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Abstract: Endometrial cancer (EC) is the most common gynaecological malignancy. Nucleolin (NCL)
is involved in rDNA transcription, cell proliferation, and apoptosis, with high expression associated
with worse overall survival (OS) in other adenocarcinomas. Our aims were to assess NCL gene
and protein expression and explore the differential expression of NCL-associated genes (NAGs) in
endometrial carcinogenesis. Endometrial samples were obtained from 157 women to include healthy,
hyperplastic (EH), EC, and metastatic groups. RT-qPCR and immunohistochemistry were employed
to assess NCL gene and protein levels. In silico analysis of NAGs in TCGA and GEO datasets was
performed, with the prognostic value determined via Human Protein Atlas. NCL mRNA level of
EC was lower than in healthy post-menopausal endometrium (p < 0.01). EH samples had lower
NCL immuno-expression scores than healthy pre-menopausal (p < 0.001), benign post-menopausal
(p < 0.01), and EC (p < 0.0001) samples. Metastatic lesions demonstrated higher NCL quick scores
than primary tissue (p = 0.04). Higher NCL Immuno quick scores carried a worse OS in high-grade
EC (p = 0.01). Interrogating Uterine Corpus Endometrial Carcinoma (TCGA-UCEC) and Uterine
Carcinosarcoma (TCGA-UCS) cohorts revealed NCL to be the most highly upregulated gene in
carcinosarcoma, with S100A11, LMINB2, RERG, E2F1 and CCNA2 representing key dysregulated
NAG:s in EC. Since NCL is implicated in transforming hyperplastic glands into cancer, with further
involvement in metastasis, it is suggested to be a promising target for better-informed diagnosis, risk
stratification, and management of EC.

Keywords: endometrial cancer; nucleolin; metastasis

1. Introduction

Endometrial cancer (EC) is the most common gynaecological malignancy, and the
fourth most common cancer in women in the United Kingdom (UK) [1]. Incidence rates
of EC are continuing to rise, with a reported increase of 55% since the early 1990s [1],
attributed to increasing rates of obesity and an ageing population worldwide. Despite
advances in current treatment strategies, EC mortality rates have increased by 25% in the
last decade and are projected to rise a further 19% by 2035 [1]. This is of concern since
there is a general improvement in overall survival for other gynaecological cancers, such
as ovarian and cervical cancer [2,3]. Therefore, new therapeutic approaches are urgently
needed to improve overall patient survival and curb the escalating burden of EC. New
potential targets that play an important role in the aetiology, carcinogenesis, and tumour
progression in EC are presently sought for the development of novel screening or treatment
modalities for EC.
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Immunotherapy is a new promising therapeutic approach that targets specific
molecular markers. One such target could be nucleolin (NCL), which is a multifunc-
tional protein found mainly in the nucleolus, with a role in rDNA transcription, cell
proliferation, apoptosis, and angiogenesis [4-6]. Its overexpression has been noted in
several cancer types, including colorectal, gastric, oesophageal, pancreatic, and hepato-
cellular cancers [7-11], with higher levels linked to a worse prognosis. The oncogenic
properties of NCL can be explained by the increased mitotic activity of cancerous cells,
which require a high level of protein synthesis to sustain mitosis. Dysregulated NCL
increases rRNA and ribosomal synthesis, as well as increasing cell survival due to
its anti-apoptotic properties [12], thereby contributing to malignant transformation,
tumour migration, and distant metastasis. Despite the vast existing knowledge of
NCL’s role in carcinogenesis relevant to many other cancers, its role in EC is yet to be
fully established.

The human endometrium is a highly proliferative organ [13]. EC is associated with
aberrant and dysregulated endometrial epithelial proliferation, coupled with errors in
apoptotic and DNA repair pathways leading to an increased risk of tumour metastasis, a
process known to be a key factor in cancer-associated mortality and poor survival in EC
patients. Therefore, it is vital to explore the role of cancer-associated proteins, such as NCL,
to establish their role in endometrial carcinogenesis.

The only study examining NCL in EC was published recently and analysed publicly
available TCGA-UCEC RNA sequencing dataset of 494 endometrioid, serous, and mixed
serous and endometrioid EC samples, suggesting that higher expression of NCL was an
unfavourable prognostic factor [14]. They also examined the NCL protein levels in a
limited cohort of 82 endometrioid ECs with immunohistochemistry and reported that
low nuclear NCL and contrastingly high extra-nuclear NCL protein levels are associated
with poor disease-free survival rates. This study did not include all subtypes of EC,
particularly excluded non-endometrioid types of ECs that carry a worse prognosis
than endometrioid EC subtype, and included a heterogeneous group of control, a non-
malignant disease for comparison. Therefore, to fill the existing gaps in knowledge,
our study aimed to examine NCL mRNA and protein expression in tissue samples
from pre-menopausal and post-menopausal (PM) healthy endometrium, precancer-
ous endometrial hyperplasia (EH), and all subtypes of EC, including endometrioid,
serous, carcinosarcoma and clear cell subtypes, as well as metastatic lesions, thereby
comprehensively examining differential levels of NCL in endometrial carcinogenesis.
We hypothesised that the NCL gene and protein would be differentially expressed
in EC.

Considering the diverse role of NCL, we generated a list of nucleolin-associated genes
(NAGSs) and examined their differential expression in TCGA EC datasets since they may
allow the identification of important other targets and pathways relevant to prognosis and
treatment in EC.

2. Results
2.1. Demographic Data

Women in the pre-menopausal group were younger than all other patient groups
examined (p < 0.0001) (Table 1), and patients with EH were significantly younger than
patients with EC (p = 0.0007), whilst having significantly higher BMI than women in
the pre-menopausal (p = 0.0061), post-menopausal (p < 0.0001), and EC (p = 0.0008)
patient groups.

2.2. NCL Gene Expression

Healthy PM endometrium expressed significantly higher levels of NCL mRNA com-
pared with all EC samples (p < 0.01) (Figure 1).
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Table 1. Patient demographic features. Age: Pre-menopausal vs. post-menopausal p < 0.0001.
Pre-menopausal vs. endometrial hyperplasia p < 0.0001. Pre-menopausal vs. Endometrial Cancer
p <0.0001. Endometrial hyperplasia vs. endometrial cancer p = 0.0007. BMI: Endometrial hyperplasia
vs. pre-menopausal p = 0.0061. Endometrial hyperplasia vs. post-menopausal p < 0.0001. Endometrial
hyperplasia vs. endometrial cancer p = 0.0008.

Age (Years) BMI (kg/m?)

Study Group Number of Patients Median Median
(Range) (Range)
Healthy Control 38 (3%3855) (202_65'2 2)
44 27.8
Pre-menopausal 15 (30-47) (21.6-52.2)
Post-menopausal 23 (526_285) (202_%; 6)
Endometrial Hyperplasia 21 (375_77 4) 23 36;?3 1)
. 67 30
Endometrial Cancer 98 (33-89) (202-51.4)
60 30.6
Low Grade EC 39 (33-88) (21.6-48.4)
Grade 1 » 58 31.2
Endometrioid Carcinoma (33-88) (21.6-47.6)
Grade 2 17 64 28.9
Endometrioid Carcinoma (41-79) (41-48.4)
High Grade EC 59 73 29.6
8 (52-89) (20.2-51.4)
Grade 3 Endometrioid 14 70 28.6
Carcinoma (54-83) (23.9-42.7)
. 78 29.6
Serous Carcinoma 13 (60-87) (23.4-38.7)
. 78 26
Carcinosarcoma 20 (58-89) (20.2-51.4)
. 64 30.3
.Clear Cell CarcTn.oma 11 (52-82) (26.6-39)
Mixed Endometrioid and 1 83 26.8

Clear Cell

2.3. Immunolocalisation of NCL

EH was associated with a significant reduction in NCL quick scores when compared
with pre-menopausal endometrium (p < 0.001), post-menopausal endometrium (p < 0.01),
and EC (p < 0.0001) (Figure 2A). Significantly higher NCL quick scores were observed in G1
endometrioid (p = 0.0001), G2 endometrioid (p < 0.001), serous (p < 0.0001), and clear cell
EC (p < 0.001), when compared with EH (Figure 2B), with representative microphotographs
presented in Figure 3.

Kaplan—-Meier survival curves analyzing the overall survival (OS) were created to
explore the prognostic value of NCL in EC. Several cut-off points were trialed and the score
which provided the best overall separation was chosen, with a quick score of six. Although
not statistically significant, there was an obvious trend with worse OS in women with EC
expressing a high NCL quick score (>6), than in women with low NCL quick score (<6)
(p = 0.05) (Figure 2C), with median survival in those with a low NCL quick score (<6) at
96 months when compared with the 30 months median survival in those with high NCL
quick score (>6). Patients with high-grade EC (HGEC) tumours expressing high NCL quick
score (>6) had significantly poorer OS than patients with HGEC expressing lower NCL
quick score (<6) (p = 0.01) (Figure 2D), and median survival in those with low NCL quick
score (<6) at 96 months, when compared with 15 months median survival duration in those
with high NCL quick score (>6).
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Figure 1. Scatter plot of NCL mRNA expression using RT-qPCR in post-menopausal (1 = 6) versus
endometrial cancer tissue (1 = 20; G1 endometrioid n = 3, G2 endometrioid n = 3, G3 endometrioid
n =6, serous n = 2, carcinosarcoma #n = 3, clear cell n = 3); line indicates the median.

2.3.1. Matched Pairs Analysis of NCL Staining

Wilcoxon matched pairs test was carried out to compare NCL quick scores of women
diagnosed to have both EH and EC on histology. Analysis of matched EH and EC samples
from the same woman demonstrated a significant decrease in NCL immunolocalisation
in EH when compared to EC (p < 0.0001) (Figure 4A) with representative micrographs of
the immunolocalisation shown in Figure 4B(EC) and Figure 4C(hyperplasia). The second
subgroup analysis compared the NCL quick scores of the metastatic EC, with the NCL quick
scores of primary uterine cancer tissue. Figure 4D displays an overall higher nucleolar
expression of NCL in the distant metastatic lesions when compared with primary cancer
tissue from the uterine site of the same patient (p = 0.04). Figure 4E shows a G2 endometrioid
EC, the most common subtype of EC, with the most common metastatic lesion for our
subset—the omentum (Figure 4F).

2.3.2. Observer Agreement

There was a high level of agreement between the three observers scoring the samples,
as can be seen in the Bland—Altman plots between VB (observer A) and the three other
observers, observers B (BR), C (FA), and D (ET) (Supplementary Figure S1).



Int. . Mol. Sci. 2022, 23, 6228

50f 20

p=0.0001
A B —
E<0.001
p<0.001 .‘?<O'OOO1. p<0.0001
o 154 r 1r 1 o 151
s p<0.01 § . p<0.001 .
wn & r L]
= | | [
S0 ° 5 10 = .,
c o2* » c - *» h
E .. bl | A '_'-E Y . Aﬁ ‘,V * % A
g | s 2 PR K
° . 5 ° s Y
S 5 o° o S 5 m = .
E; i = i 3 V-
= AL A =z [ ] A v Py %
= | ¢ A TR < =L@
g 0 Al T ‘:I‘ ¥ g 0'_L' T T T T T
& & & <& & e & @ F PP
(\cf’{a {\OQ'& Qe‘q Qéq < & i
& & = 3
<t & Patient Group
Patient Group
p=0.05
—— Nucleclin <6 —— Nucleolin <6
. —— Nucleolin =6 S —— Nucleolin =6
= =]
w w
k= k=
@ @
2 2
& &
ed
G T 1 c I 1
0 50 100 0 50 100

Overall survival (months)

Overall survival (months)

Figure 2. (A) Scatter plot showing NCL quickscore comparison across pre-menopausal (n = 15),
post-menopausal (1 = 18), EH (n = 21) and EC (n = 90) samples. Line indicates the median. (B) Scatter
plot showing NCL quickscore comparison across EH (n = 21), G1 (n = 21), G2 (n = 15), G3 (n = 13),
serous (n = 11), carcinosarcoma (1 = 18), clear cell (n = 11), and mixed (1 = 1) EC. Line indicates the
median. (C) Kaplan—Meier survival curve showing effect of NCL expression on OS in EC. p = 0.05.
(D) Kaplan-Meier survival curve showing effect of NCL expression on OS in HGEC. p = 0.01.

2.4. In Silico Analysis
2.4.1. NCL in TCGA Data

Demographics data of the TCGA Cohort is presented in Supplementary Table S1. Our
analysis of TCGA data further reveals that NCL is upregulated in carcinosarcoma (Log2Fold
Change = 6022.94), an HGEC subtype when compared to healthy adjacent endometrium
(Supplementary Table S5).

2.4.2. Identification of NAGs and DEGs

A total of 196 NAGs were identified via STRING and IPA (highest confidence = 0.900).
Two additional NAGs of interest, namely NAPIL1 and SRFS2 (medium confidence = 0.400)
were also included in the analysis due to their involvement in carcinogenesis and cancer
metastasis [15-17]. The link between NAP1L1 and NCL, as well as SRFS2 and NCL, was
based on co-expression and experimental data. A total of 198 NAGs were analysed for
differential gene expression (Supplementary Table S2). As TCGA data were available for
197 of the 198 NAGs (excluding TCR), overall, 197 NAGs were included for differentially
expressed genes (DEG) analysis.
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Figure 3. Representative microphotographs of immunolocalised nucleolar NCL expression in different
tissues. Positive staining indicated by brown nucleoli. All images seen at x 1000 magnification. Scale
bar = 20 pum, applicable to all panels. (A) Pre-menopausal (B) post-menopausal (C) hyperplasia (D) G1
endometrioid EC (E) G2 endometrioid EC (F) G3 endometrioid EC (G) serous EC (H) carcinosarcoma
EC (I) clear cell EC (J) mixed. The median scores for each group were 6.8,5.1, 2.8, 6.5,5.8,4.6, 6.6, 5.1,
6.4, and 8.3, respectively.
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Figure 4. (A) Graph showing Wilcoxon matched pairs test in women diagnosed with both EH and
EC (n = 26). Representative micrographs showing nucleolar NCL staining in (B) EC (median quick
score = 4.6) and (C) matched EH (median quick score = 3.6). (D) Graph showing Wilcoxon matched
pairs test in women diagnosed with metastatic EC, showing nucleolar NCL quick score in primary
endometrial tissue (n = 27) and matched metastatic lesions (n = 35). Representative micrographs
showing nucleolar NCL staining in (E) EC (median quick score = 4) and (F) matched metastatic lesion
(median quick score = 6). Positive staining indicated by brown nucleoli. All images seen at x1000
magnification. Scale bar = 20 um, applicable to all panels.
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A total of 52 DEGs were identified between EC (n = 120) and healthy adjacent
control (n = 10). A total of 32 were upregulated in cancer and 20 downregulated
(Supplementary Table S3). Supplementary Figure S2 depicts the volcano plots and
heatmap of this analysis. The top five upregulated DEGs, ranked by Log2FC, were
S100A11, LMNB2, SCRIB, CCNB1, and SFRS2. The top five downregulated DEGs were
SVIL, RERG, ITGAV, RASL12, GEM, and CDHb5.

Our analysis identified several NAGs (n = 27) common to all EC subtypes, as
well as genes specific to each subtype, as seen in Figure 5, full tables available in
Supplementary Tables S4-S7. Interestingly, NCL was the most highly upregulated DEG
for the carcinosarcoma subtype (log, Fold Change = 6022.939, Adjusted p value = 0.00609).
Similarly, Supplementary Tables S8-510 depict the common genes between EC grades
and those specific to low-grade EC (LGEC) and HGEC.

Histotypes Upregulated DEGs Downregulated DEGs Endometrioid inosarcoma
Endometrioid/ Serous/ CCNB1, LMNB2, CHAF1A, | RERGL, RERG, EIF2C4, ’
Carcinosarcoma/ Mixed DHX37, CCNA2 RASL12, REM1, DIRAS1,
GEM, SFMBTZ2, CDHS, \%ﬁ
RASD2, BCL2, MAX, %,
RNASEL, TACR1, USP51, s
RAP2C, RAP18, SELP,
RAP1A, RASL11A, THRA, 7
SviL \
Carcinosarcoma/ Mixed/ Serous NOPS56, BMS1 N/A
Endometrioid/ Serous/ NOP58, DKC1, AURKB, PIWIL2, RRAS
Carcinosarcoma E2F1, SCRIB, SFRS2,
NKIRAS2
Carcinosarcoma/ Mixed PDCD11, EIF2C3 N/A
Mixed/ Serous IMP4, PWP2, RRP9 N/A
Carcinosarcoma/ Serous NRAS, NOL11, C60RF153 N/A
Endometrioid/ Mixed / Serous N/A uTP14C
Endometrioid / Carcinosarcoma N/A ITGB3, SP1
Endometrioid / Serous N/A ITGAS, ZNF532, DIO3,
RALB, MRAS
Mixed EIF1AD, NOP14, REM2, N/A
TBL3, HRAS, DDX52,
NOCA4L, BRI3
Endometrioid MDM2, S100A11, RPA3 NKIRAS1, NAP1L1, SIN3B,
ITGAV
Carcinosarcoma FUS, RRP18B, EIF2C2, N/A
HEATR, RASL108B, UTP11L,
WDR3, MPHOSPH10,
WDR75, RALA, DDX49,
UTP18, DCAF13
Serous NSUN2, HIST1H4H, TROVE2, TRIM3
HIST1H3H, HIST1H3D,
HIST1H3G, BCL2L1,
RNASEN

Figure 5. (A) Table of DEGs commonly upregulated and downregulated between EC subtypes. Venn
diagrams displaying common (B) upregulated and (C) downregulated genes between each subtype.

As endometrioid tumours represent the most common histological subtype of EC, this study
further examined DEGs amongst its different grades (Supplementary Figure S3 and Tables S11-513).

2.4.3. Identification of Prognostic DEGs

The main sample set in this study included 130 samples not exposed to any radiation,
neoadjuvant or hormonal therapy, whilst the larger TCGA cohort comprised 248 samples,
including those exposed to the treatments. DEGs of the latter can be seen in Supplementary
Tables 514-516, with those common to both datasets in Figure 6. The prognostic value
of 62 DEGs persisting despite hormonal, radiation, or neoadjuvant therapy was searched
via The Human Protein Atlas. A total of 11 genes were found to be unfavourable in EC,
namely E2F1, CCNA2, DKC1, ZNF532, NOP56, SRSF2, RERG, MRAS, NKIRAS1, EIF2C3,
and EIF1AD, whilst 2 were favourable—TRIM3 and MDM?2 (Figure 6C).
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A B Py
Comparisons Upregulated DEGs Downregulated DEGs . ‘ . . .

EC/Adjacent Control NKIRAS2, C60RF153, RERGL, RERG, PIWIL2,

NOP58, DKC1, CCNB1, UTP14C, EIF2C4, RASL12, . . . . . .

NRAS, BMS1, LMNB2, | REM1, DIRAS1, ZNF532,
DDX49, CHAF1A, RRPS, | RALB, SP1, GEM, SFMBT2, s e o ®_ 6 oms
E2F1, DHX37, RPA3, MRAS, CDHS, RASD2, .- ® o o e
CCNA2, $100A11, BCL2, MAX, RNASEL, [ P ) ® & ®
DCAF13, SFRS2, SCRIB | TACR1, USP51, RAP2C, s % &
RAP1B, SELP, RRAS, ® -
RAP1A, ITGAV, THRA, SVIL : '
LGEC/HGEC TRIM3, MDM2 NOPS8, CCNB1, NOPS6 @
LGEC/Adjacent Control S100A11, CHAF1A, RERGL, BCL2, MAX,
MDM2, CCNB1, REM2 | RNASEL, RERG, PIWIL2, o
USPS1, EIF2C4, ITGAS,
REM1, DIRAS1, RASL12,
RAP2C, RAP1B, SELP,

ZNF532, RRAS, RAP1A,
RALB, ITGB3, GEM,
ITGAV, NKIRAS1, THRA,

SVIL, SFMBT2, MRAS,
CDH5
HGEC/Adjacent Control NKIRAS2, C60RF153, RERGL, RERG, PIWIL2,
NOPS58, FUS, NSUN2, UTP14C, EIF2C4, REM1,

DKC1, EIF1AD, CCNB1, DIRAS1, RASL12, ZNF532,
PWP2, NRAS, BMS1, RALB, 5P1, GEM, SFMBT2,
NOP56, LMNB2, DDX49, | MRAS, CDHS, BCL2, MAX,

CHAF1A, RRPS, E2F1, TACR1, RNASEL, USP51,
DHX37, RPA3, CCNAZ, RAP2C, RAP1B, SELP,
DCAF13, NOC4L, SFRS2, RRAS, RAP1A, ITGAV,
 SCRIB, EIF2C3, PDCD11 SVIL, THRA

Figure 6. (A) Table of DEGs commonly upregulated and downregulated between those exposed and
not exposed to hormonal, radiation, or neoadjuvant therapy. (B) Protein—protein interaction network
displaying upregulated and downregulated DEGs in those exposed and not exposed to hormonal,
radiation, or neoadjuvant therapy. Green and red nodes represent upregulated and downregulated
DEGs, respectively. (C) Protein—protein interaction network of favourable (green) and unfavourable
(red) genes in endometrial cancer.

2.4.4. External Validation of Differentially Expressed NAGs

The GSE17025 GEO dataset [18] was selected for DEG analysis due to its similarity to
our local cohort with 63 Stage I LGEC (G1 and G2 Endometrioid), 25 Stage I HGEC (G3
Endometrioid and Serous), and 8 postmenopausal (atrophic and inactive endometrium)
control samples. Supplementary Table S17 show the DEGs common to both TCGA and
GEOQO datasets, thereby confirming this study’s findings.

2.4.5. Biological Processes and Pathway Analyses

Analyses of biological processes and KEGG pathways were performed on the
13 prognostic DEGs shown in Figure 6C. A total of 180 significant GO biological processes
and 50 KEGG pathways were identified (Supplementary Tables 518 and S19). Figure 7
depicts the ten highest ranking processes and pathways by p-value, as taken from Enrichr,
with significant enrichment for cellular senescence and cell cycle through biological
processes such as small GTPase mediated and Ras protein signal transduction, along
with RNA stabilisation.
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Figure 7. Bar charts of (A) biological processes and (B) KEGG pathways analyses in prognostic DEGs.

3. Discussion

Although there is a growing evidence base of molecular alterations in EC, many
questions remain unanswered. The role of NCL in EC has not been fully elucidated.
Nucleolin is a ubiquitous protein involved in cell growth and proliferation. Several studies
have confirmed its relevance in cancer development [6]; however, there is limited data
on nucleolin’s involvement in the malignant transformation of the endometrium [14]. We
have previously immunolocalised NCL in the endometrium of healthy pre-menopausal
women, with high expression observed in the proliferative phase of the menstrual cycle and
reduced or absent NCL in the mid/late secretory phase, suggesting nucleolin expression
may either be a feature of or play a facilitatory role in endometrial cell proliferation [13].
In this study, we sought to investigate the relationship between NCL expression and the
human endometrium, including endometrial hyperplasia, primary cancerous tissue, and
metastatic lesions.
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This study is the first to examine the nucleolar expression of NCL in endometrial hy-
perplasia. EH is defined as an aberrant proliferation of endometrial glands with an increase
in the gland-to-stroma ratio [19]. The most common histotype of EC, endometrioid EC,
often originates from EH, with the risk of progression to cancer with atypical hyperplasia
being as high as 30% [20]. Currently, there is no UK screening programme for women at risk
of developing EC [21]. This highlights the need for identifying biomarkers to risk stratify
and target early preventative treatment. In our study, we found EH to have an association
with a reduction in NCL quick scores when compared to pre-menopausal endometrium
(p < 0.001), post-menopausal endometrium (p < 0.01), and EC (p < 0.0001), with further
analysis revealing lower NCL quick scores in EH were maintained when compared to G1
endometrioid (p = 0.0001), G2 endometrioid (p < 0.001), serous (p < 0.0001), and clear cell
EC (p < 0.001). Analysis of matched EH and EC samples further supported our findings of
a significant decrease in NCL immunolocalisation in EH when compared to EC (p < 0.0001).
Our findings suggest that when hyperplastic glands undergo architectural and nuclear
change typical of cancer, NCL expression is regained. This could suggest a possible in-
volvement of NCL in the transformation of endometrial hyperplasia to endometrial cancer.
This putative shift in the mechanistic role of nucleolin is important to explore and future
laboratory studies utilising gene manipulation may allow examination of the effects of
both over-expression or lack of NCL on endometrial carcinogenesis. Reintroducing NCL,
after knock-down, may simulate the findings we report from this clinical observational
study. Current statistics show that 34% of EC cases in the UK are preventable [1]. Further
research into NCL'’s role in the transformation of EH into EC will be a useful strategy in
preventing carcinogenesis of the pre-cancerous hyperplastic endometrium. Discovering
novel treatments that prevent the progression of EH to EC may prove useful in high-risk
women, such as obese patients diagnosed with endometrial hyperplasia.

Within our cohort, patients with EH had significantly higher BMI compared with
pre-menopausal (p = 0.0061), post-menopausal (p < 0.0001), and EC (p = 0.0008) patient
groups. Other studies have found that obesity increases the risk of mortality in EC by two-
to six-fold [22]. Therefore, by establishing nucleolin’s role in EH and EC and comparing
effects between women of different BMI on disease progression, mortality, and recurrence,
NCL may be studied as a potential target for both cancer prevention and anti-cancer
therapies in this particular at-risk EH patient group. Such treatment may have major
clinical relevance for women diagnosed with EH within the reproductive period, potentially
allowing targeted fertility-sparing management in those who wish to retain their uterus,
and thus, their fertility.

In their study of TCGA data, Lin et al. found higher NCL mRNA expression to signifi-
cantly correlate with serous endometrial carcinoma (p < 0.001), advanced stage (p = 0.029),
and grade 3 endometrioid EC (p < 0.001), all of which had a poor prognosis [14]. Statistical
analysis in our study revealed an association of NCL mRNA levels with EC, where healthy
PM endometrium expressed significantly higher levels of NCL mRNA compared with EC
(p < 0.01). Interestingly, this finding does not correlate with our immunohistochemical
analysis of the nucleolin protein levels, where no significant difference in nucleolin quick
score was observed between PM and EC samples. This may be explained by the different
entities measured by the two techniques, for example, mRNA vs. protein, and immuno-
histochemistry staining analysis did not directly quantify nucleolin protein levels, but
semi-quantitatively assessed the proportion and staining intensity of nucleoli. Furthermore,
mRNA levels do not have a linear relationship with protein levels. This mapping can
be affected by parameters and conditions specific to NCL, thereby necessitating further
research into factors influencing its translation in the future. Fortelny et al. further support
this notion by observing mRNA levels to be a poor predictor of the abundance of the
protein, as proteins do not have a one-to-one ratio with their corresponding mRNA [23].
Mehra et al. indeed state that mRNA changes do not equate with changes in corresponding
proteins, which ultimately govern cellular function [24], or in the case of our study of
EC, cellular dysfunction. Instead, Mehra et al. invite the integration of polysome size,
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translation elongation, and protein stability in the future study of mapping between mRNA
and protein levels [24].

Existing evidence on the prognostic value of NCL points to higher mRNA expres-
sion associated with a worse OS (p = 0.0001) and DFS (p = 0.006) [14]. Interestingly,
conversely, NCL protein expression in endometrioid EC shows the opposite trend, with
higher NCL protein expression levels in the nucleus carrying a better DFS than those
with low nuclear NCL immunoexpression (p = 0.001) [14]. In our study, although not
statistically significant, there was an obvious trend displaying worse OS in women with
ECs expressing high nucleolar NCL protein compared with women with low nucleolar
NCL protein expression (p = 0.05). In patients with HGEC tumours, higher nucleolar
NCL protein immunoexpression carried a worse OS than those demonstrating lower
nucleolar NCL expression, with a median survival of 15 months in NCL quick score >6
(p = 0.01). The data did not show a statistically significant difference for DFS (p > 0.05).
Our study therefore supports the overall survival analysis of TCGA mRNA data in
the study by Lin et al., and further indicates that NCL may be an important marker in
the stratification of high-risk groups in HGEC, enabling the careful selection of those
patients for potential NCL targeted therapy to improve OS. However, larger studies are
needed to confirm our findings, which may allow the input of NCL expression levels
in predictive models and allow patients with HGEC expressing low NCL to be spared
unnecessary adjuvant treatment, thereby improve patient quality of life.

Metastasis remains to be one of the most important prognostic factors in EC. Large
population-based case studies have proven that EC OS and cancer-specific survival (CSS)
are largely influenced by metastasis, with both 3-year OS and CSS at a striking 0% in multi-
site metastatic disease [25]. EC metastasis can be classified into three modes: lymphatic,
intra-abdominal, and distant organ metastasis to the lung, liver, bone, and brain, with
the most common metastatic disease being lymph node metastasis [25]. For the first time,
our study has examined the difference in nucleolar NCL levels in primary endometrial
tumours and their secondary metastatic lesions. An overall higher nucleolar expression
of NCL in metastatic lesions was observed when compared to primary tissue in the same
patient (p = 0.04). These findings suggest NCL expression may be a useful molecular marker
in molecular targeted therapies, allowing for the prevention of metastatic disease and
improving patient OS and CSS.

In this study, we aimed to assess NCL mRNA levels and immunolocalisation in a
local cohort consisting of healthy, hyperplastic, EC, and metastatic samples. We confirm
our hypothesis of differential NCL expression in EC, thus informing future research of a
potential novel therapeutic target in EH, HGEC, and metastatic disease. Currently, there are
no approved molecular targeted therapies for endometrial cancer [26]. Rapidly advancing
knowledge in the field of translational medicine and molecular biology has suggested that
NCL may be targeted via miRNA, aptamers, and peptides, proving promising for future
anti-cancer therapy [6]. A key priority should therefore be to verify the effectiveness of
these therapies in EC, via clinical trials. This may allow for the use of NCL in the molecular
classification of EC, guiding decision-making in routine clinical practice.

As an extension to the ex vivo study, we also explore the role of NCL and NAGs in
EC by examining the RNA sequencing data of the TCGA uterine cancer cohort through
in silico analysis. Overall, 197 NAGs were found to be differentially expressed in the
TCGA EC samples, except for the genes coding T cell receptor (TCR). TCR is a protein
complex that controls the development, differentiation, and survival of T cells [27]. Its
structure is highly intricate, coded by four genes, TCRa, TCRB, TCRJ, and TCRy [28]. The
TCGA database did not contain RNA levels for TCRa, TCRS, TCRJ, and TCRy, and so
their expression in EC could not be analysed. This suggests that other microarray datasets
should be analysed in the future to allow for an understanding of TCR’s contribution to
endometrial carcinogenesis.
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Our bioinformatics analysis further revealed NCL to be the most highly upregu-
lated gene in the carcinosarcoma subtype of EC (log, fold change = 6022.939, adjusted
p value = 0.00609). Carcinosarcoma (CS) is an aggressive subtype of endometrial tumour,
presenting with metastatic disease in 60% at diagnosis [29]. Despite surgical treatment and
adjuvant therapy, it is thought to recur in over 50% of patients, therefore necessitating an
improvement in management strategies. Urgent development of novel targeted treatment
to prevent disease recurrence and formation of metastatic lesions is needed. For that reason,
NCL may prove to be a useful marker of the CS subtype of EC, allowing targeted aggressive
adjuvant therapy.

When comparing the expression of NAGs between EC and healthy adjacent en-
dometrium, multiple genes were differentially expressed. The top five upregulated genes
identified were S100A11, LMNB2, SCRIB, CCNBI1, and SFRS2. All five genes were present in
both, samples exposed and unexposed to any hormonal, neoadjuvant, or radiation therapy,
thereby signifying their importance. Furthermore, when validating our results with an
external GEO dataset of EC, we found that CCNB1, S100A11, and LMNB2 were upregulated
in the GSE17025 dataset. This result denotes the significance of their role in endometrial
carcinogenesis, allowing future laboratory studies to investigate their expression levels
in EC. Available wet-lab data on CCNBI1 validate our results by existing studies noting
CCNB1 upregulation in EC, with suggested involvement of Cyclin Bl in the proliferation
and reduced differentiation of EC [30].

On the other hand, our study has highlighted several novel potential biomarkers
associated with NCL which may have a role in EC, including S100A11 and LMNB2.
S5100A11 is a member of S100 proteins, with a role in the regulation of cell growth,
differentiation, and apoptosis [31]. Its involvement in carcinogenesis is well established,
with high expression correlated to tumour formation, migration, and metastasis in
renal cell, hepatocellular, prostate, breast, cervical, and ovarian carcinomas [32-37]. Liu
et al. have isolated its presence in human endometrium in relation to reproductive
failure [38]; however, there are no current studies exploring S100A11’s role in EC.
Interestingly, Liu et al. found S100A11 knockdown to reduce embryo implantation rate,
implying its downregulation may be implicated in reproductive failure. Our study
found S100A11 to be upregulated in EC when compared to adjacent healthy tissue, with
unique upregulation in endometrioid tumours, and specific high expression in G1 and
G3 endometrioid tumours. Furthermore, we found S100A11 upregulation to also be
unique to LGEC in both TCGA and GEO datasets. Therefore, together with the findings
of Liu et al., our study suggests a role of SI00A11 in the human endometrium, indicating
the future examination of S100A11’s functional role in endometrial pathologies such as
endometrioid EC.

Furthermore, our study is the first to find significant upregulation of LMNB2 in EC.
LMNB?2 is a lamin protein known to regulate nuclear stability and gene expression [39],
with noted upregulation in breast, colorectal and oesophageal cancers [40-42]. Our in silico
study notes LMINB2 to be highly expressed in all EC subtypes, with unique upregulation
in HGEC and G3 endometrioid cancer. This suggests LMNB2 may be involved in nuclear
instability and the progression of EC into HGEC. Therefore, future studies should aim
to explore LMNB?2 as a potential prognostic marker in HGEC, allowing for potential risk
stratification in high-grade diseases.

The most significantly downregulated genes in EC were SVIL, RERG, ITGAV,
RASL12, GEM, and CDHb5. All five genes were present in both samples exposed and
unexposed to any hormonal, neoadjuvant, or radiation therapy; however, these genes
were not identified as downregulated in our external GSE17025 dataset. This means that
our data on downregulated genes may need to be interpreted with caution, and further
studies should aim to compare their expression with other large cohorts to determine
their true role in EC development. Nevertheless, despite not being differentially ex-
pressed on external validation, research into these genes may bring new insights into the
pathogenesis of EC, as recent work shows their involvement in cancer development. For
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example, SVIL is intricately involved in tumour angiogenesis in liver cancer [43], whilst
ITGAV silencing has proven to inhibit the cell proliferation and invasion of breast cancer
cell lines [44] and CDHb5 has been demonstrated as a biomarker of metastatic breast
cancer [45]. The prognostic value of all DEGs persisting despite exposure to hormonal,
neoadjuvant, or radiation therapy determined that RERG, the second most highly down-
regulated DEG in our analysis, was an unfavourable molecular prognostic marker in
EC. Similarly, E2F1 and CCNA2 were upregulated in the GSE17025 and TCGA datasets,
demonstrating to have prognostic relevance in The Human Protein Atlas. Therefore,
we invite future research into these identified gene alterations, with particular focus on
verifying the role of S100A11, LMNB2, RERG, E2F1 and CCNA2 in EC, thereby bringing
new insights into the pathogenesis of the disease.

The joint evidence-based guidelines of the European Society of Gynaecological
Oncology (ESGO), European Society for Radiotherapy and Oncology (ESTRO), and Euro-
pean Society of Pathology (ESP) for the management of EC recommended using a panel
of molecular markers to classify EC in addition to the well-known, clinicopathologic
features such as myometrial invasion, histotype or lymph vascular space invasion [46].
The markers already in use are not considered to be fully comprehensive and have room
for improvement. Given the extent of the interaction nucleolin and NAGs have with
the other known prognostic molecular markers, (e.g., POLE, TP53, MSH6, PMS2, KRAS,
PTEN, and L1CAM, shown in Supplementary Figure S4), it would be interesting to
see whether the NAGs with a prognostic value can be integrated with other existing
clinical and molecular classifiers when deliberating the need for adjuvant chemotherapy
(high-grade/high-risk disease).

A strength of our qPCR study is that our qPCR cohort consisted of all EC subtypes
thereby making our results representative and generalisable to all EC. Our study also
used 4 observers in the quantification of nucleolar NCL immuno-expression, demonstrat-
ing a high agreement, and increasing the reliability of our data. The use of an external
EC cohort from the GEO database also further validate our results after differentially
expressed NAGs were scrutinised in both exposed and unexposed cohorts. One limi-
tation of our study was that small sample sizes were used in qPCR and IHC. This may
explain the differences in our findings to that of Lee et al.; however, future studies
should aim to further investigate NCL’s expression in EC with larger sample sizes to
determine NCL’s true role in EC carcinogenesis. The use of only immunohistochemistry
to quantify NCL protein expression levels in EC may be another limitation. Further
research seeking to confirm our data should rectify these limitations. Although not all
identified DEGs were differentially expressed in the external GEO dataset, this may
be explained by the use of different control samples, where TCGA data utilised an EC
healthy adjacent normal control tissue, whilst GSE17025 employed healthy PM samples.
Additional DEGs identified as upregulated or downregulated in TCGA data may have
been influenced by concurrent hyperplasia in adjacent samples, and so may not be a true
display of differential gene expression in EC. This may suggest that TCGA datasets alone
should not always be used as gold-standard in bioinformatic analysis for EC research,
but future in silico studies should employ TCGA data in parallel with several other
representative publically available EC datasets to draw clinically relevant and more
accurate conclusions.

4. Materials and Methods
4.1. Endometrial Tissue Samples

Endometrial samples were obtained from one hundred and fifty-seven women un-
dergoing gynaecological surgery between 2009 and 2017 at Liverpool Women’s Hospital
and Lancashire Teaching Hospitals Trusts. Samples were collected from women who
were not exposed to any hormonal, neoadjuvant, or pelvic radiation therapy prior to
surgery. Control group consisted of 38 women undergoing hysterectomy or laparoscopy
for benign gynecological conditions (e.g., laparoscopic sterilisation, prolapse surgery,
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menstrual disorders, vaginal bleeding who did not have endometriosis, cancer or a
known endometrial pathology). Pre-menopausal women included were in the prolif-
erative phase of the cycle. EC and hyperplasia groups consisted of 98 and 21 women,
respectively, undergoing hysterectomy with a diagnosis of endometrial hyperplasia
or endometrial cancer, and their surgery was completed using laparoscopic route or
laparotomy. The endometrial samples were collected using a Pipelle endometrial sam-
pler. Basic demographic information was obtained prospectively on-site at the time of
sample collection. Histological subtype and cancer grade were assigned according to
FIGO guidelines [47]. This study’s cohort consisted of 21 samples with endometrial
hyperplasia, 98 with endometrial cancer, 35 metastatic lesions and 38 samples of healthy
endometrium to be used as control tissue, with further details presented in Table 1. 21 of
the EC patients had concurrent endometrial hyperplasia at the time of surgery, whilst 27
had metastatic disease. Ethical approval was granted by the Welsh and Scottish Ethics
Committees (19/WA /0271 and 19/5C/0449) and Cambridge Adult Research Ethics
Committee (CREC 10/H0308/75).

4.2. Real-Time gPCR

RNA was extracted from tissue samples and EC cell lines with TRIzol® Plus RNA
Purification Kit (Thermo Scientific, Loughborough, UK). Purified RNA was DNAse treated
with 1 unit of DNAse (Promega, Southampton, Hampshire, UK) per 1-5 ug of RNA. Total
RNA was quantified by FLUOstar Omega microplate reader (BMG LABTECH, Aylesbury,
Bucks UK) and 1 pg was reverse transcribed with iScript™ cDNA Synthesis Kit (Bio-Rad
Laboratories Ltd., Hemel Hempstead, Hertfordshire, UK) as per manufacturer protocol.
1 puL of cDNA was amplified in triplicate for 40 cycles in a final reaction volume of 10 uL.
using iTaq Universal SYBR Green Supermix (Bio-Rad Laboratories Ltd., Hemel Hempstead,
Hertfordshire, UK) and Biorad CFX Connect Real-Time System (Bio-Rad Laboratories Ltd.,
Hemel Hempstead, Hertfordshire, UK). Ishikawa EC cell line (ISK) was run as an internal
control. The primer sequences are seen in Table A1, Appendix A. No template and no
reverse transcriptase controls were included for each target in each experiment. The AACT
method was used to calculate transcript expression of nucleolin relative to reference genes
IPOS8, PPIA, and MRPL19 and normalised to ISK using Biorad CFX manager (version 3.1,
Bio-Rad Laboratories Ltd., Hemel Hempstead, Bucks, UK.

4.3. Immunohistochemistry

Standard immunohistochemical techniques were used to perform nucleolin staining of
the endometrial tissue samples. In brief, 3 um thick sections of endometrial specimens were
baked at 60 °C for 1 h using Section Dryer Model E28.5 (Thermo Scientific, Loughborough,
UK)), followed by deparaffinisation and rehydration. To restore epitopes, samples were
immersed in a pressure cooker containing 10 mM citrate buffer at pH 6 for 2 min. Endoge-
nous peroxidase was quenched in 0.3% H;O, /Tris-buffered saline (TBS) (Sigma-Aldrich,
Poole, Dorset, UK). After washing with TBS, 2.5% Normal Horse Serum Blocking Solu-
tion (Vector Laboratories, 2B Scientific Ltd., Upper Heyford, Oxfordshire, UK) was used
to block non-specific protein binding. Sections were then incubated with anti-nucleolin
rabbit polyclonal antibody (ab22758, Abcam, Cambridge, Cambs., UK) at 1:32,000 dilution
overnight at 4 °C in a humidifying chamber. A matching control of anti-rabbit IgG polymer
at 1:10,000 replaced the primary antibody as a negative control. Detection of the antibody
was with ImmPRESS horseradish-peroxidase-conjugated anti-rabbit IgG polymer (Vector
Laboratories, 2B Scientific Ltd., Upper Heyford, Oxfordshire, UK), whilst visualisation was
with InmPACT DAB chromagen (Vector Laboratories, 2B Scientific Ltd., Upper Heyford,
Oxfordshire, UK), which yielded brown staining. The sections were counterstained using
filtered Shandon Gill 2 Haematoxylin (Thermo Scientific, Loughborough, Leics., UK), dehy-
drated, and cleared in xylene, prior to mounting with Shandon Consul-Mount (Thermo
Scientific, Loughborough, Leics., UK).
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All slides were visualised on Aperio ImageScope (version 12.4.3, Leica Biosystems
Imaging, Deer Park, IL, USA) at x40 magnification, following scanning on Leica Aperio
CS2 Slide Scanner (Leica Biosystems Imaging, Milton Keynes, Bucks, UK). Sections were
scored blind by four independent observers prior to breaking the code. The scoring system
included calculating the proportion of nucleoli stained in different intensities. This was
performed semi-quantitatively via the modified quick score method [48]. Each section
was evaluated for proportion stained (0: 0% stained; 1: 1-25% stained; 2: 26-50% stained;
3: 51-75% stained; 4: 76-100% stained) and intensity (0: no staining; 1: weak staining;
2: moderate staining; 3: strong staining), yielding a score where the intensity and propor-
tion scores were multiplied, then summed to give a final quick score in a range of 0-12.
For example, if in a section it was found that 25% was weakly stained (1 x 1 = 1), 50%
moderately stained (2 x 2 = 4), and 25% strongly stained (1 x 3 = 3), this would give a final
quick score of 1 + 4 + 3 = 8. Findings were tabulated and any disagreements over 2 points
in scoring were discussed before calculating a mean quick score for each section. Code was
then broken.

4.4. In Silico Study
4.4.1. Identification of Nucleolin Associated Genes (NAGs)

NAGs were identified via Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING) and QIAGEN Ingenuity Pathway Analysis (IPA) [49-52]. STRING detected
functional and physical protein associations in humans by exploring all active interaction
sources, except for text mining. The interaction score was set at the highest confidence
(0.900) with a maximum of 500 1st shell interactors. NAGs identified via IPA were
included via direct interactions found upstream or downstream in humans in all data
sources. Genecards [53,54] were utilised to identify aliases for NAGs. Duplicates were
manually removed.

4.4.2. TCGA Cohort

RNA sequencing and demographic data were previously obtained from The Cancer
Genome Atlas (TCGA) database with Broad Genome Data Analysis Centre [55]. Uterine
Corpus Endometrial Carcinoma (TCGA-UCEC) and Uterine Carcinosarcoma (TCGA-UCS)
datasets were utilised in this study. Samples exposed to any hormonal, neoadjuvant, or
radiation therapy were excluded from the main sample set of this study and only used
to identify NCL and Differentially Expressed Genes (DEGs) which are common to both
exposed and unexposed samples signifying their importance.

4.4.3. Identification of Differentially Expressed Genes in TCGA Dataset

Normalised TCGA RNASeqV2 data of NAGs were analysed via iDEP91 [56,57]. Cut-
off criteria included a False Discovery Rate (FDR) <0.01 and Fold Change (FC) >2. Compar-
isons in DEGs were performed between cancer and healthy adjacent endometrium, across
histotypes of EC, and EC grades. Volcano plots and heatmaps were created in iDEP.91,
and Venn diagrams in the Bioinformatics and Evolutionary Genomics tool [58]. Prognostic
value in EC of genes common to both exposed and unexposed samples was determined via
exploring data in The Human Protein Atlas [59,60]. Diagrams visualising Protein—protein
interaction (PPI) networks were constructed in Cytoscape version 3.8.2 [61] with available
data from STRING and IPA.

4.4.4. Biological Processes and Pathway Analyses

Enrichr [62-65] was utilised to perform analysis of Gene Ontology (GO) biological
processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of DEGs
found to be prognostic in EC.
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4.4.5. Validation of Differentially Expressed NAGs

Gene Expression Omnibus (GEO) [66] was explored to find datasets similar to the
TCGA cohort. The selected dataset was analysed with GEO2R [18] for NAGs with cut off
criteria of Log2FC > 1 and an adjusted p value < 0.05.

4.4.6. STRING Network of Known Molecular Markers for EC and NAGs

Known molecular markers of endometrial cancer were identified using a PubMed
search and included in a STRING network with the 11 genes with prognostic value persist-
ing despite hormonal, radiation, or neoadjuvant therapy.

4.5. Statistical Analysis

The statistical programme GraphPad Prism (version 5.0, GraphPad Software, San
Diego, CA, USA) was used for all wet lab data calculations. Quick scores, normalised
NCL gene expression, and demographic details were analysed using non-parametric tests
(Kruskall-Wallis/Dunn’s post hoc or Mann-Whitney U-test). For comparison between
paired values, the Wilcoxon Matched Pairs test was used. Overall Survival (OS) and
Disease-Free Survival (DFS) were analysed by Kaplan-Meier survival curves with a cut-off
score of 6 for NCL quick score, and compared statistically via a Log-rank Mantel-Cox Test.
A value of p < 0.05 was considered significant.

5. Conclusions

In conclusion, we have demonstrated, for the first time, the involvement of nucleolin in
endometrial hyperplasia, HGEC, and metastatic disease. Our in silico analysis has uniquely
revealed a possible role of S100A11, LMNB2, RERG, E2F1, and CCNA2? in endometrial
carcinogenesis, allowing future research to focus on their involvement in the pathogenesis
of the disease, with an ultimate focus on risk stratification in high-grade EC.
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Appendix A

Table Al. Primer sequences used in qPCR.

Gene Name Sequences (5' > 3) Product Size (bp) Efficiency (%)
IPO8 Fwd: AGGATCAGAGGACAGCACTGCA 102 97
Rev: AGGTGAAGCCTCCCTGTTGTTC
PPIA Fwd: AGACAAGGTCCCAAAGAC 118 100
Rev: ACCACCCTGACACATAAA
MRPL19 Fwd: CAGGAAGAGGACTTGGAGCTAC 137 101.5

Rev: GCTATCATCCAGCCGTTTCTCTA

https:/ /www.bio-rad.com/en-uk/prime-pcr-
NCL assays/assay/qhsaced0043572-primepcr-sybr-green- 160 94
assay-ncl-human
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