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Introduction

Arthroscopic anterior cruciate ligament (ACL) 
reconstruction is still a challenging surgery. First, it is 
critical to select the appropriate autologous or artificial graft 
materials and fixtures1. Then, the surgical team needs to 
choose a safe and effective femoral tunnel direction and path, 
and accurately locate the ACL positions in the intercondylar 
space to avoid the “pendulum or wiper effect”. Since the 
grafts and fixation materials can cause wear and cut into 
the tunnel2, keeping a tight compression of the grafts and 
bone tunnel can effectively prevent the femoral bone from 
oozing synovial fluid into the bone tunnel. Strengthening 
the interface were friction occurs and promoting healing of 
the graft and tunnel will result in a strong initial stability and 

long-term joint fixation. So far, there is no recognized “gold 
standard” for femoral fixation during ACL reconstruction. 
Armed police officers and soldiers are prone to partial or 
complete ACL rupture due to fatigue or acute high-speed 
energy impact, resulting in instability or fear of walking. A 
mistake in ACL reconstruction surgery or in the selection of 
the graft material may result in surgical failure, unsatisfactory 
recovery, or a second surgery, which causes long-term pain 
to many patients3.

The aim of this study was to establish an animal model 
of ACL injury on the basis of single-bundle single-tunnel 
ACL reconstruction. We explored the location of different 
femoral tunnel positioning paths, close to or far from 
the normal femoral ACL location, different femur tunnel 
length and direction, and different femoral tendon graft 
fixation devices. These studies are expected to provide 
some clarity to the “gold standard” for femoral tunnel ACL 
reconstruction and fixation.

Materials and methods

Generation of a pig model of ACL injury

We used 130 LYD pigs as the experimental group (7.2±0.4 
months, 22.4±1.5 kg). Ten LYD pigs without ACL fracture or 
reconstruction served as the control group (7.3±0.3 months, 
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23.1±1.8 kg). All experimental animal procedures were carried 
out in accordance with the European Directive 2010/63/EU. 
The experiments were performed after keeping the animals 
for one week in the lab. Generation of the ACL model: 3% 
pentobarbital sodium (1 mL/Kg) was used to anesthetize the 
animals in the supine position through abdominal injection. 

Skin was disinfected and covered with sterile towels 15 cm 
above and below the knee line. Preoperative tendon pre-
tension was carried out to reduce tendon viscoelasticity. 
The medial patellofemoral approach was used to dissect the 
articular cavity and the patella was dislocated. The flexion 
of the knee was sufficient to expose the intercondylar fossa, 

Figure 1. Schematic summary of the study.
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and the partial patellar fat pad was removed until the tibial 
end of the ACL was exposed. We cut the connection posts of 
the ACL with the femur and tibia, and all the ligaments and 
synovial tissues in between. The anterior drawer test (ADT) 
was positive. 

Research methods

The 130 LYD pigs were divided into two groups according 
to whether the location of the femoral tunnel goes through the 
medial tibial tunnel or the medial fossa of the knee joint. The 
tibial tunnel group was divided into subgroups based on the 
knee flexion at 80°, 90°, 100°, and 120°. The knee joint group 
was divided into three subgroups based on the locations on 
the intercondylar fossa, which were 10 (2) o’clock, 10.5 (1.5) 
o’clock and 11 (1) o’clock, respectively. That is, the top of the 
femoral condyle fossa was set as 12 o’clock, and the right knee 
was 10 o’clock (the direction of left knee femoral tunnel was 2 
o’clock), 10.5 o’clock (10:30 o’clock) and 1.5 (1:30 o’clock for 
left knee), 11 o’clock (1 o’clock for left knee) respectively; Each 
subgroup was further divided into three groups according to 
the thickness of the posterior wall of the reserved femoral 
tunnel. The thickness of the cortical bone was 1.0, 1.5, or 2.0 
mm. Each femoral tunnel approach corresponds to the lateral 
blocker and EndoButton tendon graft fixation methods. The 
tibial side can be fixed with a biodegradable interface nail/
transfix. The subjects were fixed with a 30° flexion plaster 
tube within one week of the surgery, a 60° flexion plaster 
tube within 2 weeks, and a 90° flexion plaster tube within 
3 weeks. At four weeks, they were placed on a walking 
or running exercise machine (Elbow/ankle rehabilitation 
machine, canwell, Zhejiang, China) for passive knee flexion 
and extension activities. After four weeks, the knee specimens 
were taken for passive flexion and extension test (Figure 1).

Observation parameters

The sensor (Andcn, Guangzhou, China) was placed 
proximal to the femoral tendon graft. Without any load, the 
tendon had 20 cycles of passive flexion and extension, with a 
force of 89 Newton for 5 min to observe the creep effect of 
the tendon graft in the femoral tunnel. We had 12 subgroups 
in the tibial tunnel test group and 9 subgroups in the knee 
joint cavity group. No group was observed with a creep effect.

Biomechanical tests

The tendon grafts were washed with saline and the flexion 
of the knee joint was maintained at 30° for the uniaxial tension 
test. The tendon grafts were pulled at a rate of 150 mm/
min (Multisample oral bio-medical materials biomechanical 
testing machine, Micoforce, China). The maximal strength, 
maximum load, and stiffness parameters were recorded. 

Histology

The subjects were sacrificed using air embolism method 
and specimens of the knees were collected four weeks after 

Biomechanical tests. The biocompatibility and the degree of 
healing of the bone-tendon graft interface were observed by 
slice biopsy. We observed re-vascularization and collagen 
fiber arrangement and how CT reconstruction affected 
femoral tunnel length and volume change. The degree of 
tendon - bone interface connection and the wear of the graft 
and inside edge of the tunnel were determined. Four weeks 
after surgery, the cells in the tendon graft were completely 
necrotic and infiltrated, and the tendon-bone interface was 
continuous, showing loose tissue, abundant blood vessels, 
and cells.

Statistical methods

SPSS 20.0 software was used for statistical analysis. 
Quantitative data were indicated using mean ± standard 
deviation. An independent sample t-test was used for 
comparison between two groups. Multi-group comparison 
was conducted using single-factor ANOVA analysis. 
Comparison of two pairs was conducted using LSD-t test; 
p<0.05 suggested that the difference was statistically 
significant.

Results

Analysis of the creep effect

There were 12 subgroups in the tibial tunnel test group 
and 9 subgroups in the knee joint cavity group. No obvious 
creep effect was observed in any of them.

Analysis of the biomechanical parameters

The tibial tunnel groups were as follows: 80° and 1.0 mm 
A1, 80° and 1.5 mm A2, 80° and 2.0 mm A3, 90° and 1.0 
mm A4, 90° and 1.5 mm A5, 90° and 2.0 mm A6, 100° and 
1.0 mm A7, 100° and 1.5 mm A8, 100° and 2.0 mm A9, 
120° and 1.0 mm A10, 120° and 1.5 mm A11, and 120° and 
2.0 mm A12. The knee joint cavity groups are as follows: 10 
(2) 1.0 mm B1 group, 10 (2) 1.5 mm B2, 10 (2) 2.0 mm B3, 
10.5 (1.5) 1.0 mm B4, 10.5 (1.5) 1.5 mm B5, 10.5 (1.5) 2.0 
mm B6, 11 (1) 1.0 mm B7, 11 (1) 1.5 mm B8, and 11 (1) 2.0 
mm B9. The maximal strength, maximum tensile load, and 
stiffness of A7 - A9 and B4 - B6 were close to the control 
group and were significantly higher than the other subgroups 
(P<0.05) (Table 1). 

Distance of tibia relative to femur

The relative distance was 4.2±0.9 mm in A1, 4.0±1.2 
mm in A2, 3.8±0.7 mm in A3, 4.3±1.1 mm in A4, 4.4±1.3 
mm in A5, 4.6±1.5 mm in A6, 3.2±0.5 mm in A7, 3.0±0.6 
mm in A8, 3.5±0.8 mm in A9, 4.4±1.3 mm in A10, 4.1±1.2 
mm in A11, and 4.4±1.5 mm in A12. The relative distance 
was 4.6±1.3 mm in B1, 4.7±1.4 mm in B2, 4.8±1.6 mm in 
B3, 3.5±0.6 in B4, 3.6±0.7 mm in B5, 3.7±1.0 mm in B6, 
4.2±1.3 mm in B7, 4.4±1.5 mm in B8, and 4.8±1.7 mm in B9. 
The control group had a mean distance of 3.6±0.8 mm. The 
forward distances of A7-A9 and B4-B6 were similar to the 
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control group, and were significantly smaller than the other 
subgroups (p<0.05).

Analysis of histological observations

Four weeks after surgery, the cells in the tendon graft 
were completely necrotic and infiltrated and the tendon-bone 
interface was continuous, showing loose tissue, abundant 
blood vessels and cells.

Discussion

The femoral and tibial tunnels are different. The femoral 
tunnel has isometric regions on uneven femoral condylar 
fossa with curvature. It is relatively small, so the location of 
the femoral tunnel has a big impact on the change of length 
of tendon grafts in knee flexion and extension, especially 
the impact of tension4. If the tension is too small, it will 
not maintain the stability of the knee. If it is too large, it 
will limit the physiological activities of the knee, or even 
cause ruptures. Both can increase the contact stress of the 
articular cartilage, leading to cartilage degeneration, affect 
the remodeling of collagen fibers, prevent the formation of 
an early complete fiber - cartilage connection, and affect the 
formation of tidal mineral layer5.

After ACL reconstruction, the tendon grafts undergo 
necrosis, cell proliferation, revascularization, cell 

neogenesis, and neoplastic remodeling at the femoral 
tunnel6. An ideal ACL reconstruction needs to satisfy 
an important biomechanical principle: regardless of the 
degree of flexion and extension of the knee, the anterior 
cruciate ligament should be kept at the same length as 
the graft within the physiological activity in the knee7. 
Maintaining the tendon graft at the same length in the knee 
during passive flexion and extension is largely determined 
by the location of the femoral tunnel. The location of the 
femoral tunnel and its fixation determine the initial, middle, 
and long-term effects of ACL reconstruction8-10. However, 
the wrong position for femoral tunnel reconstruction 
results in an imbalance in tension on the tendon graft, 
causing poor internal fixation, tendon graft relaxation, or 
wear, which makes the isometric reconstruction of ACL 
very difficult11. When the femoral tunnel location is too high 
or too far forward the change in length of the graft during 
knee joint activities increases. The tendon graft withstands 
excessive tension, which increased tissue strain. The 
excessive graft extension can lead to permanent extension 
of the tendon graft, causing joint instability12. The femoral 
tunnel is too far on the back compared to the original ACL 
attachment site. When the thickness of the posterior wall 
of the cortical bone is not enough, the lateral block nail or 
Endobutton can be pulled out of the femoral tunnel and 
lead to bone perforation at the back of the tunnel13.

The breakthrough of this study consists in establishing 

Table 1. The comparison of maximal strength, maximum tensile load and stiffness.

Group Maximum strength (MPa) Maximum tensile load (N) Stiffness (N/m)

Control 56.2 ± 6.9 354.7 ± 45.7 152.5 ± 32.3

A1 37.6 ± 4.5 205.9 ± 25.6 92.5 ± 12.4

A2 40.5 ± 4.8 223.2 ± 22.3 106.9 ± 11.5

A3 42.3 ± 4.9 246.5 ± 18.7 115.4 ± 13.2

A4 30.2 ± 3.6 176.8 ± 16.5 76.8 ± 6.8

A5 31.5 ± 3.3 165.9 ± 14.5 81.2 ± 7.2

A6 32.6 ± 3.5 184.2 ± 13.8 75.5 ± 7.5

A7 47.2 ± 5.2 289.5 ± 20.2 131.2 ± 16.9

A8 48.5 ± 5.3 302.6 ± 26.5 135.6 ± 15.7

A9 51.1 ± 5.5 313.5 ± 23.9 141.2 ± 18.3

A10 41.5 ± 4.4 232.6 ± 24.4 105.6 ± 14.4

A11 38.9 ± 3.8 212.5 ± 21.2 112.4 ± 12.6

A12 37.6 ± 3.9 245.2 ± 19.5 126.8 ± 13.3

B1 35.9 ± 4.2 256.4 ± 1 5.6 92.5 ± 12.6

B2 37.6 ± 4.3 275.4 ± 16.7 93.6 ± 13.3

B3 38.4 ± 4.4 289.3 ± 17.2 95.4 ± 14.5

B4 45.6 ± 4.6 312.5 ± 21.3 126.9 ± 15.9

B5 47.8 ± 4.7 302.6 ± 22.4 128.4 ± 16.6

B6 49.7 ± 4.8 323.4 ± 23.6 130.5 ± 17.2

B7 32.1 ± 3.5 232.5 ± 12.5 76.8 ± 10.3

B8 31.6 ± 3.6 212.4 ± 11.6 78.2 ± 11.5

B9 30.5 ± 3.3 225.6 ± 12.4 79.5 ± 12.2
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the first animal model of ACL reconstruction. We established 
several femoral tunnels with different pathways according 
to the position and knee flexion angle, different sites of 
the intercondylar fossa, and different femoral tunnel wall 
thickness. The transverse tendon nail and Endobutton 
plate were used to fixate the tendon graft. Biomechanics, 
CT reconstruction, and slices embedded in collodion were 
used to comprehensively evaluate biomechanics, imaging, 
and gross histopathology. We show that the tibial tunnel 
at 100°+1.0 mm, 1.5 mm, and 2.0 mm, and knee joint 
cavity at 10.5 mm (1.5)+1.0 mm, 1.5 mm, and 2.0 mm 
have good biomechanical effects, histocompatibility, and 
revascularization in ACL reconstruction.
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