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1  |  INTRODUC TION

Global environmental change continues to pose various serious 
threats to biodiversity and associated ecosystem functioning and 
services (Bradshaw et al., 2021; Ceballos et al., 2015; Sanderson 
et al., 2002). In the face of these threats, immediate and thorough 
conservation efforts are urgently needed (Barnosky et al., 2011), 

which requires plausible scenarios of expected biodiversity changes 
under future environmental conditions (Larigauderie et al., 2012; 
Pereira et al., 2010; Sala et al., 2000), for this forward- looking ap-
proach is essential because drivers of biodiversity changes and their 
associated impacts change over time (Titeux et al., 2016). Thus, ac-
curately predicting the future distribution of species is crucial for 
understanding how species will response to global environmental 
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Abstract
Accurately	predicting	the	future	distribution	of	species	 is	crucial	 for	understanding	
how species will response to global environmental change and for evaluating the ef-
fectiveness	of	current	protected	areas	(PAs).	Here,	we	assessed	the	effect	of	climate	
and land use change on the projected suitable habitats of Davidia involucrata Baill 
under different future scenarios using the following two types of models: (a) only 
climate covariates (climate SDMs) and (b) climate and land use covariates (full SDMs). 
We found that full SDMs perform significantly better than climate SDMs in terms of 
both	AUC	(p < .001)	and	TSS	(p < .001)	and	also	projected	more	suitable	habitat	than	
climate SDMs both in the whole study area and in its current suitable range, although 
D. involucrate is predicted to loss at least 26.96% of its suitable area under all fu-
ture scenarios. Similarly, we found that these range contractions projected by climate 
SDMs	would	negate	the	effectiveness	of	current	PAs	to	a	greater	extent	relative	to	
full SDMs. These results suggest that although D. involucrate is extremely vulnerabil-
ity to future climate change, conservation intervention to manage habitat may be an 
effective option to offset some of the negative effects of a changing climate on D. 
involucrate	and	can	improve	the	effectiveness	of	current	PAs.	Overall,	this	study	high-
lights the necessity of integrating climate and land use change to project the future 
distribution of species.
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change and has important implications for guiding future conserva-
tion planning.

Currently, it has been evidenced that global climate change 
and land use change are two of most important contemporary fac-
tors in driving species redistribution (Newbold, 2018; Powers & 
Jetz, 2019).	However,	previous	studies	focused	on	modeling	spatially	
explicit patterns of species' range shifts under future environmen-
tal conditions by using species distribution models (SDMs) (Dawson 
et al., 2011; Pearson & Dawson, 2003), a powerful tool for projecting 
future species ranges (Elith & Leathwick, 2009), have so far mostly 
considered single factors, focusing extensively on climate change 
and neglecting other important pressures, such as land use change 
(Titeux et al., 2016). This approach of single factor to estimate fu-
ture species ranges may lead to unreliable projections (Marshall 
et al., 2018; Sirami et al., 2017; Titeux et al., 2017) and has recently 
been increasing questioned (Marshall et al., 2018; Regos et al., 2016). 
In this context, several studies have attempted to project species 
future distribution by integrating climate change and other drivers, 
such as land- use change (Elsen et al., 2020; Pant et al., 2021; Zhang 
et al., 2017) and habitat connectivity (Brun et al., 2020;	 Huang	
et al., 2020; Yesuf et al., 2021). This type of integrated approach 
largely contributes to a deeper understanding of how interactions 
among drivers may affect the future distribution of species and ac-
cordingly is essential to set effective conservation policy and man-
agement (Di Febbraro et al., 2019; Zamora- Gutierrez et al., 2018), 
and thus has been widely recommended to modeling species future 
distribution (Titeux et al., 2016).

As	a	tertiary	relict	plant	endemic	to	China	(Fu	&	Jin,	1992), the 
Davidia involucrata Baill. currently ranges approximately from 98 
to 110°E, 26 to 32°N in southwestern and south- central China 
(Li, 1954; Liu et al., 2019; Takhtajan, 1980; Tang et al., 2017). It offers 
an especially rich system for exploring the interactions of climate 
change and land use change for several reasons: (a) as a rare spe-
cies listed in the China Plant Red Data Book under first- grade state 
protection, as well as an “Endangered” species on the IUCN Red List 
of Threatened Species, it is important ecologically and economically 
(Liu et al., 2019); (b) long- term national observation records of D. in-
volucrate are available in China (Tang et al., 2017; Wang et al., 2019); 
(c) previous studies have explored the vulnerability of D. involucrate 
to future climate change (Long et al., 2021b; Tang et al., 2017; Wang 
et al., 2019); (d) despite its populations are often found in subtropi-
cal evergreen broad- leaved forests or in mixed forests of temperate 
deciduous broad- leaved trees at high altitudes of between 1100 and 
2600 m	(He	et	al.,	2004), land use change has led to a sharp decrease 
of its remaining habitats (Wang et al., 2019); and (e) future climate 
and land use data under different scenarios are available in China 
(Fick	&	Hijmans,	2017; Li et al., 2016).

Here,	we	aim	to	(a)	examine	the	combined	impacts	of	climate	and	
land use change on the future distributions of D. involucrate and (b) 
evaluate	the	effectiveness	of	current	PA	networks	in	protecting	D. 
involucrate under the combination of climate change and land use 
change scenarios. To do so, we compared projected distributions 
produced by two types of models: (i) including only climate variables 

(climate SDMs) and (ii) adding also land use variables (full SDMs). We 
expect that the inclusion of land use covariates will significantly im-
prove the performance of SDMs and that the differences in the pro-
jected distributions produced by climate SDMs and full SDMs will be 
significantly. By doing so, we provide insights into the conservation 
of D. involucrate in the face of pervasive environmental change.

2  |  MATERIAL S AND METHODS

2.1  |  Study area and species occurrence data

As	 D. involucrate is a Tertiary relict plant endemic to China, we 
chose the whole China as the study area following previous studies 
(Figure 1) (Long et al., 2021b; Tang et al., 2017; Wang et al., 2019). 
Totally, 337 occurrence records of D. involucrate at the spatial resolu-
tion	of	10 km × 10 km	for	the	time	period	1979–	2013	were	obtained	
from Long et al. (2021a), in which an extensive database of occur-
rence	records	was	assembled.	Additional	details	on	the	methods	of	
collecting and processing the occurrence data can be found in Long 
et al. (2021b).

2.2  |  Climatic and land use data

Following Long et al. (2021b), we used six bioclimatic variables at 
a	 10 km	 resolution	 averaged	 for	 the	 period	 1979–	2013	 from	 the	
CHELSA	database	(Karger	et	al.,	2017) for model training and pro-
jection of the current potential distribution of D. involucrate: annual 
mean temperature (BIO1), isothermality (BIO3), temperature annual 
range	 (BIO7),	 precipitation	of	 the	driest	month	 (BIO14),	 precipita-
tion seasonality (BIO15), and precipitation of the warmest quarter 
(BIO18), for these variables have low multicollinearity (all variables 
with Pearson correlation coefficients |r| < .7	 and	 variance	 inflation	
factor	VIF < 5)	and	have	the	greatest	ecological	 relevance	to	D. in-
volucrate (Long et al., 2021b). Similarly, the same six bioclimatic vari-
ables	at	a	2.5 arc-	min	resolution	for	two	future	time	periods,	2050s	
(averaged	 for	 2041–	2060)	 and	 2070s	 (averaged	 for	 2061–	2080),	
under two representative concentration pathways (RCPs) scenar-
ios, RCP2.6 and RCP8.5, from six global circulation models (GCMs): 
CNRM-	CM6-	1,	CNRM-	ESM2-	1,	CanESM5,	IPSL-	CM6A-	LR,	MIROC-	
ES2L, and MIROC6 were obtained from the WorldClim database 
(Fick	&	Hijmans,	2017). To match the resolution of species distri-
bution	map,	 all	 the	 bioclimatic	 variables	were	 resampled	 at	 10 km	
resolution using a bilinear interpolation.

The	current	and	future	land	use	data	at	a	1 km	resolution	were	
obtained from the FROM- GLC database (Li et al., 2016), which in-
cludes the proportion of ten different land- use types: (a) bareland, 
(b) cropland, (c) forest, (d) grassland, (e) impervious, (f) shrubland, 
(g) snow/ice, (h) urban green spaces, (i) water, and (j) wetland. For 
consistency with climatic data and avoiding multicollinearity, we 
extracted six land- use variables selected with low multicollinearity 
(i.e., the percentage of area covered by six different land- use types: 
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cropland, forestland, grassland, shrubland, water, and urban) for 
three	 time	 periods	 (i.e.,	 2010	 [current],	 2050s	 [average	 for	 2041–	
2060],	and	2070s	[average	for	2061–	2080])	under	two	RCP	scenar-
ios (i.e., RCP 2.6 and RCP 8.5) and masked these land- use layers to 
the study area and calculated the proportion of each land- use type 
at	10 km	resolution.

2.3  |  Species distribution models

To evaluate the effect of climate and land use change on D. invo-
lucrate, following Jamwal et al. (2021), we computed two different 
types of SDMs with different sets of variables: (a) including only cli-
mate variables (climate SDMs) and (b) adding also land use variables 
(full SDMs). These SDMs were calibrated with an ensemble forecast-
ing approach under the BIOMOD2 platform version 3.5.1 (Thuiller 
et al., 2021), using the following ten modeling algorithms: artificial 
neural	 network	 (ANN),	 classification	 tree	 analysis	 (CTA),	 flexible	
discriminant	analysis	(FDA),	generalized	additive	model	(GAM),	gen-
eralized boosted models (GBM), generalized linear model (GLM), 
multivariate	adaptive	regression	splines	(MARS),	maximum	entropy	
(MaxEnt), random forests (RF), and surface range envelope (SRE). 
For these algorithms require species absence records, we generated 
10,000 pseudo- absence points by randomly sampling without re-
placement. We then performed cross- validation on each algorithm, 
where random subsets of 70% of data were used for model calibra-
tion	and	the	remaining	30%	for	evaluating	model	performance.	At	
each cross- validation step, two metrics were used to assess the pre-
dictive performance of each algorithm: the area under the relative 
operating	characteristic	curve	(AUC)	and	the	true	skill	statistic	(TSS).	

To avoid random bias, this cross- validation process was repeated 10 
times.

To produce robust forecasts of the distribution of D. involucrate, 
we produced an ensemble model based on the algorithms with 
AUC > 0.80	and	TSS > 0.60,	which	creating	a	median	representation	
of the predictions of the 10 runs and the selected algorithms to-
gether. For each covariate included in the ensemble models, we also 
estimated variable contribution by calculating the change in correla-
tion between the covariates and the response with and without the 
selected variable (Thuiller et al., 2021). The final ensemble models 
were then projected to the environmental conditions under current 
and future period, respectively. One probability map for habitat 
suitability was produced for each of the two model types at 2050s 
and 2070s under 12 future global change scenarios, representing all 
combinations of the two RCP scenarios and the six GCMs. Finally, 
all these maps were converted to binary presence absence maps by 
choosing the probability threshold that maximized the TSS value 
(Thuiller et al., 2021).

2.4  |  Statistical analysis

Analyses	 were	 conducted	 on	 the	 above	 binary	 presence/absence	
habitat suitability maps. To explore the effect of climate and land 
use change on the projected distribution of D. involucrate, follow-
ing Zhang et al. (2015), we first calculated two metrics of species' 
vulnerability to future global change: the relative changes in suit-
able area of D. involucrate between current and future periods in the 
whole study area and in its current suitable range, respectively, fol-
lowing the Equation C =	 (A − B)/B,	where	C	 is	 the	 relative	 change	

F I G U R E  1 Potential	suitable	(yellow)	and	unsuitable	(gray)	habitat	suitability	of	Davidia involucrata Baill. In China projected by climate 
SDMs (a) and full SDMs (b). Red points represent occurrence records of D. involucrata



4 of 11  |     TANG ANd ZHAO

ratio,	while	 A	 and	B	 are	 the	 future	 and	 current	 potential	 suitable	
habitat area (km2) of D. involucrate. The first metric measures to what 
degree the future suitable area is large or smaller than the current 
suitable area, while the second metric measures the loss of current 
suitable habitat (Thuiller et al., 2011, 2014). Second, to examine the 
distance and direction of spatial shifts, we also took the centroids of 
the species range from the current and the future periods using the 
R	package	“rgeos”	with	the	“gCentroid”	function.	A	positive	distance	
value indicates northerly shift and negative, a southerly shift. Finally, 
to explore the conservation effectiveness of current nature reserve 
networks in protecting D. involucrate under global change, we ob-
tained spatial polygon data for nature reserve boundaries in China 
from	the	World	Database	on	Protected	Areas	(UNEP-	WCMC,	2017), 
which	was	resampled	to	1 km	spatial	resolution.	We	further	calcu-
lated the relative changes in potential suitable habitat area inside 
the current nature reserve networks between current and future pe-
riods both in the whole study area and in its current suitable range, 
respectively.

3  |  RESULTS

3.1  |  Species distribution models

As	the	AUC	and	TSS	values	of	the	10	algorithms	except	SRE	are	all	
above 0.8 and 0.7, respectively, we excluded SRE in subsequence 
analysis (Table 1). Results of paired Wilcoxon signed rank test in-
dicate that full SDMs performed significantly better than climate 
SDMs	in	terms	of	both	AUC	(V =	466,	p < .001)	and	TSS	(V = 835, 
p < .001).	Therefore,	we	hereafter	reported	the	results	regarding	en-
semble models and variable importance only for full SDMs.

The	AUC	and	TSS	value	of	the	full	ensemble	model	is	0.978	and	
0.909, respectively, which is higher than that of the individual al-
gorithms, indicating that our model was statistically robust and the 
predictive	performance	was	near	perfect	 (Allouche	et	 al.,	2006). 

According	 to	 the	 ensemble	model,	 environmental	 variables	 con-
tributed differently to our models (Table 2). The temperature an-
nual range is the most influential variable, contributed 62.0% in 
the	model,	followed	by	annual	mean	temperature	(10.4%),	the	per-
centage	of	grassland	cover	 (9.4%),	and	precipitation	of	 the	driest	
month (8.1%). Response curves of the above four variables indicate 
that D. involucrate occurs mainly in areas with annual mean tem-
perature	ranging	from	approximately	−1.6	to	19.2°C,	temperature	
annual	range	ranging	from	approximately	21.3–	31.5°C,	precipita-
tion	of	 the	driest	month	between	about	0.1	and	59 mm,	and	 the	
proportion of areas covered by grassland <0.59 (Figure 2). The 
remain eight variables contributed little to the distribution of D. 
involucrate (Table 2).

3.2  |  Projected range shifts under different 
future scenarios

Overall, both climate SDMs and full SDMs predicted severe range 
contraction of the future distribution of D. involucrate, but full SDMs, 
by integrating climate and land- use change scenarios, predicted far 
less range contraction than climate SDMs, which only involve climate 
change scenarios (Figures 3 and 4). Specifically, the relative change 
ratios	projected	by	full	SDMs	ranged	from	−51.13%	(under	CanESM5	
and	RCP	8.5	scenario)	to	−26.96%	(under	CNRM-	ESM2-	1	and	RCP	
2.6	 scenario)	 by	 the	 2050s	 and	 from	 −62.44%	 (under	 CanESM5	
and	RCP	8.5	scenario)	 to	−27.74%	 (under	CNRM-	ESM2-	1	and	RCP	
2.6 scenario) by the 2070s in the whole study area. On the con-
trary, the relative change ratios projected by climate SDMs ranged 
from	−61.16%	(under	CanESM5	and	RCP	8.5	scenario)	to	−41.36%	
(under	IPSL-	CM6A-	LR	and	RCP	2.6	scenario)	by	the	2050s	and	from	
−73.38%	 (under	CNRM-	CM6-	1	and	RCP	8.5	 scenario)	 to	−43.05%	
(under CNRM- ESM2- 1 and RCP 2.6 scenario) by the 2070s. Similarly, 
although the relative change ratios of potential suitable habitats in 
the current suitable range of D. involucrate are greater than those in 

Algorithms

AUC TSS

Climate SDMs Full SDMs Climate SDMs Full SDMs

ANN 0.932 ± 0.008 0.951 ± 0.003 0.835 ± 0.017 0.871 ± 0.010

CTA 0.909 ± 0.006 0.920 ± 0.005 0.813 ± 0.008 0.836 ±	0.004

FDA 0.941	± 0.002 0.956 ± 0.001 0.820 ± 0.003 0.832 ± 0.005

GAM 0.949	± 0.002 0.951 ± 0.003 0.860 ± 0.005 0.859 ± 0.006

GBM 0.955 ± 0.002 0.960 ± 0.001 0.854	± 0.005 0.866 ± 0.003

GLM 0.945	± 0.001 0.954	± 0.001 0.847	±	0.004 0.868 ±	0.004

MARS 0.953 ± 0.001 0.961 ± 0.001 0.852 ± 0.005 0.876 ±	0.004

MaxEnt 0.958 ± 0.002 0.962 ± 0.001 0.856 ± 0.006 0.865 ± 0.005

RF 0.960 ± 0.001 0.967 ± 0.001 0.858 ± 0.005 0.869 ± 0.007

SRE 0.830 ± 0.011 0.790 ± 0.007 0.659 ± 0.021 0.579 ± 0.013

Ensemble 0.971 0.978 0.889 0.909

Note:	The	AUC	and	TSS	values	of	the	ensemble	species	distribution	models	(SDMs)	are	also	shown	
for comparison.

TA B L E  1 Model	performance	
(mean ± SD) of ten modeling algorithms 
(i.e.,	artificial	neural	network	[ANN],	
classification	tree	analysis	[CTA],	flexible	
discriminant	analysis	[FDA],	generalized	
additive	model	[GAM],	generalized	
boosted models [GBM], generalized 
linear model [GLM], multivariate adaptive 
regression	splines	[MARS],	maximum	
entropy [MaxEnt], random forests [RF], 
and surface range envelope [SRE]) used 
for species distribution modeling of 
Davidia involucrate Baill. based on area 
under	curve	(AUC)	and	true	skill	statistics	
(TSS) value
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the whole study area, D. involucrate are also more likely to lose range 
under climate SDMs than full SDMs (Figure 4).

Under all future scenarios, the distance of shift of species dis-
tribution centroids is all greater than zero (Figure 4), indicating that 
D. involucrate would likely shift to the northward of high- latitude 
regions in response to global change. Furthermore, due to greater 
magnitude of species' range shifts under future climate conditions, 
D. involucrate was predicted to shift longer distance under climate 
SDMs than full SDMs (Figure 4). Specifically, the full SDMS pre-
dicted	that	the	species	would	need	move	from	65.92 km	(under	the	
MIROC- ES2L climate model and RCP 2.6 scenario by the 2050s) to 
252.86 km	(under	the	CanESM5	climate	model	and	RCP	8.5	scenario	
by	 the	 2070s)	 in	 the	whole	 study	 area	 and	 from	88.83 km	 (under	
the MIROC6 climate model and RCP 8.5 scenario by the 2050s) to 
196.96 km	(under	the	CanESM5	climate	model	and	RCP	8.5	scenario	
by the 2070s) in the current suitable range of D. involucrate, while the 
climate SDMs predicted that the distance of centroid shifts ranged 
from	101.07 km	 (under	 the	 IPSL-	CM6A-	LR	climate	model	and	RCP	
8.5	 scenario	by	 the	2050s)	 to	373.02 km	 (under	 the	CanESM5	cli-
mate model and RCP 8.5 scenario by the 2070s) in the whole study 
area	and	 from	101.07 km	 (under	 the	 IPSL-	CM6A-	LR	climate	model	
and	RCP	8.5	scenario	by	the	2050s)	to	266.59 km	(under	the	CNRM-	
CM6- 1 climate model and RCP 2.6 scenario by the 2070s) in the cur-
rent suitable range of D. involucrate.

3.3  |  The future effectiveness of current PAs

The	current	PAs	only	cover	6.8%	(61,500 km2) of the current suitable 
habitat of the D. involucrate. The relative change ratios of projected 
suitable	habitat	inside	current	PAs	have	a	similar	trend	in	predicted	
species range size both in the whole study area and in the current 
suitable range of D. involucrate (Figure 5). Especially, D. involucrate 
is also more likely to lose range under climate SDMs than full SDMs 
inside	 PAs.	 Specifically,	 the	 relative	 change	 ratios	 inside	 PAs	 pro-
jected	 by	 full	 SDMs	 ranged	 from	 −66.83%	 (under	 MIROC-	ES2L	

climate	model	and	RCP	8.5	scenario	by	the	2070s)	to	−16.42%	(under	
CNRM- ESM2- 1 climate model and RCP 2.6 scenario by the 2050s) 
in	the	whole	study	area	and	from	−67.32%	(under	MIROC-	ES2L	cli-
mate	model	and	RCP	8.5	scenario	by	the	2070s)	to	−18.54%	(under	
CNRM- ESM2- 1 climate model and RCP 8.5 scenario by the 2050s) 
in the current suitable range of D. involucrate. On the contrary, the 
relative	change	ratios	inside	PAs	projected	by	climate	SDMs	ranged	
from	−89.47%	(under	CNRM-	CM6-	1	climate	model	and	RCP	8.5	sce-
nario	by	the	2070s)	to	−34.85%	(under	IPSL-	CM6A-	LR	climate	model	
and RCP 8.5 scenario by the 2070s) in the whole study area and 
from	−91.73%	(under	CNRM-	CM6-	1	climate	model	and	RCP	8.5	sce-
nario	by	the	2070s)	to	−45.54%	(under	IPSL-	CM6A-	LR	climate	model	
and RCP 2.6 scenario by the 2050s) in the current suitable range of 
D. involucrate.

4  |  DISCUSSION

Accurately	 predicting	 the	 future	 distribution	 of	 species	 is	 crucial	
for understanding how species will response to global environmen-
tal	change	and	evaluating	the	effectiveness	of	current	PAs	(Wiens	
et al., 2009) and has required that projections should cover multiple 
factors (e.g., climate and land use change) that are important drivers 
of species distributional changes (Brook et al., 2008; Travis, 2003). 
In this study, we projected the distribution of suitable habitats of D. 
involucrate under the combination of climate change and land use 
change scenarios. The results suggest that although D. involucrate 
is extremely vulnerable to future climate change, and future climate 
change would negate the conservation effectiveness of the current 
PAs,	 future	 land	 use	 pattern	would	 offset	 the	 negative	 effects	 of	
climate change on the future distributions of D. involucrate and the 
effectiveness	of	the	current	PAs.	These	findings	should	inform	the	
dialogue determining the roles of land use change on the future dis-
tribution patterns of D. involucrate and the effectiveness of current 
PAs,	and	thus	have	 important	 implications	 for	 the	conservation	of	
D. involucrate.

Predictor variables

Relative importance

Climate SDMs Full SDMs

Annual	mean	temperature	(BIO1) 0.3487	± 0.0003 0.1321 ± 0.0002

Isothermality (BIO3) 0.0601 ± 0.0007 0.0266 ± 0.0003

Temperature annual range (BIO7) 0.8033 ± 0.0069 0.7856 ±	0.0041

Precipitation	of	the	driest	month	(BIO14) 0.0997 ± 0.0012 0.1026 ± 0.0009

Precipitation seasonality (BIO15) 0.0154	± 0.0002 0.0121 ± 0.0003

Precipitation of the warmest quarter (BIO18) 0.0688 ± 0.0008 0.0377 ±	0.0004

The proportion of cropland (CL) –	 0.0019 ± 0.0001

The proportion of forestland (FL) –	 0.0224	± 0.0002

The proportion of grassland (GL) –	 0.1186 ± 0.0020

The proportion of shrubland (SL) –	 0.0265 ± 0.0005

The proportion of urban green spaces area (UGSL) –	 0.0003 ± 0.0001

The proportion of water (WL) –	 0.0006 ± 0.0001

TA B L E  2 Relative	importance	
(mean ± SD) of the predictor variables in 
the ensemble model of habitat suitability 
for Davidia involucrate
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To our knowledge, this study is one of the first studies so far to 
forecast the distributional changes of D. involucrate by combining 
climate change and land use changes. Previous studies have re-
ported that human- induced land use change are important drivers 

in determining distribution patterns of D. involucrate, for the in-
creasing intensity of human- induced land- use change (e.g., log-
ging) has led to a sharp decrease of its remaining habitats (Wang 
et al., 2019). Consistent with these studies, our findings suggest 

F I G U R E  2 Response	curve	of	environmental	variables	used	to	model	habitat	suitability	of	D. involucrate in China
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F I G U R E  3 Changes	in	suitable	ranges	of	Davidia involucrata Baill. Projected by full ensemble SDMs under each GCMs and RCP scenario 
in: (a) 2050s and (b) 2070s. Four trajectories were assigned to each grid cell by comparing habitat suitability under current and future 
environmental	conditions:	“Absence,”	a	grid	that	is	unsuitable	for	this	species	under	current	environmental	conditions	remain	unsuitable	
under future environmental conditions; “gain,” a grid that is unsuitable for this species under current environmental conditions become 
suitable under future environmental conditions; “lost,” a grid that is suitable for this species under environmental climatic conditions 
become unsuitable under future environmental conditions; “persistence,” a grid that is suitable for this species under current environmental 
conditions remain suitable under future environmental conditions
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that D. involucrate are influenced by land use variables, among 
which the most important land use variable is the proportion of 
the grassland cover. This is partly because its populations are 
mainly distributed in forests with lower grassland cover compared 
to	 other	 landscape	 types	 (He	 et	 al.,	 2004).	 As	 expected,	 both	
AUC	 (paired	Wilcoxon	 signed	 rank	 test,	V =	 466,	 p < .001)	 and	
TSS (V = 835, p < .001)	indicated	that	incorporating	land	use	vari-
ables into climate SDMs greatly improves the model performance, 
which suggests that climate change alone may over- represent 
species range and accordingly lead to unreliable projections of 
range dynamics (Di Febbraro et al., 2019; Sohl, 2014; Stanton 
et al., 2012).

Besides, the climate SDMs and full SDMs we implemented al-
lowed us to evaluate the effect of climate and land use change on 
the future distribution of D. involucrate. Previous studies have sug-
gested that climate factors are main drivers in shaping the distribu-
tion of D. involucrate, for D. involucrate is cold intolerance species 
and mainly distributes in the areas with narrow annual temperature 

range and high precipitation (Liu et al., 2019, Su & Zhang, 1999). 
Nonetheless, according to our results, climate SDMs projected 
less suitable habitats than full SDMs both in the whole study area 
and in its current suitable range. This finding suggests that includ-
ing land use variables may project a wider bioclimatic niche and 
accordingly could create more suitable habitats that species can 
colonize (Marshall et al., 2018). For example, forest habitats with 
moderate temperature range emerges as preferred habitats by this 
species (Wang et al., 2019). Moreover, land use change, such as the 
abandonment of currently disturbed areas, may offer an oppor-
tunity for habitat restoration to preserve the suitable habitats of 
D. involucrate and help them cope with current and future climate 
change (Navarro & Pereira, 2012; Zamora- Gutierrez et al., 2018). 
Together, these findings inform that adopting management actions 
(e.g., increase forest cover and forbid logging) that contribute to 
the improvement of the habitats of D. involucrate may be an ef-
fective way to offset some of the negative effects of a changing 
climate on D. involucrate.

F I G U R E  4 Range	shifts	of	Davidia involucrate in 2050s and 2070s under different future scenarios projected by climate SDMs and full 
SDMs, respectively. (a) The relative change in suitable aera in the whole study area, (b) the relative change in suitable aera in the current 
suitable range of D. involucrate, (c) the distance of centroid shifts in the whole study area, and (d) the distance of centroid shifts in the current 
suitable range of D. involucrate
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Our results also provide the first assessment of the future ef-
fectiveness	of	the	current	PAs	for	the	conservation	of	D. involucrate 
under the combinations of climate and land use change scenarios. 
Consistent with previous studies (Long et al., 2021b), our results also 
suggest that future climate would negate the future effectiveness of 
current	PAs	for	protecting	D. involucrate, for the species would ex-
perience serve range contraction under future climate change inside 
PAs.	However,	 this	effectiveness	may	be	 improved	when	 land	use	
variables were incorporated into the climate SDMs, for the percent-
age of the suitable habitats lost projected by full SDMs were lower 
than climate SDMs. These results highlight the key role that land use 
change will play over the next decades to maintain suitable habitats 
for D. involucrate	inside	PAs.

Overall, this study offers novel insights into how land use change 
in interaction with climate change might strongly impact on the pro-
jected distribution of D. involucrate. This study also provides useful 
information	for	comprehending	the	key	role	that	the	current	PAs	will	
play in the near future by integrating climate and land- use change 
scenarios. In the light of our results, we underline the need for an 
explicit consideration of land use dynamics when forecasting the fu-
ture	distribution	of	species	and	the	effectiveness	of	PAs	in	a	context	
of global change.
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