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A B S T R A C T   

Both infection with and vaccination against SARS-CoV-2 trigger a complex B-cell and T-cell response. Methods 
for the analysis of the B-cell response are now well established. However, reliable methods for measuring the T- 
cell response are less well established and their usefulness in clinical settings still needs to be proven. Here, we 
have developed and validated a T-cell proliferation assay based on 3H thymidine incorporation. The assay is 
using SARS-CoV-2 derived peptide pools that cover the spike (S), the nucleocapsid (N) and the membrane (M) 
protein for stimulation. We have compared this novel SARS-CoV-2 lymphocyte transformation test (SARS-CoV-2 
LTT) to an established ELISA assay detecting Immunoglobulin G (IgG) antibodies to the S1 subunit of the SARS- 
CoV-2 spike protein. The study was carried out using blood samples from both vaccinated and infected health 
care workers as well as from a non-infected control group. Our novel SARS-CoV-2 LTT shows excellent 
discrimination of infected and/or vaccinated individuals versus unexposed controls, with the ROC analysis 
showing an area under the curve (AUC) of > 0.95. No false positives were recorded as all unexposed controls had 
a negative LTT result. When using peptide pools not only representing the S protein (found in all currently 
approved vaccines) but also the N and M proteins (not contained in the vast majority of vaccines), the novel 
SARS-CoV-2 LTT can also discriminate T-cell responses resulting from vaccination against those induced by 
infection.   

1. Introduction 

It is well established that infection with and vaccination against 
SARS-CoV-2, the virus causing COVID-19, trigger complex B-cell and T- 
cell responses. The production of IgG antibodies from B-cells requires 
cooperation from T-cells that also recognize SARS-CoV-2 antigens (‘T- 
cell help’). Concomitantly, T-cells may lyse virus infected cells and are 
instrumental in clearing SARS-CoV-2 from the organism [1,2]. In our 

current understanding, a robust SARS-CoV-2-specific T-cell response is 
important for preventing severe disease [3–5]. Conversely, it is highly 
likely that T-cells contribute to the severe tissue damage seen in the 
lungs of patients requiring respiratory support. This may result from the 
fact that in previously unexposed cases without HCoV-induced cross- 
reactive T-immunity, or those with a weakened immune system, the T- 
cell response does not get into full swing until the time when the virus 
has reached the lungs. Having a robust SARS-CoV-2-specific (or cross- 
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reactive) T-cell response prior to infection, by contrast, might prevent 
the virus from even getting this far. Authors of a recent study in 
asymptomatic cases believe that strong cross-reactive T-cell responses 
may explain that some individuals can be exposed and infected without 
ever showing symptoms or even a positive PCR test [6].Also, T-cell re-
sponses to HCoVs causing the common cold were recently shown to 
contribute to protection as a result of cross-reactivity [7]. 

The above-mentioned mechanistic considerations are just some 
reasons why reliable methods to monitor T-cell response to SARS-CoV-2 
infections are needed. In addition, measuring T-cell responses may be a 
promising alternative (or at least suitable addition) to measuring anti-
body levels for validation of effective vaccination and for predicting the 
optimal time for a booster vaccination. Several methods for the analysis 
of the T-cell response to SARS-CoV-2 infection and vaccination have 
been reported [8–19]. However, the usefulness of the respective T-cell 
tests in routine clinical settings has not been proven yet. 

Here, we report the development and validation of an assay for the 
detection of SARS-CoV-2-specific T-cells which is adapted from a 
traditional T-cell proliferation assay referred to as lymphocyte trans-
formation test (LTT) based on 3H thymidine incorporation. The LTT 
format has been in use for measuring T-cell immunity to a range of 
different T-cell target antigens over several decades [20]. We adapted 
this assay in early 2020 to detect SARS-CoV-2 spike protein-specific T- 
cells based on the stimulation with two peptide pools together covering 
the entire spike protein (SARS-CoV-2 LTT). We show that the assay can 
efficiently distinguish infected and vaccinated from non-infected, non- 
vaccinated study participants. In addition, we show that by using pep-
tide pools against the S, N and M proteins, the novel SARS-CoV-2 LTT 
can be expanded to discriminate between T-cell responses resulting from 
vaccination and those induced by infection. 

2. Methods 

2.1. Study populations 

The study was approved by the ethics committee of the association of 
physicians in the province of Brandenburg, Germany (Ärztekammer 
Brandenburg). All study participants provided written, informed 
consent. 

After the COVID-19 outbreak in the Ernst von Bergmann Hospital 
(EvB), Potsdam, Germany, in March and April 2020, all health care 
workers underwent twice weekly PCR testing (nasal-oral swab) for 
possible SARS-CoV-2 infection. Participants were recorded from two 
cohorts between July and October 2020 (4–6 months following the 
outbreak): 

Cohort 1: 69 hospital staff of the EvB who had not been infected 
during the observation period and were fully vaccinated with their 
second shot of a SARS-CoV-2 vaccine administered between May and 
July 2021 (for details, see Table 1). EvB staff were vaccinated twice with 
either the BioNTech, BNT162b2, or Astrazeneca, ChAdOx1, vaccine. 

Cohort 2: 54 hospital staff of the EvB who had been infected, but 
without being vaccinated at the time of blood taking (for details, see 
Table 2). Infection with SARS-CoV-2 was proven by PCR. 

As control group, a total of 88 individuals of mixed age and sex who 
had no detectable SARS-CoV-2 antibodies (IgG (S1)-negative) were 
recruited prior to vaccination. Blood samples were drawn into hepa-
rinized blood collection tubes by cubital venous phlebotomy. 

All study participants were examined/interviewed by a study 
physician. The following parameters were recorded in all individuals: 
age, sex, BMI, and resting blood pressure. The medical interview 
explored the presence/a history of type 1 or 2 diabetes, COPD, and 
asthma. Hypertension was established according to the European Soci-
ety of Hypertension guidelines [21] or based on the use of hypertensive 
medication. With respect to cohort 1 we recorded the time from com-
plete vaccination (second dose) to blood collection and whether vaccine 
side effects were observed. With respect to cohort 2 we recorded the 

time from PCR detection of SARS-CoV-2 infection to blood collection 
and whether infection was symptomatic or not. 

Cohort 3: An additional 35 members of staff of the Institute of 
Medical Diagnostics Berlin (IMD Berlin, Germany), aged 28–56 years, 
were recruited for examination of cellular immune responses to different 
immunodominant SARS-CoV-2 antigens. None of them exhibited any 
preexisting condition that would be considered as risk factor for an 
adverse COVID-19 outcome. This group included 3a) those recovered 
from PCR proven SARS-CoV-2 infection (n = 12); 3b) those uninfected 
but vaccinated against SARS-CoV-2 (mRNA vaccine) with the second 
dose obtained between May and July 2021 (n = 11); 3c) those without 
infection and without vaccination (n = 12). With samples from these 
participants the LTT was performed using three separate peptide pools 
(covering the S, N and M protein of SARS-CoV-2, respectively). 

Table 1 
Comparison of characteristics between SARS-CoV-2 LTT positive and negative 
cases in vaccinated health care workers.   

Parameters 
LTT_N 
positive 
(n ¼ 66) 

LTT_N 
negative 
(n ¼ 3) 

P 
value 

Age (years) 44.6 ± 13.7 64.3 ± 11.7 0.037 
Gender (M/F) 17/49 1/2 0.772 
BMI 25.5 ± 4.8 25.4 ± 3.1 0.823 
Diabetes (yes/no) 4/61 0/3 0.660 
Hypertension (yes/no) 13/43 2/1 0.095 
COPD (yes/no) 0/65 0/3 1 
Asthma (yes/no) 6/59 2/1 0.003 
Smoking (yes/no) 12/53 0/3 0.416 
SARS-CoV-2 IgG-Ab (S1) (BAU/ml) 556.4 ±

289.3 
157.0 ± 44.9 0.018 

SARS surrogate neutralization test (%) 81.2 ± 25.3 73.0 ± 10.4 0.143 
T-cell responses to SARS-CoV-2 Spike- 

N-Term (SI) 
8.83 ± 8.61 1.63 ± 0.21 0.004 

T-cell responses to SARS-CoV-2 Spike- 
C-Term (SI) 

6.75 ± 6.44 1.53 ± 0.29 0.004 

Continuous variables are given as mean (SD) or numbers. Body mass index (BMI) 
was calculated as weight in kilograms divided by height in meters squared. 
COPD, chronic obstructive pulmonary disease. 

Table 2 
Comparison of characteristics between LTT_N positive and negative cases in 
infected health care workers.  

Parameters LTT_N positive 
(n ¼ 49) 

LTT_N negative 
(n ¼ 5) 

P 
value 

Age (years) 50.0 (37.0, 60.0) 31.0 (26.5, 49.5)  0.092 
Gender (M/F) 19/30 2/3  0.958 
BMI 24.8 (23.1, 29.2) 21.5 (20.7, 35.6)  0.622 
Diabetes (yes/no) 7/42 0/5  0.369 
Hypertension (yes/no 20/29 1/4  0.368 
COPD (yes/no) 2/47 0/5  0.648 
Asthma (yes/no) 7/41 0/5  0.364 
Smoking (yes/no) 2/47 0/5  0.648 
SARS-CoV-2 IgG-Ab (S1) (BAU/ 

ml) 
129.0 (71.9, 
553.5) 

26.2 (16.2, 35.6)  0.002 

SARS surrogate neutralization 
test (%) 

63.0 (45.0, 90.0) 26.0 (15.5, 29.5)  0.001 

T-cell responses to SARS-CoV-2 
Spike-N-Term (SI) 

6.5 (4.1, 13.3) 1.4 (1.2, 1.7)  <0.001 

T-cell responses to SARS-CoV-2 
Spike-C-Term (SI) 

5.1 (3.3, 9.8) 1.5 (1.4, 2.0)  0.001 

Time from infection to blood 
collection in days 

201 (131, 432) 200 (176, 398)  0.637 

Continuous variables are given as median (interquartile range) or numbers. 
Body mass index (BMI) was calculated as weight in kilograms divided by height 
in meters squared. COPD, chronic obstructive pulmonary disease. 
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2.2. Measurement of T-cell responses to SARS-CoV-2 with the SARS-CoV- 
2 LTT 

Heparinized venous blood was processed by density gradient 
centrifugation to obtain peripheral blood mononuclear cells (PBMCs). 
After washing the cells twice with PBS (Sigma-Aldrich), the cell pellet 
was resuspended to obtain a cell count of 1 × 106/ml in cell culture 
medium (RPMI 1640; Biowest) supplemented with 2 mM L-glutamine, 
100 μg/ml gentamicin (all from Biowest) and 5% autologous serum. 
Specific T-cell reactions were assessed by a lymphocyte proliferation 
assay (LTT). For that, 2 × 105 PBMCs were either incubated with peptide 
pool 1 or peptide pool 2 of the SARS-CoV-2 spike glycoprotein (PM- 
WCPV-S from JPT), or with the peptide pool of SARS-CoV-2 nucleo-
capsid (PM-WCPV-NCAP-2) or membrane protein (PM-WCPV-VME-2) 
using a concentration of 1µg/ml per peptide, together with 1µg/ml anti- 
CD28 Abs (clone CD28.2 from BD Biosciences). All pools contained 15 
amino acid long peptides that overlapped by 11 amino acids, respec-
tively, and in total spanned the entire SARS-CoV-2 S, N, or M protein. 
The N-terminal part of S, containing the RBD-region, was covered by 
pool 1 (N-Term) and the C-terminal part of the spike protein was covered 
by pool 2 (C-Term). Detailed information about the peptide pools is 
given below and were also published recently [22]. 

Two positive control experiments were performed: a) by stimulating 
cells with a mixture of recall-antigens, containing tetanus, influenza and 
candida albicans (antigen control), and b) by stimulating cells with 
pokeweed mitogen (mitogen control). For measuring base-level prolif-
eration control cells were left unstimulated. All stimulations were per-
formed in triplicates in 96-well plates for 5 days at 37 ◦C and 5% CO2 
atmosphere. Cells were labeled with 3H-thymidine (1 μCi/ml, Hartmann 
Analytic) 12 h prior to cell harvesting. A cell harvester (PerkinElmer) 
was used to harvest cells on glass fiber filters. The incorporated 3H- 
thymidine activity was measured as “counts per minute” (cpm) using 
a solid phase beta counter (PerkinElmer). Mean values of the triplicates 
were calculated for data analysis. The results for all stimulations were 
given as a ‘stimulation index’ (SI; ratio of cpm of stimulated over 
unstimulated samples). The threshold SI for positivity was set at 1.9 (an 
SI > 1.9 was considered positive). 

2.3. PepMixTM peptide pools 

Five different peptide pools were prepared as follows: Individual 
peptides were synthesized by standard solid phase peptide synthesis 
(SPPS) [23]. Each peptide was purified by HPLC using different gradi-
ents of solvent A (0.1% TFA in water) and solvent B (0.1% TFA in MeCN) 
on a preparative HPLC system. After drying of the individual peptides by 
lyophilization, the peptides were redissolved, combined and lyophilized 
again to furnish peptide pools containing equal amounts of each peptide. 
This yielded the peptide pools for the following antigens: Spike Glyco-
protein N-term and Spike Glycoprotein C-term (158 and 157 peptides, 
purity > 90%); NCAP (102 peptides, purity > 70%); VME1 (53 peptides, 
purity > 70%). 

2.4. Measurement of humoral immune response to SARS-CoV-2 

For quantitative detection of IgG against SARS-CoV-2 spike glyco-
protein 1 (S1 subunit) an enzyme-linked immunosorbent assay (ELISA; 
EUROIMMUN) was performed on an automated ANALYZER system 
(QuantiVac, EUROIMMUN) according to manufacturerś instructions. 
The assay relies on 6 calibrators in order to quantify the IgG (S1)-con-
centration given as BAU/ml (Binding Antibody Units) and highly cor-
relates with the “First WHO International Standard“ (NIBSC code: 20/ 
136). Values between 25.6 and 35.2 BAU/ml were considered border-
line, while values above 35.2 BAU/ml were interpreted as positive. The 
assay is based on a previously established semi-quantitative assay, 
which has been already described [24]. 

2.5. Statistical analysis 

Results across groups are shown as median (interquartile range), 
mean+/-SD, or simple percentages. Non-parametric tests (Mann-Whit-
ney U or χ2 test) were applied as appropriate to determine statistical 
significance. Receiver Operating Characteristic (ROC) analysis was used 
to derive ROC curves and measure test performance. All statistical an-
alyses were performed using SPSS 25.0 software (IBM SPSS Statistics, 
Version 25.0. Armonk, NY, USA). If individual values were above the 
upper validated limit of quantification according to the supplier of the 
assay, these values were replaced with substitute values (twice the 
highest measurable value in a dataset). The level of significance was set 
at p < 0.05. 

3. Results 

3.1. Vaccinated EvB health care workers 

Humoral and cellular immune responses in vaccinated health care 
workers (cohort 1) were assessed 4–8 weeks after the 2nd vaccination. 
ROC analysis showed an excellent performance of the SARS-CoV-2 LTT 
(Fig. 1A-C) with an AUC of > 0.95 for both studied peptide pools (Spike- 
N-Term and Spike-C-Term). 

As it was important for us to avoid false positives (and thus to reach 
100% specificity), the threshold SI for positivity was set at 1.9 (an SI >
1.9 was considered positive), because 1.9 was the highest value that was 
measured in the control cohort of 88 non-vaccinated patients without 
evidence of SARS-CoV-2 infection (Supplementary Table 1). This led to 
66/69 positive test in the vaccinated group (cohort 1), thus inferring to 
95.7% sensitivity at 100% specificity. 

The clinical characteristics of the LTT positive and the LTT negative 
groups are shown in Table 1. Asthma appeared more common among 
those who did not develop a cellular response after vaccination. All 
other clinical characteristics were not different (Table 1). 97.1% of the 
vaccinated group had SARS-CoV-2 S1 IgG antibodies after vaccination 
and 95.7% of the group had T-cellular response after vaccination. It 
should be noted that vaccinated health care workers not developing 
antibodies were not identical with health care workers not developing 
cellular immunity to SARS-CoV-2. Nevertheless, those without a hu-
moral response generally had a weak T-cell response and vice versa. 

3.2. Infected EvB health care workers 

Humoral and cellular immunity in infected health care workers 
(cohort 2) was examined 200 days (median) after PCR proven infection. 
ROC analysis showed an excellent performance of the SARS-CoV-2 LTT 
(Fig. 1D-1F) with an AUC of > 0.95 for both studied peptide pools 
(Spike-N-Term and Spike-C-Term). 

The threshold SI for positivity was set at 1.9 for the same reasons as 
described above. This led to 49/54 positive test in the infected group 
(cohort 2), thus inferring to 90.7% sensitivity at 100% specificity. 

The clinical characteristics of the LTT positive and the LTT negative 
groups and the performance of the SARS-CoV-2 LTT test are shown in 
Table 2. 48 out of 54 (88.9%) of the infected study group had SARS-CoV- 
2 S1 IgG antibodies and 49 out of 54 (90.7%) had developed T-cell 
response. Three of the five infected health care workers with no S1 an-
tibodies also had no cellular response. In those with no humoral 
response the T-cell response was generally weak and vice versa. 

3.3. Discrimination between infected and vaccinated people based on 
responses to N and M proteins 

SARS-CoV-2t LTT responses in infected (cohort 3a, n = 12) versus 
vaccinated (cohort 3b, n = 11) volunteers were examined based on 
stimulation with peptide pools covering the S, N, and M proteins. As 
expected, since currently all in the EU approved vaccines are exclusively 
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Fig. 1. ROC curves showing discrimination between vaccinated and unvaccinated health care workers (A)-(C), or infected and uninfected health-care workers (D)- 
(F), based on detection of IgG against spike S1 (A, D) or LTT with the C-terminal (B, E) or N-terminal (C, F) spike peptide pools. 
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based on the spike-glycoprotein, all vaccinated participants (n = 11) 
showed positive responses (SI > 1.9) to both S peptide sub-pools, but no 
responses to the M or N peptide pools (SI < 2, Fig. 2). In contrast, all 
previously infected participants (n = 12) showed positive responses to 
the S peptide pools and in addition to the M and/or the N peptide pools 
(Fig. 2). Taken together, the LTT method efficiently differentiates be-
tween infected and vaccinated individuals and offers the possibility of 
detecting a prior SARS-CoV-2 infection even after subsequent 
vaccination. 

Depending on the particular antigen chosen as stimulant for the T 
cell-assay, antigen-specific CD4 or CD8 T cells are stimulated in varying 
proportions.. To address the question, which T-cells do proliferate after 
5d stimulation with described SARS-CoV-2 peptide pool in our LTT- 
assay, we additionally analyzed these 5d-cell cultures using flow 
cytometry. We examined the proportion of CD4 or CD8 T-cells, respec-
tively after gating on CD45 + CD3 + T-cells and as well as gating on T- 
cell blasts, since dividing cells are blastic. In contrast to the relatively 
balanced CD4/CD8 T-cell proportions after mitogen stimulation, SARS- 
CoV-2-specific stimulations predominantly induced CD4 + T-cell re-
sponses (Fig. 3). Raw data of our experiments are in supplementary 
Table 1. 

4. Discussion 

Our novel SARS-CoV-2 LTT was designed for the detection of vaccine 
and/or infection-induced cellular immune responses to SARS-CoV-2. 
The test shows excellent discrimination between infected/vaccinated 
individuals and unexposed controls. Since the threshold for positive 
SARS-CoV-2 LTT responses had been set in such a way that all 88 un-
exposed controls (Supplementary Table 1) had a negative LTT, speci-
ficity was 100% by design. False negatives, however, did occur 
(sensitivity 95.7% and 90.7% for cohort 1 and cohort 2, respectively), 
but were most likely not test-related but due to the lacking or weak 
immunity in those infected or vaccinated. 

The excellent performance of the SARS-CoV-2 LTT in discriminating 
between those infected or vaccinated and controls is reflected by ROC 
analysis (Fig. 1) showing areas under the curve (AUC) of > 0.95. The 
obtained results favorably compare to other T-cell tests for SARS-CoV-2 
infection or vaccination, e.g. Interferon-gamma release assay (IGRA) T- 
cell tests that reported a cut-off dependent sensitivity of 75.4–89.6% 
with a specificity of 96.3–100% [19]; a sensitivity of 73–88% with a 
specificity of 85–97% [18]; or a sensitivity of 90–100% with a specificity 
of 96–90% [17]; and an assay based on cumbersome T-cell receptor 
(TCR) sequencing that reported 97.1% sensitivity and 100% specificity 
in a preprint manuscript [11]. 

For optimal activation, T cells need different kinds of signals from the 
antigen presenting cell (APC). Together with the initial MHC-TCR signal, 

further co-stimulatory signals promote proliferation and differentiation 
of T cells. An important co-stimulatory molecule on T cells is CD28 [25]. 
As peptides in contrast to proteins are not undergoing active processing 
by APCs in order to be presented on MHC molecules, APCs provide less 
co-stimulatory signals when using peptides for in vitro stimulation. 
Optimizing co-stimulatory signaling by adding anti-CD28 can improve 
assay sensitivity. We mentioned this in the discussion of the revised 
version of the manuscript. 

Few study participants showed neither antibodies nor a positive LTT 
despite vaccination or infection. Their frequency roughly corresponded 
to the rate of non-responders after infection or vaccination reported in 
the literature [26–28]. With respect to the vaccinated or infected 
healthcare workers, in participants with a positive antibody test and a 
negative LTT or vice versa, usually one of the tests was just above the 
threshold while the other test was just below. There were 3 individuals 
in the infected group with no detectable IgG (S1) antibodies but a clear 
T-cell response. This may be due to the fact that antibody titers usually 
drop within a few months after infection or vaccination whereas T-cell 
response appears to be more persistent [29,30]. As a result, detection of 
SARS-CoV-2-specific T-cells may represent a better way of determining 
the presence of SARS-CoV-2-specific immunity than SARS-CoV-2 S1 
protein subunit-specific antibodies in subjects who have been infected 
for some time. Antibodies to the N protein were not measured in this 
study, and while the presence of such antibodies would point to infec-
tion, their kinetics are similar to those of S1-specific antibodies, drop-
ping off after a few months. 

The currently most frequently used read-out for T-cell activation 
assays are been cytokine production measured intracellularly (ICS), in 
the supernatant (ELISA or equivalent), or detected by Elispot [31]. T-cell 
surface marker upregulation is being used by some authors and has also 
been applied to SARS-CoV-2 [22]. In particular the Elispot method de-
pends at least partially on subjective judgments on test results and has 
thus a huge interobserver variability. T-cell proliferation assays have a 
more definitive end-point and are thus independent of the experience of 
an observer. Moreover, cytokine production upon stimulation within the 
first 23–48 h - as it is analyzed in the cytokine dependent methods – 
detects also T-cell clones that might be activated in the early phase of the 
immune response but not in later stages [32]. However, the T-cell sub-
sets arising from proliferating T-cell clones - as measured by the LTT - 
are the ones that will ultimately deal with the infection. In addition, it 
has to be noted that the experimental conditions such as the availability 
of IL-2, for example, have a critical role in ex-vivo testing. The conditions 
used in our experiments appear to have favored positive responses in 
those infected or vaccinated with very few false negatives. This is 
noteworthy since the threshold for positivity was set in such a way that 
the negative control group included no positives at all. Setting the 
threshold slightly lower, i.e., allowing for a few false positives, would 

Fig. 2. SARS-CoV-2 antigen-specific T-cell responses in vaccinated or infected volunteers (cohort 3) were examined using the SARS-CoV-2 LTT based on peptide 
pools covering the S, N, and M proteins. (A) All vaccinated participants (cohort 3b, n = 11) showed positive responses (SI ≥ 2) to the S peptide pools but no responses 
to the N or M pools (SI < 2). (B) All previously infected participants (cohort 3a, n = 12) showed positive responses to the S and, in addition, to both the N and M 
pools. (C) Participants without infection and without vaccination (cohort 3c, n = 12) showed no LTT response (SI < 2) to any of the peptide pools used for 
stimulation. 
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have further reduced the false negative rate. 
To date, T-cell proliferation assays for SARS-CoV-2 specific T-cells 

appear to represent a niche in the diagnostic market and their clinical 
usefulness still has to be explored in more detail. The LTT assay pre-
sented here is an important contribution to this field and will help to 
answer a number of questions that are of particular relevance: What is 
the long-term course of SARS-CoV-2-specific T-cell immunity after 
vaccination and/or infection in light of antibody responses declining 
within months? How do SARS-CoV-2 specific T-cell responses fare 
compared to antibody responses in patients receiving biologicals in 
rheumatoid arthritis, for example? Are SARS-CoV-2-specific T-cell re-
sponses weaker in HIV patients, transplant recipients, or oncological 
patients undergoing chemotherapy? 

In conclusion, the present study shows that the novel SARS-CoV-2 
LTT may improve the identification of those with infection or vaccine- 
induced immunity to the coronavirus and our data suggests that this 
new approach can be rolled out to a range of clinical situations. The 
SARS-CoV-2 LTT can not only differentiate between acquired immunity 
due to natural infection or vaccination, but it may also help us examine 
and understand the complexity of the cellular immune response at an 
individual level. 
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