC destruction complex triggers 

the phosphorylation, ubiquitination, and degradation of β-catenin. In the presence of 

extracellular Wnt ligands, they bind to FRIZZLED and a single-pass transmembrane 

coreceptor – low-density lipoprotein receptor-related protein (LRP) – resulting in the 

activation of DVL, which in turn recruits the destruction complex to the cell membrane and 

inhibits the phosphorylation and degradation of β-catenin (Fig. 2). This ultimately promotes 

nuclear translocation of β-catenin and transcription of the Wnt target genes (Bisgrove 

and Yost, 2006). The primary cilium can fine-regulate the activation of Wnt target genes 

by controlling the degradation of DVL through cilia proteins INVS, NPHP3, and KIF3A 

(Veland et al., 2009; Wheway et al., 2018).

The Notch receptor is located on the primary ciliary membrane; upon binding of its 

extracellular domain to a Notch ligand, such as JAGGED or DELTA ligand on the 

membrane of an adjacent cell, the Notch receptor is cleaved and the interaction leads to 

the release of the Notch intracellular domain (NICD) (Rohatgi et al., 2007) (Fig. 3). As a 

result, NICD translocates to the nucleus, where it forms a complex with the transcription 

factor CSL and, in turn, activates the transcription of Notch target genes (Rohatgi et al., 

2007). Notch target genes such as Hes genes can regulate primary ciliary translocation of 

PTCH and SMO (Corbit et al., 2005; Huangfu et al., 2003), suggesting the existence of 

crosstalk between ciliary signaling pathways.

The TGFβ signaling in primary cilia operates by activating receptor R-SMADs transcription 

factors (SMAD2/3 and SMAD1/5/8) via internalization of active receptors by clathrin-

mediated endocytosis (CME) at the ciliary pocket (Garcia-Gonzalo and Reiter, 2017). The 

R-SMADs form a trimeric complex with the co-SMAD, SMAD4. This leads to nuclear 
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translocation of the complex and activates the transcription of the target genes (Fig. 4). 

TGFβ can also activate extracellular signal-regulated kinase 1/2 (ERK1/2) in the primary 

cilium (Garcia-Gonzalo and Reiter, 2017; Oh and Katsanis, 2013). Activation of TGFβ 
receptors promotes the SHH signaling pathway (Garcia-Gonzalo and Reiter, 2017), adding 

another layer of crosstalk between ciliary signaling pathways. (See Fig. 5.)

3. Primary cilia and ciliary signaling in aging and age-related brain 

disorders

Emerging studies have demonstrated that primary cilia and ciliary signaling pathways are 

involved in aging and various brain disease-related cellular processes, including cell cycle 

control (Abdelhamed et al., 2013), cell proliferation (Willaredt et al., 2008), differentiation 

(Wheway et al., 2018), migration (Wheway et al., 2018), as well as neuronal stem cell 

(NSC) maintenance (Stasiulewicz et al., 2015). For example, disruption of cortical and 

hippocampal primary cilia impacts cognitive function through alterations in behavior, 

learning, memory, and new object recognition (Mohapatra et al., 2013; Schmid et al., 2018; 

Schneider et al., 2005). Moreover, primary cilia have a profound role in degeneration of 

cognitive impairment present in AD patients by impacting the maturation of cholinergic 

neurons in the forebrain (Guadiana et al., 2013). Therefore, defective primary cilia are 

strongly associated with aging and many neurodegenerative disorders incldung PD and ALS 

by abnormal functioning of ciliary signaling pathways (Gazea et al., 2016).

3.1. Primary cilia in normal brain aging

During aging, brain cells undergo various morphological and functional changes. Neural 

stem cell (NSC) exhaustion is one of the hallmarks of brain aging (Alvarez-Satta et al., 

2019). Primary cilia and SHH signaling are required to form adult NSCs (Han et al., 2008). 

Further study suggests that primary cilia control the cell cycle of neural progenitors (Li 

et al., 2011). These findings suggest that primary cilia and ciliary signaling could regulate 

the aging process by controlling NSC proliferation and quiescence. The length of primary 

cilia is increased with age in the CA1 and CA3 but not in the dentate gyrus (DG) of rats 

(Guadiana et al., 2016). Moreover, a recent meta-analysis study suggests that the expression 

of primary cilia structure and function associated genes shows age-dependent patterns across 

the human lifespan (Chen et al., 2021). However, how primary cilia are regulated and 

function during brain aging is still under-studied.

The deficiency of SHH signaling in hypothalamus astrocytes prevents high-fat diet-induced 

obesity and insulin resistance, suggesting that astrocytic SHH signaling is a pivotal regulator 

in metabolic alterations associated with aging (Tirou et al., 2021). A study in the Octodon 
degus demonstrated that Wnt signaling activity is decreased in the brain during aging 

(Inestrosa et al., 2020). Notably, administration of ANDRO, an activator of the Wnt 

signaling, rescued the Wnt signaling loss in the brain of adult O. degus (Inestrosa et 

al., 2020). Previous studies showed that ANDRO treatment recovers synaptic protein loss 

and cognitive impairment (Rivera et al., 2016; Serrano et al., 2014), indicating that Wnt 

signaling plays a crucial role in aging. Cellular quiescence is another hallmark of aging. 

Notch signaling activity is significantly reduced in the aged brain (Sun et al., 2013). 
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Administration of Notch1 activator increases the numbers of proliferating cells in aged 

rat brain, suggesting Notch signaling is a key player in regulating neurogenesis (Sun et 

al., 2013). Activation of TGFβ signaling pathway can promote cellular quiescence of 

NSCs in adult neurogenic niches (Kandasamy et al., 2014). These studies suggest that 

primary cilia and cilia signaling pathways are involved in aging. However, the detailed 

mechanisms underlying primary cilia-mediated age-associated cognitive decline remain 

elusive. Crosstalk between primary cilia pathways plays a crucial role in the process of 

aging (Wu et al., 2021); whether interactions between primary cilia and the pathways play a 

role during aging remains largely unknown and warrants further investigation.

3.2. Primary cilia and ciliary signaling pathways in Alzheimer’s disease

The dysregulation of primary ciliogenesis and ciliary signaling pathways have been shown 

to reduce cell proliferation and neurogenesis associated with aging and age-related diseases, 

including AD. Using the triple transgenic AD model mice (3xTg-AD) that produce 

both Aβ1–42 and the mutant human tau protein tauP301L, Rodríguez et al. found an age-

dependent decrease in neurogenesis (Rodriguez et al., 2008). Moreover, male 3xTg-AD 

mice exhibited a further reduction in the production of new neurons in the subventricular 

zone (SVZ) and the subgranular zone (SGZ) of the DG in the hippocampus at 9 months of 

age and a complete depletion at 12 months (Rodriguez et al., 2008). Interestingly, female 

3xTg-AD mice presented an earlier decrease in neurogenesis at 4 months with the maximum 

reduction at 12 months compared to controls (Rodriguez et al., 2008). These findings, 

therefore, indicate that deficiency of primary cilium-mediated cell proliferation contributes 

to the reduced neurogenesis in AD Tg mice accumulating both Aβ42 and tau protein and 

plays an important role in the progress of AD (Armato et al., 2013; Chakravarthy et al., 

2012; Morelli et al., 2017).

Chakravarthy et al. demonstrated that the length of primary cilia is significantly reduced 

in the hippocampal dentate granule cells in 3xTg-AD mice (Chakravarthy et al., 2012). To 

investigate whether it was one or both accumulation of Aβ1–42 and mutant tau that decreased 

the length of primary cilia in the granular cells of 3xTg-AD mice, the investigators 

compared the primary cilia length in the hippocampal tissues from 2xTg-AD mice and 

tauopathy mice that produce only large amounts of Aβ1–42 and only a mutant human tau 

protein, respectively. Intriguingly, no significant difference in the cilial length or gross 

morphology was observed in the granule cells between 2xTg-AD mice and C57/BL6 

wild-type mice at 6–8 months of age and between tau-Tg mice and wild-type B6.C3H 

mice aged 3–4 months (Chakravarthy et al., 2012). These findings thus suggest that AD-

associated reduction in the length of primary cilia requires both accumulation of Aβ1–42 

and mutant tau in mice. However, in an in vitro study, Armato et al. demonstrated that 

Aβ1–42 decreases primary cilia length and frequency, in turn disrupting SHH signaling in 

NIH3T3 cells (Vorobyeva and Saunders, 2018). Notably, He et al. demonstrated that SHH 

signal components – SHH, SMO, GLI1, and GLI2 – were upregulated in the hippocampus 

of APP23 mice and AD patients compared with the controls. At the same time, PTCH1, 

PTCH2, and GLI3 were downregulated in APP23 mice and AD patients (He et al., 2014). 

The authors further demonstrated that exposure to a high dose of Aβ1–42 significantly 

decreased the expression of PTCH and GLI but increased the expression of SHH compared 
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with exposure to the low dose of Aβ1–42 in isolated hippocampal glial precursor cells 

(GPCs) (He et al., 2014). These findings suggest that dysregulation of primary cilia and 

ciliary signaling could vary depending on the amount of Aβ1–42 accumulation in AD 

patients’ brains.

The length of primary cilia in the hippocampus of APP/PS1 mice has been shown to be 

significantly increased compared with control mice (Hu et al., 2017). Both gain-of-function 

and loss-of-function studies have demonstrated that serotonin receptor 5-HT6 plays a pivotal 

role in mediating the elongation of primary cilia and may contribute to AD development 

(Hu et al., 2017). Importantly, intraperitoneal administration of 5-HT6 antagonist SB271046 

decreased cilia length and rescued the cognitive impairment in APP/PS1 mice (Hu et al., 

2017).

The degeneration of cholinergic neurons of the nucleus basalis of Meynert (NBM) in the 

basal forebrain (BF) has been linked to cognitive decline in AD (Kilimann et al., 2014). 

Morelli et al. demonstrated that intravenous administration of cholinergic neurons from the 

human fetal NBM (hfNBMs) significantly improved memory functions in AD rats treated 

with quisqualic acid (QA) (Morelli et al., 2017). Studies showed that the nerve growth factor 

(NGF) plays an essential role in maintaining the functions of the brain cholinergic neurons 

(Aloe et al., 2015). An in vitro study suggests that NGF can synergize the effect of SHH 

in promoting the proliferation of cholinergic neurons (Reilly et al., 2002). Interestingly, 

NGF treatment significantly increased the percentage of hfNBMs exhibiting primary cilium 

(Morelli et al., 2017), indicating that primary cilia and ciliary signaling could be the 

therapeutic targets for treating AD. The SHH inhibitory receptor PTCH1 has been shown to 

be upregulated by the amyloid precursor protein intracellular domain (AICD) derived from 

gamma-secretase-mediated cleavage of beta-amyloid precursor protein (APP) (Roncarati et 

al., 2002; Trazzi et al., 2011). In the Ts65Dn mouse Down syndrome model, Giacomini 

et al. demonstrated that subcutaneous administration of ELND006 – an inhibitor of APP 

γ-secretase – decreased the production of AICD and the expression of PTCH1 and restored 

neurogenesis in Ts65Dn mice (Giacomini et al., 2015).

Increasing amounts of evidence have shown that the Wnt signaling pathway plays an 

important role in AD pathogenesis. Downregulation of Wnt signaling activity has been 

observed in the human AD brain (Folke et al., 2019; Riise et al., 2015) as well as the brain 

of various AD rodent models such as J20 Tg (Tapia-Rojas and Inestrosa, 2018), double 

transgenic APPswe/PS1dE9 (Vargas et al., 2015), and SAMP8 (Bayod et al., 2015) mice. 

These results thus suggest that activation of Wnt signaling is a promising treatment for 

AD (Jia et al., 2019). Intriguingly, Vargas et al. have demonstrated that intrahippocampal 

administration of WASP-1 (Wnt-activating small molecule potentiator-1) was able to 

activate Wnt/β-catenin signaling in hippocampal neurons and rescue hippocampal synaptic 

impairments in APP/PS1 mice (Vargas et al., 2015).

The role of the Notch signaling pathway has been implicated in the memory process 

and adult neurogenesis (Alberi et al., 2013). Notch aberrant activation has been shown to 

contribute to AD pathology (Kopan and Goate, 2000; Woo et al., 2009). Loss of function 

of Notch results in similar phenotypes observed in AD, such as neuronal dysfunction and 

Ma et al. Page 6

Neurobiol Dis. Author manuscript; available in PMC 2022 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



spatial memory deficits (Costa et al., 2003; Marathe et al., 2017). Rahman et al. found 

that intraperitoneal injection of c-Jun N-terminal kinase (JNK) specific inhibitor SP600125 

decreased Notch1 signaling in 3-month-old C57BL/6 mouse brains without induction of 

apoptosis (Rahman et al., 2012). In an AD mouse model, Zhou et al. demonstrated that 

chronic treatment of SP600125 decreases amyloid plaque burden, β-amyloid production, and 

tau hyperphosphorylation and reversed cognitive deficits in APP/PS1 AD mice (Zhou et al., 

2015). At the same time, intragastrical administration of curcumin promotes proliferation 

of adult neural stem cells and the birth of neurons through activation of Notch signaling 

pathway in 9-month-old APP/PS1 AD mice (Li et al., 2019). These findings, therefore, 

suggest that the Notch signaling pathway could be one of the therapeutic targets for treating 

AD.

Earlier studies have demonstrated that levels of transforming growth factor-beta (TGFβ) 

were elevated in both cerebrospinal fluid (CSF) and serum samples of AD patients (Chao 

et al., 1994a; Chao et al., 1994b). Following studies demonstrated that TGFβ is involved 

in several aspects of AD pathogenesis, including βAPP synthesis and processing, plaque 

formation, glial response, and neuronal cell death (Masliah et al., 2001). TGFβ is able 

to bind to βAPP (Bodmer et al., 1990). Moreover, in human APP/TGFβ1 bigenic mice, 

Wyss-Coray et al. demonstrated that co-expression of TGFβ accelerated the deposition of 

amyloid-beta(Aβ) peptide (Wyss-Coray et al., 1997). A Comparative Study demonstrated 

that expression of TGFβ type I (RI) and type II (RII) receptors is increased in reactive glia in 

AD patients compared with controls (Lippa et al., 1998), indicating upregulated TGFβ could 

regulate glial responses in AD. Interestingly, overexpression of TGFβ in astrocytes has been 

shown to promote amyloidosis in mice at young ages (Lifshitz et al., 2013). These studies 

suggest that TGFβ signaling pathway could contribute to the degenerative process in AD. In 

contrast, evidence also supports that TGFβ signaling pathway could serve as a neurotrophic 

pathway and play protective and survival roles in neurons (Wyss-Coray, 2006). Moreover, 

TGFβ can promote microglial phagocytosis activity, increase amyloid-beta clearance, and 

reduce plaque burden in transgenic mice (Wyss-Coray et al., 2001). Furthermore, astrocyte-

derived TGFβ has been shown to protect synapses against amyloid-β oligomers (AβOs) in 

AD models (Diniz et al., 2017).

3.3. Primary cilia and ciliary signaling pathways in Parkinson’s disease

Parkinson’s disease (PD) is a neurodegenerative disease characterized by slowness of 

movement, loss of muscle and balance (Kim et al., 2018). The pathological hallmarks of 

PD include the loss of dopamine neurons in the substantia nigra (Ferrer et al., 2011). In the 

6-Hydroxydopamine-induced hemiparkinsonian rat model, Miyoshi et al. demonstrated the 

increased length of primary cilia in striatal neurons on the ipsilateral (operated) compared 

with the contralateral (not operated) sides of the dorsolateral quarter (Miyoshi et al., 2014). 

Interestingly, bromocriptine administration was able to abrogate the elongation of striatal 

neuronal cilia in lesioned sides of hemiparkinsonian rats (Miyoshi et al., 2014), suggesting 

primary cilia could be a target for the treatment of PD.

Recent findings in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced 

mouse model of PD demonstrated enhanced primary ciliogenesis in dopamine neurons (Bae 
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et al., 2019). Motor function assessment, using the rotarod performance test, demonstrated 

that the average time spent on a rod was significantly reduced in MPTP-treated mice 

compared with saline-injected mice. Interestingly, the depletion of primary cilia in dopamine 

neurons led to severe motor dysfunction in MPTP-administered mice (Bae et al., 2019). 

These results thus suggest that primary cilia play a protective role against MPTP-induced 

dopamine motor disability (Bae et al., 2019).

Leucine-rich repeat kinase 2 (LRRK2) is a protein kinase that phosphorylates a subset 

of Rab GTPases, including Rab8, Rab10, and Rab12 (Steger et al., 2017). Mutations in 

LRRK2 are one of the common genetic causes of late-onset, autosomal-dominant familial 

PD (Nguyen et al., 2020). Affinity enrichment mass spectrometry (AE-MS) results suggest 

that the primary ciliogenesis regulators, RILPL-1 and -2, can interact with phosphorylated 

Rab8, Rab10, and Rab12 (Steger et al., 2017). Strikingly, both the number of ciliated 

cells and length of primary cilia were significantly decreased in LRRK2-R1441G knock-in 

mouse embryonic fibroblasts (MEFs), which harbor increased kinase activity, compared 

with LRRK2 inhibitor MLi-2 treated cells (Steger et al., 2017). Importantly, the number 

of ciliated choline acetyltransferase (ChAT)-positive cholinergic neurons was significantly 

decreased in the striatum of R1441C mice – a valid preclinical model for PD compared with 

wild type (Dhekne et al., 2018). Altogether, the lack of dopaminergic signaling in striatal 

neurons of PD patients could be caused by LRRK2-mediated protein trafficking alterations 

in primary cilia (Dhekne et al., 2018; Miyoshi et al., 2014; Steger et al., 2017).

The role of SHH in the induction and differentiation of nigrostriatal dopaminergic neurons 

has been well established (Hynes et al., 1995). Intrastriatal administration of SHH has been 

shown to rescue behavioral impairment in the 6-hydroxydopamine (6-OHDA)-induced rat 

model of PD (Tsuboi and Shults, 2002). In line with this study, gene transfers of SHH 

and its downstream transcription factor-GLI1 have also been shown to protect dopaminergic 

nigrostriatal neurons in 6-OHDA-treated rats (Hurtado-Lorenzo et al., 2004). Despite the 

protective role of SHH signaling reported in many studies, the underlying molecular 

mechanisms by which the SHH signaling pathway regulates neuronal survival and functions 

remain largely unknown. The potential adverse effect of the SHH signaling pathway also 

warrants further investigation.

Over the last two decades, a considerable amount of experimental evidence has 

demonstrated that dysregulation of Wnt signaling contributes to the development and 

progression of PD (Marchetti, 2018; Purro et al., 2014). Wnt signaling regulates multiple 

cellular functions such as proliferation, differentiation, and cell fate determination. Impaired 

Wnt signaling is associated with the degeneration of midbrain dopaminergic neurons of 

the substantia nigra in PD (Stephano et al., 2018). In line with this, the levels of secreted 

Wnt antagonist Dickkopf-1 (Dkk1) have been shown to be elevated in MPP+ stimulated 

neurons (a cellular model of PD) and the ventral midbrain of 6-OHDA administered rats 

(Dun et al., 2012; Dun et al., 2013). Interestingly, knockdown of Dkk1 has been shown 

to protect against MPP + -induced neurotoxicity in neurons (Dun et al., 2013). Lithium 

Chloride (LiCl) can inhibit GSK3β activity and stabilize β-catenin and thus serves as an 

agonist of the canonical Wnt signaling pathway (Hedgepeth et al., 1997). LiCl treatment 

induces dopaminergic differentiation both in vitro and in vivo (Qi et al., 2017; Soleimani 
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and Ghasemi, 2017). Animal studies demonstrated that administration of LiCl rescues the 

activity of Wnt signaling pathway in the ventral midbrain and restores motor function and 

memory in PD models (Dun et al., 2012; Qi et al., 2017).

Progressive accumulation of misfolded α-synuclein (α-syn) in cortical and subcortical 

brain regions is another hallmark of the pathogenesis of PD (Trojanowski and Lee, 1998). 

Transgenic mice expressing human A53T mutant α-syn (α-syn Tg mice) have been widely 

used to mimic PD pathology. A previous study demonstrated a reduced expression of 

Notch-1 in α-syn Tg mice compared with non-Tg controls (Crews et al., 2008). The animal 

study also supports the accumulation of α-syn decreases NPC survival via downregulation 

of Notch-1 expression and its signaling (Crews et al., 2008). Of note, a study has also 

shown that suppression of Notch signaling by the LRRK2 complex in the mouse brain leads 

to accelerated neuronal differentiation (Imai et al., 2015). A recent study suggested that 

administration of osthole attenuates motor deficits via suppressing Notch signaling pathway 

in the MPTP-induced mouse PD model (Wang et al., 2019). These findings suggest that 

Notch is fine regulated in PD, but the molecular mechanism(s) is not fully elucidated yet.

TGFβ has been shown to be upregulated in the brain and the ventricular CSF of PD patients 

(Mogi et al., 1995; Vawter et al., 1996). Deficiency of either TGFβ or its downstream 

gene Smad3 promotes the development of neurological and motor symptoms associated 

with PD (Giraldez-Perez et al., 2014; Tesseur et al., 2017), while activation of TGFβ 
signaling plays a neuroprotective role in both mouse and rat PD models (Chen et al., 

2017b; Tesseur et al., 2017). Moreover, both in vitro and in vivo studies have demonstrated 

that α-syn oligomers (αSO) stimulation increased levels of TGFβ, which in turn induced 

the astrocyte reactivity and enhanced the synaptogenic capacity of astrocytes (Diniz et al., 

2019). Intriguingly, inhibition of TGFβ signaling impaired glutamatergic synapse formation 

mediated by astrocyte conditioned medium in vitro and striatal synapse formation in vivo 
(Diniz et al., 2019). Importantly, TGFβ treatment protected mesencephalic neurons against 

synapse loss triggered by αSO (Diniz et al., 2019).

3.4. Primary cilia and ciliary signaling pathways in Amyotrophic lateral sclerosis (ALS)

Amyotrophic lateral sclerosis (ALS) is an age-related disorder characterized by 

neurodegeneration of motor neurons in the brain and spinal cord (Gordon, 2013). Both 

in vitro and in vivo studies have demonstrated that SHH treatment promotes induction and 

differentiation of moto-neurons (Ericson et al., 1996; Lee et al., 2007; Lewis and Eisen, 

2001; Tanabe et al., 1995). Transplantation of SHH treated human motor neurons delayed 

clinical onset and prolonged life in ALS mice (Lee et al., 2014). Ma and coworkers found 

that the proportion of primary cilia is reduced in the spinal motor neurons of G93A SOD1 

(mSOD) mice, a mouse model of ALS (Ma et al., 2011). Intriguingly, Peterson and Turnbull 

demonstrated that SHH or the SHH agonist PUR reduces cell death in a cellular model of 

ALS (Peterson and Turnbull, 2012). The same group further demonstrated that treatment of 

SHH significantly increased the percentage of motor neurons in culture and the number of 

ciliated motor neurons, especially so for mSOD cells (Ma et al., 2013). These findings thus 

suggest that primary cilia and the associated signaling pathways merit further consideration 

as potential therapeutic targets for ALS.
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Wnt signaling pathway is associated with ALS. Both mRNA and protein of Wnt1, Wnt2, 

Wnt3a, Wnt4, Wnt5a, and Wnt7a have been shown to be upregulated in the spinal 

cord astrocytes of mSOD mice with disease progression (Chen et al., 2012a; Chen et 

al., 2012b; Li et al., 2013; Wang et al., 2013; Yu et al., 2013). Additionally, results 

of qPCR and immunofluorescence assays demonstrated FRIZZLED-5 – a Wnt signaling 

component – was significantly upregulated in neurons in the spinal cord of mSOD mice 

at late stages (Gonzalez-Fernandez et al., 2016). The authors also demonstrated that the 

levels of FRIZZLED-5 were negatively correlated with NeuN signal in neurons (Gonzalez-

Fernandez et al., 2016). In an in vitro model of ALS, Wnt signaling activity, however, 

has been shown to be decreased in motor neuron-like NSC34 cells that stably express 

human mutant SOD1 (NSC34hSOD1G93A cells) compared with cells expressing wild type 

SOD1 (NSC34hSOD1WT cells) (Pinto et al., 2013). In line with this result, McLoon et 

al. demonstrated that the expression of Wnt1, Wnt3a, Wnt5a, and Wnt7a is downregulated 

in the neuromuscular junctions at the terminal stage in mSOD mice compared with age-

matched controls (McLoon et al., 2014). Notably, the activation of the Wnt signaling 

pathway in ALS has also been validated in ALS human spinal cords (Gonzalez-Fernandez 

et al., 2019). González-Fernández et al. investigated the expression of Wnt signaling 

components in healthy and ALS human spinal cords using qPCR and demonstrated a 

significant increase in the levels of Wnt3, Wnt4, Fz2, and Fz8 (Gonzalez-Fernandez et 

al., 2019). Immunofluorescence assays demonstrated that the amount of Fz2+ astrocytes 

was significantly increased with concomitant upregulation of Wnt5a in ALS human spinal 

cord samples compared with healthy controls (Gonzalez-Fernandez et al., 2019). These 

findings suggest that the Wnt signaling pathway plays an important role in human ALS 

pathology and could be a potential therapeutic target for the treatment or prevention of ALS 

(Gonzalez-Fernandez et al., 2020). The Notch signaling has been shown to crosstalk with the 

SHH signaling in a mouse model of ALS (Ma et al., 2017).

The Notch signaling activity was significantly reduced in motor neurons but increased in 

astroglia in the spinal cord of mSOD mice compared with wild-type mice (Ma et al., 2017). 

Double immunofluorescence staining of spinal cord sections demonstrated reduced NICD 

expression in neurons and increased Notch activation in glial cells, especially astrocytes of 

mSOD mice (Liu et al., 2020a). Inhibition of Notch signaling decreased the SHH signaling 

in Shh Light II cells (Ma et al., 2017). Muscular atrophy is another hallmark of ALS. 

Grabowiecki et al. found that Notch and Notch target genes were upregulated in the muscles 

of mice treated with doxorubicin – a mouse model of muscle atrophy (von Grabowiecki 

et al., 2015). Administration of AGT251, a tocopherol-omega alkanol chain derivative, 

was able to protect muscles from doxorubicin-induced cachexia (von Grabowiecki et al., 

2015). Interestingly, injection of AGT251 increased the survival of SOD1* mice – an 

ALS model that are FVB transgenic mice expressing the missense mutation G86R (human 

G85R equivalent) in the SOD1 gene (von Grabowiecki et al., 2015). However, the effect of 

AGT251 on Notch signaling in the motor neurons and muscles of patients with ALS remains 

unknown.

The levels of TGFβ1 have been shown to be increased in the serum and CSF of ALS 

patients compared with controls (Ilzecka et al., 2002). Moreover, the levels of CSF TGFβ1 

showed a significant positive correlation with the duration of ALS (Ilzecka et al., 2002). 
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In line with these findings, the levels of Phosphorylated Smad2/3 (pSmad2/3) were also 

elevated in the spinal cord of ALS patients and G93A mutant SOD1 transgenic (mSOD1 

Tg) mice (Nakamura et al., 2008). Endo et al. demonstrated that TGFβ1 is upregulated in 

astrocytes of murine and human ALS (Endo et al., 2015). Interestingly, astrocyte-specific 

overproduction of TGFβ1 accelerates disease progression in SOD1G93A mice (Endo et 

al., 2015). Therefore, the TGFβ signaling pathways have been proposed as pathogenic 

factors in the development of ALS, and inhibition of TGFβ signaling pathways could offer 

promising targets for the treatment of ALS (Morrison et al., 2009; Peters et al., 2017). 

Indeed, administration of TGFβ signaling inhibitor is able to extend the survival time of 

ALS mice (Endo et al., 2015). Similarly, treatment with ActRIIB. mFc, a signaling receptor 

for TGFβ ligands and myostatin, has also been shown to increase muscle mass and myofiber 

diameter in SOD1G93A transgenic mice (Morrison et al., 2009).

3.5. Primary cilia and ciliary signaling pathways in stroke

Stroke is caused by the interruption or reduction of blood supply due to a blocked blood 

vessel or bleeding in the brain. Disruption of the blood-brain barrier (BBB) – composed of 

endothelial cells, pericytes, and astrocytes – is one of the hallmarks of stroke (Abdullahi 

et al., 2018; Campisi et al., 2018). Endothelial cells lacking primary cilia have been 

shown to be susceptible to bone morphogenetic protein-induced cellular calcification, which 

is a leading cause of blood vessel destruction (Sanchez-Duffhues et al., 2015). Loss of 

primary cilia in endothelial cells promotes atherosclerosis in Apoe−/−mice fed a high-fat, 

high-cholesterol diet, suggesting the protective role of primary cilia in atherosclerosis 

(Dinsmore and Reiter, 2016). However, the role of primary cilia in stroke remains largely 

unknown, and therefore, studies are urgently warranted.

Though the role of primary cilia in stroke is not clear, several ciliary signaling pathways 

have been implicated in this disease. Animal studies demonstrated that both intrathecal and 

intracerebroventricular administration of SHH protein improved neurological recovery and 

stimulated neural progenitor cell proliferation in middle cerebral artery occlusion (MCAO) 

stroke rats (Bambakidis et al., 2012; Chen et al., 2017a). In line with this finding, studies 

have demonstrated that both single intravenous administration (Chechneva et al., 2014) 

and repeated intraperitoneal administration (Liu et al., 2020b) of PUR could attenuate 

neuroinflammation and protect the brain against ischemic injury in MCAO and hypoxic-

ischemic (HI) mice, respectively. Additionally, oligodendrocytes have also been shown to 

play a role in ischemic damage (Chen et al., 2001). Interestingly, treatment with bone 

marrow stromal cell (BMSC) promotes oligodendrogenesis by activating the SHH/Gli1 

signaling pathway, which improves neurological outcomes in the brain of MCAO stroke rats 

(Zhang et al., 2009). These findings thus suggest that targeting the SHH signaling could be 

an effective strategy for treating stroke. The molecular mechanisms by which SHH-mediated 

neuroprotection functions, however, warrant further investigation.

A large body of evidence has demonstrated the neuroprotective role of Wnt signaling 

in stroke. Animal studies have demonstrated that activation of Wnt signaling pathway 

attenuates BBB dysfunction and protects neurons in stroke (Mastroiacovo et al., 2009; Zhao 

et al., 2020). Dickkopf-1 (DKK1) is a secreted inhibitor of canonical β-catenin-dependent 
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Wnt signaling (Kagey and He, 2017). High levels of DKK1 in the circulating system have 

been associated with stroke (He et al., 2016; Seifert-Held et al., 2011). Doubleridge mice 

contain an insertional mutant in the transcriptional enhancer of the dkk-1 gene (Adamska et 

al., 2003). Doubleridge mice exhibited an attenuated reduced infarct volume in response to 

MCAO compared with control animals, suggesting that the upregulation of DKK-1 in stroke 

contributes to the pathophysiology of stroke (Mastroiacovo et al., 2009). Similarly, both 

stereotaxic injection of Wnt3a overexpressing lentivirus and intranasal administration of 

Wnt3a protein in the striatum or subventricular zone enhanced neuro-genesis and improved 

neurological function in mice subjected to focal ischemic stroke (Shruster et al., 2012; 

Wei et al., 2018). Additionally, various drugs/treatments, such as morroniside (Sun et al., 

2014), cornin (Xu et al., 2016), and electro-acupuncture (Chen et al., 2015) have been 

shown to promote neurogenesis via Wnt/β-catenin signaling pathway in stroke animals. 

These findings thus support that activating the Wnt signaling pathway could be beneficial in 

increasing neurogenesis, reducing BBB dysfunction, and decreasing neuroinflammation in 

stroke.

Increasing evidence suggests that Notch signaling plays a crucial role in the neuropathology 

of stroke. Activation of Notch signaling worsens brain damage and functional outcome in 

ischemic stroke (Arumugam et al., 2006). Rodent studies have demonstrated that activating 

Notch signaling in the endothelium during brain development induces brain arteriovenous 

malformations (BAVMs), an important cause of stroke (Murphy et al., 2008). Furthermore, 

activation of Notch signaling pathway can increase proliferation and differentiation of adult 

SVZ neural progenitor cells as well as the proliferation of smooth muscle cells (SMCs), 

which in turn promote arteriogenesis in stroke (Chen et al., 2009; Wang et al., 2009; 

Zacharek et al., 2009). Under normal conditions, Notch signaling maintains ependymal 

cells in quiescence, while after stroke, ependymal cells are activated to generate neuroblasts 

and glial cells (Carlen et al., 2009). Constitutively active Notch signaling inhibited both 

death and differentiation of ependymal cells in MCAO stroke mice (Carlen et al., 2009). 

Astrocytes also play a pivotal role in stroke (Becerra-Calixto and Cardona-Gomez, 2017; 

Zhao and Rempe, 2010). Gamma-secretase inhibitor administration after stroke decreased 

the number of proliferative reactive astrocytes and immune cell invasion into the peri-infarct 

area (Shimada et al., 2011). Interestingly, Notch1 inhibition reduces reactive astrocyte 

formation in astrocyte-specific Notch1 conditional knockout mice suggesting Notch1 plays a 

pivotal role in reactive astrocyte formation in the peri-infarct area after stroke (Shimada 

et al., 2011). A recent study also demonstrated that inhibiting Notch1 signaling by 

overexpression of a circular RNA – circCCDC9 protected the blood-brain barrier and 

inhibited apoptosis in acute ischaemic stroke (Wu et al., 2020). These findings thus suggest 

that the Notch1 signaling pathway plays a vital role in stroke and could be a therapeutic 

target for stroke treatment.

TGFβ has both neuroprotective and neurotoxic roles in stroke. Lou et al. demonstrated that 

cerebral ischemia/reperfusion (I/R) injury-induced TGFβ signaling activation evidenced by 

upregulation of activin receptor-like kinase (ALK5) and phosphorylation of SMAD2/3 in 

rats (Lou et al., 2018). Interestingly, the authors showed that administration of Sb505124, 

an ALK5 inhibitor, significantly attenuated TGFβ signaling activation and protected rats 

against I/R injury (Lou et al., 2018), suggesting TGFβ signaling could be a target for the 
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treatment of stroke. Meanwhile, TGFβ is also known as an anti-inflammatory and neuro-

protective cytokine. To investigate the role of astrocytic TGFβ in stroke, Cekanaviciute et 

al. generated Ast-Tbr2DN mice where TGFβ signaling is inhibited specifically in astrocytes 

(Cekanaviciute et al., 2014). Ast-Tbr2DN mice showed elevated neuroinflammation during 

the sub-acute period after distal middle cerebral occlusion (dMCAO) stroke (Cekanaviciute 

et al., 2014). Importantly, Ast-Tbr2DN mice exhibited worse motor outcomes and late 

infarct expansion after photothrombotic motor cortex stroke (Cekanaviciute et al., 2014). 

These findings thus suggest that the TGFβ signaling should be fine-tuned precisely to the 

purpose of therapy.

3.6. Conclusions and perspectives

As mentioned above, dysregulation of neuronal primary cilia and ciliary signaling plays a 

key role in AD and PD. Studies have suggested that other types of cells, such as astrocytes, 

are also engaged in various neurological diseases, including AD and PD (Joe et al., 2018; 

Sanchez et al., 2021; Verkhratsky et al., 2010; Vincent et al., 2010). However, the role of 

primary cilia and ciliary signaling in astrocytes in these diseases remains poorly understood. 

The potential role of primary cilia in glial cells under neurodegenerative diseases has been 

elegantly discussed elsewhere (Ki et al., 2021).

Although studies have demonstrated the crucial role of primary cilia and ciliary signaling 

pathways in aging and age-related brain disorders, contradictory observations suggest they 

could play their roles in spatial- and temporal-dependent manners. Therefore, to understand 

the precise function of primary cilia and ciliary signaling pathways in disorders, it is 

necessary to combine genetic approaches, such as conditional tissue/cell-specific knockout 

and disease animal models. Additional tools to fine-tune primary ciliary signaling activity 

will allow the examination of the exact effects of primary cilia and ciliary signaling 

pathways in aging and age-related diseases.

Owing to the fact that primary cilia can sense and transmit extra-cellular signals into 

intracellular biochemical responses, they thus could play an essential role in mediating 

cell-cell communication under normal conditions and disease status. Recent studies have 

demonstrated that extracellular vesicles (EVs) are important intracellular mediators that 

carry a variety of cargo, including RNAs, proteins, lipids, and DNAs (Chivero et al., 2021; 

Hu et al., 2012; Hu et al., 2016). Interesting studies have demonstrated that SHH can be 

packaged on the membrane of EVs and mediate the activation of the SHH signaling pathway 

in neighboring cells (Liegeois et al., 2006; Vyas et al., 2014). The role of EVs in aging 

and age-related brain disorders has also been well documented (Hill, 2019; Robbins, 2017). 

It is thus possible that EVs could play a crucial role in aging and age-related diseases via 
mediating the activation of ciliary signaling pathways. Moreover, as reported recently, EVs, 

primary cilia and ciliary signaling could also be involved in intercellular communication 

(Ma et al., 2021). The underlying mechanism(s) of EV-mediated ciliary signaling in brain 

disorders warrants further investigation.
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Fig. 1. 
Hedgehog signaling at the primary cilium.

(A) In the absence of Hh ligand, PTCH (a 12 transmembrane domain receptor of Hedgehog 

ligand) interacts with Smoothened (SMO) at the base of primary cilia and inhibits 

translocation of SMO into the primary cilia. This leads to phosphorylation and cleavage 

of full-length glioma-associated oncogene (GliFL) to Gli repressor (GliR). Following 

nuclear translocation, GliR binds to the promoter regions of Hh target genes and represses 

transcription of these genes.

(B) In the presence of extracellular Hh, it binds to PTCH and relieves SMO inhibition. The 

released SMO subsequently enters the tip of the primary cilium where represses Suppressor 

of Fused (SuFu). This leads to the modification of GliFL to Gli activator form (GliA) and 

nuclear translocation of GliA and activation of the Hh target genes.
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Fig. 2. 
Wnt signaling at the primary cilium.

(A) In the absence of Wnt ligands, the AXIN-APC-GSK3B destruction complex triggers the 

phosphorylation, ubiquitination, and degradation of β-catenin.

(B) Wnt ligands bind to FRIZZLED and LRP receptors resulting in the activation of 

Dishevelled (DVL), which in turn recruits the destruction complex to the plasma membrane 

and inhibits the phosphorylation and degradation of β-catenin and promotes nuclear β-

catenin accumulation.

(C) In the presence of a cilium, cilia proteins INVS, NPHP3 and KIF3A control the activity 

of Wnt signaling via inhibiting the phosphorylation of DVL.
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Fig. 3. 
Notch signaling at the primary cilium.

(A) A Notch ligand, such as JAGGED or DELTA on the membrane of an adjacent cell, binds 

to the Notch receptors resulting in the cleavage of the Notch receptor and release of Notch 

intracellular domain (NICD). As a result, NICD translocates to the nucleus, where it forms 

a complex with the transcription factor CSL and, in turn, activates the transcription of Notch 

target genes.
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Fig. 4. 
TGFβ signaling at the primary cilium.

Upon binding to TGFβ, receptors of the transforming growth factor-β (TGFβRI and 

TGFβRII) translocate from the ciliary membrane to the ciliary pocket where they undergo 

internalization by clathrin-mediated endocytosis (CME), resulting in activation and nuclear 

translocation of receptor R-SMADs transcription factors (SMAD2/3 and SMAD1/5/8) and 

ultimately activates the transcription of the target genes.
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Fig. 5. 
Primary cilia and ciliary signaling in age-related diseases.
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