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A systematic exploration of the interactions
between bacterial effector proteins and host
cell membranes
Bethany A. Weigele1, Robert C. Orchard2, Alyssa Jimenez1, Gregory W. Cox1 & Neal M. Alto1

Membrane-bound organelles serve as platforms for the assembly of multi-protein complexes

that function as hubs of signal transduction in eukaryotic cells. Microbial pathogens have

evolved virulence factors that reprogram these host signaling responses, but the underlying

molecular mechanisms are poorly understood. Here we test the ability of ~200 type III and

type IV effector proteins from six Gram-negative bacterial species to interact with the

eukaryotic plasma membrane and intracellular organelles. We show that over 30% of the

effectors localize to yeast and mammalian cell membranes, including a subset of previously

uncharacterized Legionella effectors that appear to be able to regulate yeast vacuolar fusion.

A combined genetic, cellular, and biochemical approach supports that some of the tested

bacterial effectors can bind to membrane phospholipids and may regulate membrane

trafficking. Finally, we show that the type III effector IpgB1 from Shigella flexneri may bind to

acidic phospholipids and regulate actin filament dynamics.
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Protein injection systems of Gram-negative bacterial patho-
gens are among the most thoroughly studied microbial
virulence determinants. Although each of the three systems

are evolutionarily related to intrinsic molecular machines of
microbes including flagellum (i.e., type III), the conjugation pili
(i.e., type IV), and phage tail spike apparatus (i.e., type VI), they
all function to deliver bacterial effector proteins directly into the
host cells1–3. Once inside the animal or plant cell, these effector
proteins post-translationally modify or allosterically regulate
molecules involved in signal transduction or cellular archi-
tecture4. Despite significant advances in effector protein bio-
chemistry over the past decade5–7, much less is known about the
spatial and temporal dynamics of bacterial effector proteins
within the host cellular environment.

Bacterial pathogens have a limited capacity to delivery
bacterial toxins and effector proteins into host cells. The type III
secretion system, for example, is thought to translocate
between 20 and 50 effector molecules per second, which would
result in low picomolar host cellular concentrations8. This
situation poses biophysical problems for the pathogen as enzymes
operating at low molecular concentrations can exhibit extreme
fluctuations in reaction rates caused by natural variation in
host cell size, morphology, and substrate availability9. Thus, the

low concentrations of effector proteins, in the absence of highly
localized signaling mechanisms, would result in unintended and
deleterious phenotypic outcomes10. However, it remains unclear
how the majority of effector proteins amplify their enzymatic
activity within defined subcellular compartments of host cells.

The regulated targeting of proteins to the plasma membrane
and other membrane-bound organelles is a key-defining feature
of many eukaryotic signaling networks11, 12. In fact, several
aspects of host membrane architecture make it a critical site for
protein accumulation and a hub for local signal amplification.
First, the ability of lipids to recruit cytosolic proteins onto a
two-dimensional membrane surface has a powerful concentration
effect within the cell. Second, protein movement within
membranes is much slower than in the cytoplasm, providing a
physical barrier to protein diffusion. Third, certain lipid-types can
be geographically restricted within the cell, building spatially
defined membrane microdomains that generate selectivity in
many signal transduction systems. Finally, membrane surfaces are
often used as physical scaffolds for the assembly of multi-protein
complexes that display robust detection, amplification, and
decoding of input signals. In these contexts, it seems a reasonable
assumption that bacterial effector protein acquisition of lipid
binding domains would offer a simple, yet flexible, strategy for
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Fig. 1 The Ras-rescue screen. a Schematic diagram of the temperature-sensitive Ras-rescue system used to identify membrane-associated effectors in
yeast. b Experimental setup for construction of the Ras*-effector fusion library and mutants that alleviated yeast growth inhibition. Ras*-effector-HA fusion
proteins (labeled red-green) were expressed in cdc25ts and assayed for growth inhibition. Catalytically dead mutations (if known) were made in each
effector that caused yeast growth defects, allowing for those effectors to be included in the screen. The catalytic residues for EspL2Ec, LpnELp, SseFSt, IpaJSf,
and HopAA1-2Ps were unknown and, therefore, these effectors could not be included in the screen. c Growth assay for the cdc25ts yeast strain
harboring the indicated effector genes grown at the non-restrictive temperature (25 °C) or the restrictive temperature (37 °C). Effectors that allow
for yeast growth at the restrictive temperature reconstituted Ras* localization to the membrane. Effectors known to have transmembrane domains
are colored in blue as confirmation of the screen

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00700-7

2 NATURE COMMUNICATIONS |8:  532 |DOI: 10.1038/s41467-017-00700-7 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


bacterial pathogens to locally amplify and coordinate host signal
transduction systems, in both space and time, during the course
of infection.

Here, we combined a gain-of-function genetic screen in
yeast with fluorescence microscopy to systemically interrogate
bacterial effector protein and host membrane interactions. This
integrative approach revealed that ~30% of the bacterial effector
protein repertoire tested associates with membranes of eukaryotic
cells. Further characterization of phospholipid-binding interac-
tions revealed specific membrane-targeting features of several
effectors including Shigella IpgB1, which spatially localizes
Rac1 activation during bacterial invasion. This work provides
a resource and experimental methodology to examine the
spatiotemporal function of effector proteins in the host cellular
environment.

Results
Identification of effector proteins that interact with yeast
membranes. To generate a library of bacterial effector genes, we
curated the literature for confirmed type III secreted effector
proteins encoded in the SPI-I and SPI-2 genetic loci of S almo-
nella enterica serovar Typhimurium (St), the Hrp pathogenicity
island of Pseudomonas syringae (Ps), the pWR100 virulence
plasmid of Shigella flexneri (Sf), and the locus of enterocyte
effacement (LEE) as well as the nine other effector loci (non-LEE)
of Enterhaemorrhagic E. coli O157:H7 (Ec). In addition, the
library was expanded to include the type IV secreted effectors
from the Icm/Dot and VirB/D4 systems from Legionella pneu-
mophila (Lp) and Bartonella henselae (Bh), respectively. In total,
200 bacterial effector genes were cloned into the GATEWAY
compatible pENTR/D vector to facilitate rapid transfer of genes
into a wide array of yeast, mammalian, and bacterial expression
vectors (Supplementary Table 1).

Next, we adapted a “Ras-rescue screen” to identify bacterial
effector proteins that interact with intracellular membranes of the
yeast Saccharomyces cerevisiae as a model organism (Fig. 1a)13.
This screen is based on the requirement of RAS GTPase, an
essential gene that promotes cell growth and division, to interact
with cellular membranes for proper signal propagation. It is
known that RAS is targeted to the plasma membrane via fatty
acid modification of the C-terminal CaaX sequence and
membrane-associated RAS is directly activated by the guanine
nucleotide exchange factor CDC2513. A yeast strain with a
temperature-sensitive allele for CDC25 (cdc25ts) grows normally
at the permissive temperature of 25 °C, but fails to grow at 37 °C

as cdc25ts fails to activate endogenous RAS. The growth defect of
cdc25ts at 37 °C could be rescued by heterologous expression of a
constitutively active (Q61L), non-farnesylated (ΔCaaX) RAS
protein (herein referred to as Ras*) that is fused to a
membrane-targeting domain (Fig. 1a)13. In essence, if a protein
of interest drives Ras* to a cellular membrane, it will promote
cdc25ts yeast growth at the non-permissible temperature (37 °C)
(Fig. 1a). Because RAS has been shown to signal from the plasma
membrane as well as membrane-bound organelles14, 15, we
reasoned that Ras* fusions to bacterial effector proteins that
target host membrane systems would rescue cdc25ts yeast growth
at 37 °C (Fig. 1a).

All 200 bacterial effector genes were fused in-frame to the C
terminus of Ras* and transformed into cdc25ts yeast. We
were unable to recover colonies transformed with 13 bacterial
effector genes (encoding IpgB1Sf, IpgB2Sf, IpgDSf, IpaJSf, EspMEc,
EspL2Ec, EspTEc, SifBSt, SopE2St, SopBSt, SseFSt, LpnELp, and
HopAA1-2Ps), suggesting that these proteins caused a growth
arrest phenotype in yeast (Fig. 1b). Indeed, inactivating point
mutations in the bacterial GEF domain of IpgB1Sf, IpgB2Sf,
EspMEc, EspTEc, SifBSt, and SopE2St; and the catalytic phospha-
tase domain of IpgDSf and SopBSt resulted in successful yeast
transformation (Fig. 1b). We confirmed the expression of 190
full-length Ras*-effector protein fusions in the cdc25ts mutant at
the permissible growth temperature of 25 °C.

From a total of 190 Ras*-effector proteins validated, 60
promoted yeast growth at 37 °C (Figs. 1c and 2a). This value
was surprisingly large as yeast is not a natural host for these
pathogens, which infect animal and plant cells. However, the lipid
composition and membrane-binding components are highly
conserved from yeast to humans16. Indeed, several bacterial
effector proteins that rescued cdc25ts growth defects encoded
transmembrane (TM) spanning domains (e.g., TirEc, SidFLp,
YlfALp, YlfBLp, and SseGSt) (Fig. 1c), were post-translationally
modified by mammalian prenyltransferases (e.g., SifASt), or
interacted with mammalian peripheral membrane-binding
proteins (e.g., SseJSt) (Fig. 2b)17, 18. In confirmation that these
mechanisms are conserved in yeast, point mutations in the CaaX
box of SifASt that abolished its site of prenylation17 or mutations
in SseJSt that inhibits its known interaction with membrane-
bound RhoA GTPase18, failed to rescue cdc25ts yeast growth at
37 °C and disrupted yeast membrane localization (Fig. 2b). These
experiments show that yeast can be used as a model organism to
identify host pathways required for host membrane targeting of
bacterial effectors, and provided additional validation of the
membrane interactions identified in the Ras screen.
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A potential caveat of this screen was that fusion of Ras* to
the amino terminus of bacterial effector proteins may cause
mis-localization through disruption of critical localization or
retention sequences required for proper membrane interactions.
For example, the Pseudomonas syringae effectors HopF2 and
AvrPto1 are targeted to plant membranes via amino-terminal
myristoylation19, 20 and the Salmonella Typhimurium effectors
SseI and SspH2 localize to the Salmonella-containing vacuole
(SCV) in human cells via amino-terminal palmitoylation21. Given
that the Ras* fusion protein would mask the fatty acid acceptor
sites, it is not surprising that these known membrane-associated
bacterial effector proteins did not rescue cdc25ts growth at 37 °C
(Fig. 1c). It is therefore clear that the Ras-rescue screen can result
in false-negative assumptions. Nevertheless, we have identified
40 previously unreported membrane-binding interactions and
also confirmed the membrane localization of previously unchar-
acterized bacterial effector proteins (Supplementary Table 2).

Functional evaluation of membrane-binding effectors. It is
interesting to note that each of the bacterial pathogens tested
possessed at least one effector protein that interacted with yeast
cellular membranes (Fig. 2a). However, effector proteins from
S. typhimurium and L. pneumophila represented 78% of the total
positive clones (Fig. 2a). This enrichment may be due to the

intracellular, vacuolar lifestyles of these organisms, and the role of
bacterial effector proteins to alter the dynamics of host vesicle
trafficking systems during infection. Although this idea is
speculative, it was clear that bacterial effectors identified in the
Ras-rescue screen span a wide range of biological functions
including signal transduction, vesicle trafficking, cytoskeletal
dynamics, and host immune regulation (Supplementary Table 2).
In addition, literature inquiries indicated that positive hits in the
Ras-rescue screen displayed a wide variety of enzymatic activities
(Supplementary Table 2). We identified three lipid phosphatases
(SopBSt, IpgDSf, and SidFLp), three Rho-family GEFs (SopE2St,
SifASt, and IpgB1Sf), three actin nucleation factors (VipALp,
EspFEc, and EspFuEc), an E3 ubiquitin ligase (SopASt), a choles-
terol esterase (SseJSt), a protein kinase (NleHEc), a phospholipase
(CegC1Lp), and a sphingosine-1 phosphate lyase (LegS2Lp). These
findings suggest that the evolution of membrane-targeting
domains is a common strategy that may be used to enhance
the signaling specificity and/or efficacy of effector proteins.

Subcellular localization of bacterial effector proteins in yeast.
To confirm the Ras-rescue screen, EGFP protein was fused to the
amino terminus of all 60 bacterial effector genes and subcellular
localization was monitored by fluorescence microscopy in yeast. We
found 11 bacterial effector proteins (out of 60) localized to the
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plasma membrane of yeast, including Salmonella SifA, SopA, SopE2,
EHEC O157:H7 NleH, and Bartonella BepD and BepE, Shigella
IpgB1 and IpgD, and P. syringae HopA1, HopAS1, and HopS1
(Fig. 3). In addition, we found that bacterial effector proteins were
targeted to the nuclear membrane (HopO1-2Ps), endoplasmic reti-
culum (PipBSt, SopBSt, and WipBLp), Golgi apparatus (PieELp and
SidJLp), and yeast vacuole (PipB2St, Ceg19Lp, lpg0634Lp, lpg1717Lp,
lpg1751Lp, YlfALp, and VipALp) (Fig. 3). These data are consistent
with the ability of RAS to signal from plasma membrane as well as
from multiple organelle sites15. Finally, 37 effector proteins accu-
mulated in one or more subcellular structures, however the small
size of yeast (~2 µm) and the transient nature of membrane traf-
ficking systems limited our ability to define their precise location by
fluorescent microscopy. The localization in mammalian cells has
been previously reported for several bacterial effectors whose sites of
localization we were unable to precisely define in yeast: SseGSt,

SseJSt, SteASt, EspFEc, EspHEc, EspJEc, TirEc, Ceg9Lp, CegC3Lp,
SidFLp, YlfB/LegC2Lp, and LegS2Lp (Supplementary Table 2). These
data suggest that yeast can be used as a tool to identify molecular
mechanisms of effector localization. Surprisingly, only three
proteins, CegC4Lp, LegL1Lp, and LegLC8Lp, showed featureless and
diffuse localization patterns in yeast. These either represent false-
positive interactions or suggest that their membrane-binding
partner may be readily saturable (e.g., protein:protein interaction).

It is important to note that for some effectors (including
PipB2St, SifASt, SopASt, SopBSt, PieELp, YlfA/LegC7Lp,
and BepEBh) the localization in yeast does not precisely
match the localization previously reported in mammalian cells
(Supplementary Table 2). However, the molecular mechanisms
of effector targeting are likely conserved from yeast to human.
For example, SifA is localized to the Salmonella-containing
vacuole during infection and to the plasma membrane in yeast.
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Nevertheless, both targeting mechanisms require prenylation of
the C-terminal CaaX box (Fig. 2b).

Study of uncharacterized Legionella effector proteins. We
expect these results to be useful to advance two areas of research:
(1) the biological function of uncharacterized bacterial effector
proteins, and (2) the molecular mechanism of their subcellular
distribution. To address the former, we initially sought to identify
bacterial effector proteins that regulate vesicle trafficking and

membrane fusion of the yeast vacuole, an organelle that is easily
visualized by both light and fluorescence microscopy and is
evolutionarily related to the mammalian endolysomal trafficking
system. Using FM4-64 dye to label the vacuole and by monitoring
EGFP-tagged effector protein localization, we identified four
Legionella proteins that specifically associated with the yeast
vacuolar membrane (Fig. 4a). Several lines of evidence suggested
that Lpg0634Lp, Lpg1717Lp, Lpg1751Lp, and Ceg19Lp regulate
membrane trafficking events from these sites. First, ectopic
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expression of each bacterial effector protein induced a multiple-
vacuole phenotype characterized by an increase in organelle
number from an average of two vacuoles per wild-type yeast cell
to an average of six vacuoles in bacterial effector-expressing yeast
cells (Fig. 4b). Second, Lpg0634Lp, Lpg1751Lp, and Ceg19Lp

accumulated at the boundaries of docked vacuoles (Fig. 4a),
which is a specific site of membrane fusion22. Third, the
Legionella effector proteins induced a class B vacuole

fragmentation phenotype similar to those caused by loss-of-
function mutations in components of the yeast vacuole fusion
machinery, including Vam10, Vps5, and Vps17 (Fig. 4d, e)23.
Lastly, the multivacuole phenotype is probably not caused by
general stress induced by the expression of the Legionella effec-
tors, as there was no change in yeast growth in GFP-Lpg0634Lp,
GFP-Lpg1717Lp, GFP-Lpg1751Lp, and GFP-Ceg19Lp-expressing
yeast compared to GFP control (Fig. 4c).
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Similar to results found in yeast, EGFP-tagged Lpg0634Lp,
Lpg1751Lp, and Ceg19Lp expressed in HeLa cells were found to
localize in vesicular patterns reminiscent of endomembrane
trafficking organelles, but did not co-localize strictly with any
single subcellular marker (Fig. 4f). As the mammalian secretory
pathway comprises numerous membrane sub-systems, we
co-expressed EGFP-tagged bacterial effector proteins with a
constitutively active Rab5 mutant that collapses endocytic
membranes into large membrane compartment. If indeed
the Legionella effector associated with endoctyic vesicles, it
should co-localize with ca-Rab5 under these conditions. As
shown in Fig. 4f, expression of ca-Rab5 induced the fusion
of membrane vesicles harboring Lpg0634Lp and Lpg1751Lp.
Interestingly, Ceg19Lp-positive vesicles docked, but failed to fuse
with the early endosomes when co-expressed with ca-Rab5
(Fig. 4e). These results support that the subcellular localization of
bacterial effector proteins in yeast can be used to guide our
analyses in higher eukaryotic organisms. We speculate that
Lpg0634Lp, Lpg1717Lp, Lpg1751Lp, and Ceg19Lp might regulate
membrane fusion and fission events that promote the integrity of
the Legionella-containing vacuole (LCV) in infected host cells.

Loss-of-function PI-kinase screen identifies lipid-binding
domains. We then sought to develop a methodology to identify
yeast components guiding membrane targeting of each of the 57
effector proteins identified in the Ras-rescue screen. To this end, we
focused on the evolutionarily conserved inositol phospholipid
signaling system. The phosphorylation of phosphatidylinositide (PI)
by isoform-specific PI kinases has a fundamental role in regulating
the membrane–cytosolic interface in yeast, plants, and animal cells.
Yeast cells have six PI kinases that phosphorylate the 3′, 4′, or 5′
positions of PI, generating a class of negatively charged inositol-
containing phospholipids (known as PIPs) (Fig. 5a). The
geographical restriction of specific PIPs within the cell, and the
unique phosphorylation patterns on PIPs, act as site-specific signals
on membranes that recruit proteins for the assembly of spatially
localized functional complexes24, 25. Thus, inactivation of yeast
PI-kinase genes would, in theory, cause mis-localization of EGFP-
tagged bacterial effector proteins that require phospholipid inter-
actions for membrane targeting, while providing a visual readout to
identify novel modes of membrane association (Fig. 5b).

The expression of each yeast PI-kinase gene was inhibited by
either isogenic knockout of the non-essential PI-kinase genes
(VPS34, FAB1, and LSB6)26 or by doxycycline-mediated (Dox)
repression of TetO7-promoter alleles of essential PI-kinase
genes (PIK1, STT4, and MSS4)27. To confirm that repression of
TetO7-promoter alleles is sufficient to disrupt specific PIP
isoforms, we monitored the distribution of the PI4P-specific
binding protein Osh228, which shuttles between the plasma
membrane and Golgi apparatus upon depletion of the essential
PI4-kinases PIK1 and STT4, respectively (Fig. 5c)29. Consistent
with previous findings, Dox inhibition of PIK1 and STT4
expression caused the redistribution of Osh2 to the PM or Golgi,
respectively. Next, 57 EGFP-tagged bacterial effector genes were
transformed into the PI-kinase-mutant strains in a one-to-one
format, generating a mini-array of 342 potential host-pathogen
interactions (Fig. 5d). The subcellular localization of EGFP-
effector proteins were visualized by fluorescence microscopy and
subsequently compared to their location in wild-type yeast
(Fig. 5d and Supplementary Fig. 1).

As shown in Fig. 5d, 23 of 57 bacterial effector proteins
were differentially localized when expressed in one or more of the
PI-kinase-mutant strains. The majority of the effector proteins
did not simply accumulate in the cytoplasm, but rather
redistributed from their primary sites of localization to new

subcellular compartments. For example, SopASt and HopS1Ps

were redirected from the PM to internal sites by repression of
Mss4, a PI-5 kinase that generates the major PM phospholipid PI
(4,5)P2 (Fig. 5e). Depletion of PI(4,5)P2 did not simply disrupt
plasma membrane integrity, as the peripheral localization
of several bacterial effector proteins were unaltered under
these conditions (Fig. 5e). Further examination revealed that
Salmonella SopA relocated from the plasma membrane to
internal punctate via loss of several PI kinases including PIK1,
MSS4, VPS34, and FAB1, but not LSB6 or STT4 (Fig. 5f). We
concluded that the sensitivity of bacterial effector proteins to the
loss of multiple PI-kinase genes likely reflects bacterial effector
protein affinity for several phospholipid isoforms. As manipula-
tion of PI kinases will have effects on other membrane-associated
proteins and processes, it is also possible that the mis-localization
of EGFP-tagged bacterial effectors in the yeast PI-kinase deletion
strains results from alterations in other PIP-dependent processes.
Thus, biochemical analysis of effector and host PIP interactions
are needed to confirm these results.

Analyses of bacterial effector protein and host acidic phos-
pholipid interactions. To determine whether the effector
proteins that exhibited PIP-dependent membrane localizations
were able to bind directly to PIPs, we performed in vitro inter-
action studies between the 23 bacterial effector proteins identified
in the loss-of-function PI-kinase screen and a panel of acidic
phospholipids in vitro. Unfortunately, laboratory E. coli failed to
express full-length bacterial effector proteins, likely due to the
absence of pathogen-specific chaperones that are required for
their solubility and stability. To overcome this problem, each
bacterial effector protein was tagged with a tandem 8 amino acid
“Strep-tag” and expressed and purified from HEK293T cell lysates
by Strep-Tactin affinity chromatography. Purified proteins were
overlaid onto nitrocellulose membranes spotted with a variety
lipid species (PIP strips) and assessed for binding by anti-Strep-
tag immunoblot. Seven effector proteins had no interaction with
any lipid tested and we reasoned either the recombinant proteins
were misfolded during purification or these bacterial effector
proteins associate indirectly to endogenous PIP-binding proteins
in yeast. In addition, we found that six effector proteins (SseGSt,
Ceg18Lp, PpeBLp, SidALp, SidFLp, and YlfBLp) could not be
assayed under these conditions, as they produced significant
background binding (likely due to the hydrophobic nature of
predicted transmembrane spanning sequences). However, 10
bacterial effector proteins had affinity for anionic phospholipids
in vitro (Fig. 6a). A few effector proteins bound a single phos-
pholipid, whereas the remainder associated with multiple lipid
forms. This is consistent with two different modes of lipid
binding: stereoselective and general charge sensing25. It is also
important to note that the N terminus of HopA1Ps is homologous
to the Vibrio paraheamolyticus effector VopR that was recently
shown to use PIPs as folding substrate upon translocation into
eukaryotic cells30. Thus, the loss-of-function screening in yeast
can be used to identify molecular mechanisms of bacterial effector
protein binding to eukaryotic membranes.

We next sought to identify specific protein signatures that may
drive lipid-dependent subcellular localization. Neither sequence-
nor structural-based bioinformatics (e.g., PH, PHOX, FYVE, etc.)
revealed canonical lipid-binding domains in the bacterial
effectors analyzed. However, three bacterial effector proteins
(SteASt, SopASt, and IpgB1Sf) possessed short sequence motifs
enriched in basic and aromatic residues that exhibited isoelectric
points greater than 8.5, suggesting that they are positively charged
at physiological pH (Figs. 6b, c and 7a). These properties are often
found in domains that bind negatively charged phospholipids31.
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Truncation analysis confirmed that the NH2-terminal 60 amino
acids of SteASt and the NH2-terminal 163 amino acids of SopASt

were necessary and sufficient for membrane localization in yeast
(Fig. 6b, c). In addition, mutations in the basic residues R11/K36
disrupted the previously described Golgi localization of SteASt in
mammalian cells (Fig. 6b)32.

Shigella IpgB1 targets acidic phospholipids via N-terminal
polybasic region. Out of the 10 effector proteins found to
bind phospholipids, the Shigella IpgB1 was one of the few with
known enzymatic activity, thus providing a tractable model to
determine how membrane targeting might control the spatial and
temporal activity of effector proteins. IpgB1 belongs to the
WxxxE/SopE family of bacterial guanine-nucleotide exchange
factors (GEFs)33, 34. The defining feature of this family is
a conserved 180 amino acid GEF domain that converts
GDP-bound rho-family GTPases to their GTP-bound active
form34, 35. IpgB1 promotes Shigella invasion into non-phagocytic

cells through the activation of Rac1, and to a lesser extent
Cdc42, signaling cascades34, 36. In agreement with our yeast
localization data (Fig. 3), previous studies have also shown that
IpgB1 is targeted to host plasma membrane, yet the mechanism
and biological function of this interaction has not yet been
resolved37, 38.

Previous studies demonstrated that the N-terminal region of
IpgB1 includes a chaperone-binding domain that is necessary for
interactions with Spa15 in Shigella37 and that the C-terminal 180
residues contain the GEF domain that binds and activates Rac1
GTPase (Fig. 6a)34. Because inactivating mutations in the GEF
domain (IpgB1E80A) that prevent Rac1 binding and activation
had no effect on plasma membrane localization in yeast (Fig. 1c),
it was reasonable to seek membrane-binding features present in
the N terminus. Secondary structural predictions suggest that
residues 19–42 form an amphipathic helix that is enriched in
basic and hydrophobic amino acids (Fig. 7a). This region is
predicted to exhibit a PI >11, suggesting that it is positively
charged under physiological conditions. To determine whether
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the amphipathic helix mediates protein–lipid interactions, we first
took advantage of the Ras-rescue screen in yeast due to its
high sensitivity for detecting protein–membrane interactions.
Arginine and lysine residues were selectively mutated as these
residues would provide the positive charge required for acidic
phospholipid interaction. No single mutation conferred loss of
membrane-binding functions (Fig. 7b). However, a combinatorial
mutation of five basic residues (R25, K27, K30, K31, R41)
to alanine (herein referred to as IgpB15xA) abolished membrane-
based RAS* signaling (Fig. 7b). We confirmed these results
by comparing the localization of catalytically inactive IpgB1E80A

to the lipid-binding mutant IpgB15xA–E80A in yeast.
GFP-IpgB1E80A localized to the plasma membrane, whereas the
GFP-IpgB1E80A,5xA exhibited diffuse localization (Fig. 7b). To
determine whether the amphipathic helix directly mediates
protein–lipid interactions, we purified full-length, STREP-tagged
IpgB15XA from mammalian cells and overlaid the protein onto
PIP strips. In contrast to wild-type IpgB1, IpgB15xA had only
background levels of PIP binding (Fig. 7c). Finally, we performed
liposome sedimentation assays to determine whether the
interaction between IpgB1 and acidic phospholipids can be
reconstituted on a membrane bilayer using purified components.
Only background levels of wild-type IpgB1 sedimented with
membranes composed of 100% phosphatidyl choline (PC)
(Fig. 7d). In contrast, vesicles containing 20% phosphatidic acid
(PA) sedimented the majority of IpgB1 protein, but failed to
interact with IpgB15xA mutant protein (Fig. 7d). Taken together,
these studies suggest that IpgB1 utilizes an amphipathic helix
enriched with basic residues to interact directly with acidic
phospholipids.

Next, we sought to understand how the amphipathic helix
controls the location of IpgB1 signaling in mammalian cells
expressing EGFP-tagged IpgB1. Consistent with previous reports,
EGFP-tagged IpgB1 localized to actin-rich plasma membrane
ruffles (Fig. 7e)31. We also observed IpgB1 enriched on
intracellular vesicles(Fig. 7e). To confirm the endocytic nature
of the IpgB1 vesicles, we induced endocytic vesicle fusion by
overexpression of GTP-locked mutant of Rab5 (Q79L)39. In
control experiments, wild-type Rab5a localized to early endocytic
vesicles, yet did not perturb the endocytic network or IpgB1
vesicle localization (Fig. 7f). In contrast, IpgB1 colocalized
extensively with the enlarged endosomes in cells expression of
Rab5 (Q79L) indicating that the IpgB1-bound vesicles are
functionally connected to the endocytic compartment (Fig. 7f).
Having established the dual localization of IpgB1 to actin-rich
membrane ruffles and endocytic vesicles, we then tested
the requirements of the N-terminal lipid-binding domain
and the C-terminal GEF domain for mediating membrane
interactions and Rac1 activation. Importantly, the phospholipid-
binding domain of IpgB1 was essential for both plasma
membrane and endocytic localization as the catalytic mutant of
IpgB1 (IpgB1E80A) localized to endocytic vesicles, whereas
IpgB15xA–E80A mutant displayed featureless, cytoplasmic staining
(Fig. 7e).

Acidic phospholipids direct IpgB1 to sites of Shigella invasion.
Shigella flexneri invades host cells through a trigger mechanism
that requires the type III translocation of IpgB1 and subsequent
activation of Rac1 at the sites of bacterial attachment34, 36, 40.
We found that Shigella induces phospholipid accumulation
at sites of invasion with high enrichment of PA, phoshpatidyl
serine (PS), and phosphatidylinositol-3,4,5 phosphate (PI3,4,5P3)
(Supplementary Fig. 2). We then attempted to monitor the
subcellular localization of flag-tagged IpgB1 translocated during
Shigella infection, yet this procedure failed perhaps due to the

extremely low levels of type III protein secretion during infection.
To then determine whether IpgB1 can be targeted to sites of
Shigella infection via phosphoinositide accumulation, infection
experiments were performed on HeLa cells ectopically expressing
low levels of EGFP-IpgB1E80A. If phospholipid accumulation at
sites of Shigella invasion drives IpgB1 to the plasma membrane,
we predict that EGFP-IpgB1E80A (a mutant that binds phos-
phoinositides but does not activate Rac1) would relocalize from
endocytic vesicles to membrane ruffles produced by Shigella
(Fig. 8a). Indeed, EGFP-IpgB1E80A was recruited to the site of
Shigella host cell interaction (Fig. 8b, c). Consistent with the
notion that recruitment of EGFP-IpgB1 is triggered by cell
invasion, the invasion-defective mutant ΔipgB1 failed to recruit
EGFP-IpgB1E80A to sites of bacterial attachment (Fig. 8d). In
addition, the recruitment of IpgB1E80A is strictly dependent upon
phospholipid interactions as IpgB15xA–E80A (Rac1 and
phospholipid-binding mutant) was unable to be concentrated in
phagocytic cups (Fig. 8e). Finally, time-lapse imaging revealed
that the GFP-IpgB1E80A probe rapidly accumulated in the pha-
gocytic cup and was released from the plasma membrane shortly
after bacterial internalization (Fig. 8c). Taken together, these data
suggest that a polybasic region within the IpgB1 protein targets
IpgB1 to the plasma membrane and endocytic vesicles within
mammalian cells through the recognition of the host lipid bilayer.

Discussion
Here, we present a systematic analysis of the subcellular locali-
zation of 190 bacterial type III and type IV secreted effector
proteins from six bacterial pathogens in the yeast model organ-
ism. Results from this study argue that subcellular targeting is a
common property of bacterial effectors and indicates that specific
features of eukaryotic membranes may organize bacterial-based
signaling systems in both space and time. Furthermore, we
speculate that many bacterial effector proteins include as of yet
unidentified interaction domains that provide additional regula-
tion to ensure the efficient signaling capabilities of bacterial
effectors following translocation into the host cell. In addition,
we describe a direct interaction between IpgB1 and acidic
phospholipids that is required for the previously described
localization of IpgB1 within eukaryotic cells37, 38. Importantly, we
show that the localization of this motif is dynamically regulated
during Shigella invasion (Fig. 8c), suggesting a mechanism to
spatially and temporally regulate effector protein function. Lastly,
this work extends the power of yeast genetics to uncover host
molecules that define the location of bacterial effector proteins in
the eukaryotic cellular environment.

The RAS-rescue screen correctly identified several bacterial
effectors with transmembrane, fatty acid, and protein:protein
based localization mechanisms, illustrating the diversity of
membrane interaction mechanisms that can be identified in yeast.
In agreement with published studies in mammalian cells, we
found expression of EGFP-fusions in yeast of NleHEc, BepDBh,
IpgB1Sf, IpgDSf localized to the plasma membrane, PipBSt

was found at the ER, and VipALp, Ceg19Lp localized to the
yeast vacuole, an organelle similar to the mammalian lysosome
(Supplementary Table 2). In addition, our results suggest that
many bacterial effector proteins contain cryptic membrane-
targeting features. It is likely that additional studies on the newly
identified localizations of WipBLp at the ER, SidJLp to the Golgi,
and Lpg0634Lp, Lpg1717Lp, and Lpg1751Lp to the vacuole,
will identify the domains that are responsible for the
effector–membrane interactions in context of bacterial infection.

Prior to this study, only a small handful of bacterial effector
proteins have been found to specifically bind acidic phospholi-
pids41. SteA the Salmonella effector was recently shown to
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interact with PI4P through a N-terminal α-helix and in agree-
ment with our data (Fig. 6a) this interaction was shown to be
dependent on lysine 36 within this domain (Fig. 6b). Although
the Legionella type IV effector DrrA/SidM was excluded from our
screen because it did not express as a full-length fusion protein
with RAS*, it does contain a COOH-terminal PI4P-binding site
that does not share any sequence or structural homology to
eukaryotic PIP-binding proteins. Thus, the membrane-targeting
motifs of bacterial effector proteins, including the ones we
identify here, may be prokaryotic inventions. However, we cannot
exclude the possibility that these bacterial lipid binding modules
are mimicking currently unidentified membrane interacting
domains within eukaryotic proteins. For example, Vibrio
parahaemolyticus type III effector VopS contains a PX-type
lipid-binding module that uses PIPs as folding substrate as the
effector protein enters host cells30.

Intracellular pathogens must avoid the fusion of the degrada-
tive contents of lysosomes with their respective bacterial-
containing vacuoles. Indeed, Legionella employs many of is
nearly 350 effector proteins to subvert host endomembrane
trafficking with several overlapping strategies. Owing to this
redundancy, it has been difficult to identify cellular targets and
functions of Legionella effector proteins. Here, we show that the
membrane-targeting effector proteins Lpg0634Lp, Lpg1717Lp,
Lpg1751Lp, and Ceg19Lp appear to induce fragmentation of yeast
vacuoles and to disrupt endolysosomal functions in mammalian
cells. We speculate that these proteins may inhibit fusion of
lysosomes with the LCV, yet further studies would be necessary to
validate these results during infection. Thus, it will be important
to determine how membrane targeting facilitates the enzymatic
activity and function of individual effector proteins in eukaryotic
cells and to further define the role of these host targeting
mechanisms in the pathogenic system.

Methods
Molecular biology. The bacterial effector gene library was assembled from several
sources and uses the entire open reading frames (ORFs) of effector genes (accession
codes listed below) from the following sources: Pseudomonas syringe pv. Tomato
(ATCC BAA-871D-5) and Legionella pneumophila Philadelphia-1 (ATCC 33152D-
5), Salmonella Typhimurium LT2 (a gift from Jack Dixon, University of California
San Diego), EHEC H7:O157 (a gift from Vanessa Sperandio, University of Texas
Southwestern Medical Center), and Shigella flexneri M90T (a gift from Jack Dixon,
University of California San Diego). Bartonella henselae Houston-1 effector
proteins cloned into pENTR were a gift from Alexei Savchenko (University of
Toronto). All pENTR effector gene clones were verified by DNA sequencing and
are available upon request. Stop codons were introduced into bacterial effector
proteins that displayed potential prenylation sites or PDZ-ligand sequences at the
COOH-terminus (Supplementary Table 1) The Ras-rescue plasmid p3S0BL2 was a
kind gift of Mark Lemmon (University of Pennsylvania)13. To facilitate the rapid
transfer of bacterial effector genes into this plasmid, we inserted a Gateway
expression cassette (Invitrogen) in between Ras and the HA tag. The resulting
plasmid is named pRRD for plasmid Ras-Rescue DEST. The entire pENTR
effector library was then recombined into the pRRD vector using LR Clonase II
(Invitrogen) following manufacturer’s instructions. To monitor the subcellular
localization of membrane-localized effectors in yeast, the p413Gal vector (gift from
Dr. Ben Tu, University of Texas Southwestern Medical Center) was modified to
contain the open reading fame of EGFP with a gateway expression cassette at its 3′
end. The 60 effectors positive in the Ras-Rescue screen were then gateway-cloned
similarly as with the pRRD vector. For effectors purified with a strep-tag, effectors
were first gateway-cloned into pCDNA3.1 GFP–strep destination vector. All
constructs were verified by DNA sequencing.). All subcloning was performed
by recombination using Gateway-adapted vectors following manufacturer’s
instructions (Invitrogen) unless otherwise mentioned.

Yeast-based assays. The following S. cerevisiae strains were used: INVSc1 (MATa
his3D1 leu2 trp1-289 ura3-52) (Invitrogen), the yeast knockout strains ΔVPS34,
ΔFAB1, and ΔLSB6 strains with genetic background BY4741 (MATa his3Δ1
leu2Δ0 met15Δ0 ura3Δ0) were kind gifts of Joel Goodman, University of Texas
Southwestern Medical Center. The tetracycline-off strains MSS4, STT4, and
PIK1 strains in the genetic background of R1158 (URA::CMV-tTA MATa his3-1
leu2-0 met15-0) were obtained through the Yeast Tet-Promoters Hughes Collec-
tion (Thermo scientific). The cdc25ts yeast strain 352-15A2 (MATa, ade5, cdc25-2,

his7, met10, trp1, ura3-52) was a gift from Mark Lemmon, University of Penn-
sylvania, contains a temperature-sensitive allele of CDC2542. BY4742 (MATα;
his3Δ 1 leu2Δ 0 lys2Δ 0 ura3Δ 0) was a gift from Joel Goodman, University of
Texas Southwestern Medical Center.

A standard lithium acetate protocol43 was used for transformation of all the
strains except for CDC25ts, for which we used a modified LiAc protocol13. Briefly,
a 5 mL overnight culture of cdc25ts yeast, grown at 25 °C, was diluted to 50 mL
YPAD medium and shaken at 25 °C for 4 h. Cells were pelleted at 2000×g for 5 min
in a room temperature centrifuge and then washed once with 50 mL TE. Cells were
repelleted and then resuspended in 100 mM LiAc (2 mL). The LiAc: yeast
suspension was incubated for 10 min at 25 °C. Next, 5 μL of carrier DNA
(Clontech), 50 μL of LiAc:yeast suspension, and 350 μL of 40% PEG solution in
100 mM LiAc was added to each tube containing the miniprepped DNA. After
mixing gently with a pipette, yeast were incubated for 30 min at 25 °C and then
heat shocked at 42 °C for 15 min. Cells were pelleted, washed with TE (1 mL),
plated on glucose plates lacking leucine, and allowed to grow for 4 days at 25 °C.
To assay for rescue of the cdc25ts allele, transformants were resuspended in
media lacking leucine and spotted in duplicate onto a plate grown at 25 °C and
another grown at the selective temperature, 37 °C. Viability was scored between
3 and 10 days after growth as described previously13.

Yeast lysis for expression assays were performed as described previously44.
Briefly, 2 mL overnight cultures were pelleted and resuspended in yeast lysis buffer
(4% v/v NaOH, 0.5% v/v BME), vortexed for 1 min, and incubated on ice for
30 min. SDS page buffer was added in a 1:1 ratio and samples were boiled at 80 °C
for 5 min. The insoluble fraction was pelleted and the soluble fraction was run on a
10% acrylamide gel and transferred onto nitrocellulose. The membrane was
then blocked with 3% skim milk in TBS + 0.1% tween (TBST) for 1 h and
probed with rabbit anti-Ras (Cell Signaling Technology, #3965) or mouse anti-HA
(Cell Signaling Technology, #2367) at 1:1000 overnight at 4 °C. Appropriate
HRP-conjugated secondary antibodies (Thermo Scientific #31430 and #31460)
were incubated with the membrane for 30 min at room temperature.
Membranes were developed with Supersignal Femto Chemiluminescent
Substrate (Thermo Scientific #34095).

After 2 days, transformants were grown overnight in galactose media lacking
histidine and visualized on a LSM 510 PASCAL scanning confocal microscope
(Zeiss, Thornwood, NY, USA). For the tetracycline-off strains, transformants were
grown overnight in glucose media lacking histidine with the appropriate amount of
doxycycline (optimized with the yeast protein Osh2) for repression (50 μg/μL
doxycycline for PIK1 and STT4 and 300 μg/μL doxycycline for MSS4). The next
day, cultures were pelleted, washed with TE, and grown for another 24 h in
galactose media lacking histidine with the same concentrations of doxycycline. On
the third day, yeast were visualized on a LSM 510 PASCAL scanning confocal
microscope (Zeiss).

For FM4-64 dye (Invitrogen) vacuole labeling, effectors of interest were
expressed in BY4742 yeast strain overnight in galactose inducible media and 500 μL
of the culture was pelleted at 2000 × g for 5 min and resuspended in YPAD. FM4-
64 dye (8 µm) was incubated with the yeast for 20 min at 30 °C. Yeast were pelleted,
washed once with YPAD, and incubated at 30 °C for 60 min. Cultures were
subsequently washed with galactose inducible media, and resuspended in 50 μL of
galactose inducible media for visualization.

Mammalian cell studies. HeLa (ATCC CCL-2) and HEK293T cells (ATCC CRL-
3216) were maintained in Dulbecco’s modified Eagle medium containing 10% (v/v)
FBS, 2mM glutamine, and 100 µg/mL penicillin/streptomycin (Thermo Scientific,
Waltham, MA, USA) at 37 °C in a 5% CO2 incubator. HeLa cells were seeded onto glass
coverslips overnight and transfected at 60–80% confluency with 1 μg of DNA using
Fugene6 (Roche). After 16–18 h, cells were fixed in 3.7% formaldehyde and visualized
on a LSM 510 PASCAL scanning confocal microscope (Zeiss). Colocalization studies
were performed with a wide array of transfectable markers including the lipid binding
domains of Spo20p (IDT gene synthesis), Osh2p (2 tandem copies of the PH domain;
cDNA kindly provided by Dr. Scott Emr, Weill Cornell Medical Sciences), Akt
(one PH domain; cDNA kindly provided by Dr. Michael White, University of
Texas Southwestern Medical Center), were subcloned into pcDNA 3.1-GFP to generate
constructs similar to what has been described previously45–47. pEGFP 2xPHPLC plasmid
was a gift from Dr. Kim Orth, University of Texas Southwestern Medical Center, and
has been previously described48, 49. Cells were stained Alexa Fluor 350 Phalloidin
(Fisher #A22281), Alexa Fluor 594 Phalloidin (Fisher #A12381), or antibody targeting
GM130 (BD Biosciences #610822).

For live cell imaging experiments, HeLa cells were seeded onto glass bottom dishes
(MatTek). Cells were transiently transfected with pcDNA 3.1 EGFP-IpgB1E80A

overnight and infected with mCherry-expressing Shigella M90T. Images were
acquired every minute and images were corrected for photobleaching using ImageJ.

Recombinant protein. For strep-tag purification of proteins, 10 cm dishes of
HEK293T cells were transfected with 10 μg of plasmid DNA using calcium
phosphate. After 24–48 h, cells were washed once with cold PBS and lysed
in Mammalian Lysis Buffer (0.5% triton, 4 mM MgCl2 in 10 mM Tris pH 7.5).
Strep-tagged effector proteins were purified through affinity chromatography by
incubating streptactin beads (Qiagen) at 4 °C. Beads were washed three times
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before the protein was eluted in Strep-tag elution buffer (IBA). Western blots with
HRP-conjugated anti-streptactin (IBA) confirmed expression.

Lipid interactions. Bacterial effector proteins carrying a GFP–Strep-affinity
tag were expressed in mammalian HEK293T cells and purified by streptactin
agarose chromatography. PIP strips (Invitrogen) were blocked in 3% fatty acid
free (faf) BSA in TBST for 1 h shaking at room temperature. The effector protein
of interest was diluted in 750 μL of TBST + 3% fatty acid-free (faf) BSA and
incubated with the PIP strip for 3 h. The membrane was washed four times
with TBST + 3% faf-BSA and then incubated with HRP-conjugated anti-streptactin
(IBA; 2-1502-001; 1:5000) for 45 min and washed before chemiluminescent
detection. Protein–lipid interactions were detected by autoradiography or by
western blot (HRP-Anti-streptactin; IBA).

Accession codes for the effector proteins. Pseudomonas syringe pv. tomato.
AvrPto1 NP_793764.1, HopA1 NP_795084.1, HopAA1-2 NP_794461.1, HopAB2
NP_792881.1, HopAG1 NP_790740.1, HopAH1 NP_790744.1, HopAH2-1
NP_793075.1, HopAI1 NP_790745.1, HopAM1-1 NP_790858, HopAO1
NP_794465.1, HopAQ1 NP_794448.1, HopAS1 NP_790323.1, HopC1
NP_790436.1, HopD YP_784364.1, HopE1 NP_794087, HopF2 NP_790351.1,
HopG1 NP_794468, HopH1 NP_790435, HopI1 NP_794511, HopK1
NP_789904.1, HopM1 NP_791202.1, HopN1 NP_791197, HopO1-2 NP_794345,
HopO1-3 NP_794343.1, HopP1 NP_792485, HopQ1-1 NP_790716, HopQ1-2
NP_794471.1, HopS1 NP_794348.1, HopT1-2 NP_794344.1, HopU1
NP_790350.1, HopV1 NP_794463.1, and HopY1 NP_789920.1.

Salmonella Typhimurium. AvrA NP_461786.1, PipB NP_460061.1, PipB2
NP_461706.1, SifA NP_460194.1, SifB NP_460561.1, SipB NP_461806.1, SipC
NP_461805.1, SipD NP_461804.1, SopA NP_461011.1, SopB NP_460064.1, SopD
NP_461866.1, SopD2 CBW17005, SpiC NP_460358.1, SptP NP_461799.1, SsaB
NP_460358.1, SsaE NP_460361.1, SsaM NP_460378.1, SseE NP_460367.1, SseG
NP_460370.1, SseI NP_461184.1, SseL NP_461229.2, SseJ NP_460590.1, SspH2
NP_461184.1, SteA NP_460542.1, SteB Q8ZPA6, and EHEC H7:O157.

EspB NP_290254.1, EspF NP_290250.1, EspG NP_290289.1, EspH
NP_290264.1, EspJ NP_288436.1, EspK NP_287316.1, EspL1 NP_288154.1, EspL2
NP_289551.1, EspM1 NP_287949.1, EspM2 NP_289175.1, EspR1 NP_287686.1,
EspR3 NP_288394.1, EspT NP_289175.1, EspW NP_289177.1, EspX1
NP_285716.1, EspX2 NP_286562.1, EspX4 NP_290672.1, EspX5 NP_290699.1,
EspY1 NP_285753.1, EspY2 NP_285765.1, EspY3 NP_286160.1, Map
NP_290262.1, NleA11 NP_287961.1, NleB1 NP_286532.1, NleC NP_286533.1,
NleD NP_286535.1, NleF NP_287958.1, NleG7 NP_287535.1, NleH1
NP_286534.1, SepZ NP_290271.1, and TIR NP_286906.1.

Legionella pneumophila. Ceg7 YP_094281.1, Ceg9 YP_094300.1, Ceg10
YP_094338.1, Ceg18 YP_094932.1, Ceg19 YP_095154.1, Ceg23 YP_095648.1,
Ceg29 YP_096417.1, Ceg33 YP_096596.1, CegC1 YP_094067.1 CegC3
YP_095177.1, CegC4 YP_096212.1, LegA2 YP_096227.1, LegA3 YP_096309.1,
LegA5 YP_096331.1, LegA7 YP_094447.1, LegA8 YP_094731.1, LegA9
YP_094446.1, LegA10 YP_094093.1, LegA11 YP_094480.1, LegA12 YP_094527.1,
LegA14 YP_096459.1, LegA15 YP_096463.1, LegAS4 YP_095745.1, LegAU13
YP_096157.1, LegC3 YP_095728.1, LegC4 YP_095969.1, LegC5 YP_095517.1,
LegG1 YP_095992.1, LegG2 YP_094330.1, LegK2 YP_096150.1, LegK3
YP_096563.1, LegL1 YP_094979.1, LegL2 YP_095629.1, LegL3 YP_095687.1,
LegL5 YP_095974.1, LegL7 YP_096408.1, LegLC4 YP_095964.1, LegLC8
YP_095907.1, LegP YP_096991.1, LegS2 YP_096188.1, LegU1 YP_094225.1, LegU2
YP_096825.1, LidA YP_094974.1, LirA YP_095976.1, LirB YP_095978.1, LirC
YP_095979.1, LirD YP_095980.1, LirF YP_095982.1, lpg0045 YP_094100.1,
lpg0081YP_094135.1, lpg0294 YP_094348.1, lpg0365 YP_094409.1, lpg0518
YP_094562.1, lpg0634 YP_094670.1, lpg0963 YP_094997.1, lpg1148 YP_095181.1,
lpg1158 YP_095191.1, lpg1273 YP_095303.1, lpg1689 YP_095716.1, lpg1717
YP_095744.1, lpg1751 YP_095777.1, lpg2327 YP_096336.1, lpg2407 YP_096415.1,
lpg2527 YP_096534.1, LpnE YP_096234.1, PieE YP_095985.1, PieF YP_095988.1,
PpeB YP_095729.1, RalF YP_095966.1, SdjA YP_096515.1, SetA YP_095994.1,
SidA YP_094657.1, SidB YP_095669.1, SidC YP_096518.1, SidD YP_096472.1,
SidF YP_096589.1, SidG YP_095384.1, SidJ YP_096168.1, SidM YP_096471.1,
VipA YP_094434.1, VipD YP_096826.1, VipF YP_094157.1, VpdA YP_096418.1,
VpdB YP_095258.1, WipA YP_125080.1, WipB YP_094678.1, YlfA YP_096307.1,
and YlfB YP_095901.1.

Shigella flexneri. IpaA AAK18443.1, IpaB AAK18446, IpaC AAK18445.1, IpaD
AAK18444.1, IpaH1.4 AAK18594.1, IpaH 2.5 AAK18367, IpaH4.5 AAK18395,
IpaH 7.8 AAK18394.1, IpaH 9.8 AAK18544, IpaJ AAK18440, IpgB1 CAC05805.1,
IpgB2 CAC05777.1, IpgD AAK18452, OspB CAC05770.1, OspC1 CAC05790.1,
OspC2 AAW64906, OspD1 AAW64782, OspD3 AAW64880, OspE1 AAW64916,
OspE2 AAW64805, OspF AAW64770, OspG NP_085391, VirA AAK18501, BepA
YP_034062.1, BepB YP_034064.1, BepC YP_034065.1, BepD YP_034066.1, BepE
YP_034067.1, and BepF YP_034068.1.

Data availability. The authors declare that all the relevant data supporting the
findings of the study are available in this article and its Supplementary Information
files, or from the corresponding author upon request.
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