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Widespread and persistent invasions of terrestrial
habitats coincident with larval feeding behavior
transitions during snail-killing fly evolution
(Diptera: Sciomyzidae)
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Abstract

Background: Transitions in habitats and feeding behaviors were fundamental to the diversification of life on Earth.
There is ongoing debate regarding the typical directionality of transitions between aquatic and terrestrial habitats
and the mechanisms responsible for the preponderance of terrestrial to aquatic transitions. Snail-killing flies
(Diptera: Sciomyzidae) represent an excellent model system to study such transitions because their larvae display a
range of feeding behaviors, being predators, parasitoids or saprophages of a variety of mollusks in freshwater,
shoreline and dry terrestrial habitats. The remarkable genus Tetanocera (Tetanocerini) occupies five larval feeding
groups and all of the habitat types mentioned above. This study has four principal objectives: (i) construct a robust
estimate of phylogeny for Tetanocera and Tetanocerini, (ii) estimate the evolutionary transitions in larval feeding
behaviors and habitats, (iii) test the monophyly of feeding groups and (iv) identify mechanisms underlying
sciomyzid habitat and feeding behavior evolution.

Results: Bayesian inference and maximum likelihood analyses of molecular data provided strong support that the
Sciomyzini, Tetanocerini and Tetanocera are monophyletic. However, the monophyly of many behavioral groupings
was rejected via phylogenetic constraint analyses. We determined that (i) the ancestral sciomyzid lineage was
terrestrial, (ii) there was a single terrestrial to aquatic habitat transition early in the evolution of the Tetanocerini and
(iii) there were at least 10 independent aquatic to terrestrial habitat transitions and at least 15 feeding behavior
transitions during tetanocerine phylogenesis. The ancestor of Tetanocera was aquatic with five lineages making
independent transitions to terrestrial habitats and seven making independent transitions in feeding behaviors.

Conclusions: The preponderance of aquatic to terrestrial transitions in sciomyzids goes against the trend generally
observed across eukaryotes. Damp shoreline habitats are likely transitional where larvae can change habitat but still
have similar prey available. Transitioning from aquatic to terrestrial habitats is likely easier than the reverse for
sciomyzids because morphological characters associated with air-breathing while under the water's surface are lost
rather than gained, and sciomyzids originated and diversified during a general drying period in Earth's history. Our
results imply that any animal lineage having aquatic and terrestrial members, respiring the same way in both
habitats and having the same type of food available in both habitats could show a similar pattern of multiple
independent habitat transitions coincident with changes in behavioral and morphological traits.
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Background
Some of the most important evolutionary innovations in
the history of life on Earth resulted from transitions be-
tween aquatic (freshwater) and terrestrial habitats. The
colonization of land by unicellular aquatic plants [1,2]
and their eventual transformation into vascular plants
helped shape terrestrial environments and paved the way
for the evolution of the majority of the eukaryotic spe-
cies alive today. Other key lineage diversifications that
occurred following transitions from aquatic to terrestrial
habitats include those of tetrapod vertebrates [3], milli-
pedes [4], scorpions [5], other arachnids [2,6,7], earth
worms [8] and nematodes [9]. Whereas the ancestral in-
sect originated in a terrestrial environment [10-12],
insects are one of the most successful colonizers of
freshwater habitats, as at least 12 of the 31 insect orders
have representatives occupying these environments dur-
ing at least one life history stage [13]. Transitions be-
tween aquatic and terrestrial habitats are generally rarer
than other habitat changes (e.g., between epigeal and ar-
boreal) because of the substantial physical differences
between them [14]. In addition to differences in the
physical requirements of living in water versus on land
(e.g., differences in oxygen concentration), one presumed
barrier is that the suite of available food items are typic-
ally distinct, as there are major differences between
aquatic and terrestrial food webs [15,16]. Therefore, in
order to transition between these habitats, a lineage typ-
ically must adapt to new physical conditions while con-
comitantly modifying its feeding behaviors.
The family Sciomyzidae, or “snail-killing flies”

(Diptera: Acalyptratae: Sciomyzoidea), is an ideal
taxon with which to study the evolution of feeding
behaviors and associated habitat transitions. Their
life histories are well-studied, as 240 of the 539 spe-
cies have known larval feeding habits [17]. Sciomyzid
larvae display a wide range of feeding behaviors, in-
cluding predation, parasitism, or saprophagy of ter-
restrial, semi-aquatic and aquatic non-operculate
snails, operculate aquatic snails, semi-terrestrial suc-
cineid snails, slugs, snail eggs, fingernail clams and
freshwater oligochaete worms [17,18]. This repre-
sents, by far, the most extensive radiation of primarily mala-
cophagous (= mollusk-feeding) species when compared to
all other dipteran lineages [17,18]. A total of 109 species
from six other dipteran families attack mollusks [19],
whereas ~99% of the 240 sciomyzid species with known life
cycles attack mollusks [17,18,20]. Sciomyzids have three lar-
val stages and most species exhibiting parasitoid behavior
have very specific host requirements in the 1st and 2nd lar-
val stage but become more generalized predators in the 3rd

stage. These species have been referred to as parasitoids or
parasitoids/predators in sciomyzid literature, so, for simpli-
city, we refer to these species as parasitoids herein. There
have been two different approaches to organizing sciomyzid
species into behavioral/ecological groups: (i) based on com-
monalities in larval microhabitat, mode of feeding and prey
type ([21]: 8 groups; [22]: 10 groups; [20]: 9 groups; [17,18]:
15 groups), and (ii) based on an ordination analysis of 36
egg and larval morphological characters, larval behaviors,
and habitat that identified nine "Eco-Groups," each posses-
sing a unique combination of states from these 36 charac-
ters [23].
The Sciomyzidae includes three subfamilies: the Hut-

tonininae with two genera [24], the Salticellinae with
one genus (Salticella) and the Sciomyzinae with the
remaining 58 genera. The Sciomyzinae is comprised of
two tribes, the Sciomyzini with 12 genera and the Teta-
nocerini with the remaining 46 genera [17]. All of the
Sciomyzini and Salticellinae have terrestrial larvae,
whereas 14 tetanocerine genera have at least one species
with aquatic larvae [17]. The larvae of the Huttonininae
remain unknown [17]. Recent phylogenetic analyses of
morphological data suggest that the Sciomyzinae and its
two tribes are monophyletic [23,25]. The family Phaeo-
myiidae, with five described Palaearctic species in two
genera (Akebono and Pelidnoptera), was at one time
considered to be a subfamily of the Sciomyzidae, but
was subsequently elevated to family by Griffiths [26],
who proposed its sister status to Sciomyzidae.
The evolution of feeding behaviors in Sciomyzidae has

been discussed in numerous papers (e.g., [17,18,20-22]).
Because larval feeding on decaying animal matter occurs
in other dipteran lineages, including families in the Scio-
myzoidea (e.g., Dryomyzidae; [17]), it has been suggested
that the ancestral sciomyzid was probably similar to
the extant Atrichomelina pubera (Sciomyzini), a gener-
alist that feeds on dead, dying or living aquatic and
semi-aquatic, non-operculate snails on damp terrestrial
substrates [27,28]. Steyskal’s [29] classification of the
Sciomyzidae lead to sciomyzine larvae being charac-
terized as terrestrial (including those inhabiting moist
surfaces) saprophages/predators/parasitoids, while teta-
nocerine larvae are typically characterized as aquatic
predators. Knutson & Vala [18] mapped their feeding
groups onto the morphological phylogeny presented in
Marinoni & Mathis [25] to infer the ancestral feeding
behavior for the family and to discuss the evolution of
such behaviors based on the position of each genus in
the phylogeny. They concluded that while Steyskal's [29]
generalizations have exceptions, the distribution of feed-
ing behaviors known today support these general charac-
terizations. They further concluded that the terrestrial
habits of many of the species in the Tetanocerini repre-
sent a derived condition within the tribe. Unfortunately,
the utility of Knutson and Vala's [18] study was some-
what limited due to the incomplete resolution of in-
tergeneric relationships and the absence of replicate



Table 1 Species analyzed in this study, the feeding behavioral group [17] to which each taxon belongs, and GenBank numbers for the sequences used in this
study

Family Genus Feeding Group Specimen GenBank Accession Numbers

Tribe Species Feeding Group Citation Number COI COII 16S 28S Ef-1α

Drosophilidae Drosophila melanogaster
Meigen 1830

Yeast, mold [80] AJ400907 AJ400907 AJ400907 M21017 NM_170570

Phaeomyiidae Pelidnoptera nigripennis
(Fabricius 1794)

Millipede parasitoid [81] F272 JN860439 JN837497 JN816249

Sciomyzidae

Sciomyzini Atrichomelina

Atrichomelina pubera
(Loew 1862)

Facultative predator/
saprophage of snails
and clams on
damp shorelines

[28] F160 JN860438 JN837567 JN816281 JN837498

F161 AY875151 AY875182 AY875089 AY875120 JN816247

Sciomyza

Sciomyza simplex
Fallén 1820

Predator of shoreline-
stranded aquatics

[82] F175 AY875152 AY875183 AY875090 AY875121 JN816248

Tetanocerini Anticheta

Anticheta melanosoma
Melander 1920

Predator of exposed
snail eggs

[83] F254 JN860440 JN837568 JN816327 JN837499 JN816250

Dichetophora

Dichetophora finlandica
Verbèke 1964

Unknown F248 JN860441 JN837569 JN816328 JN837500 JN816251

Dictya

Dictya borealis
Curran 1932

Predator of aquatic
snails in the water

[84] F257 JN860442 JN837570 JN816329 JN837501 JN816252

Dictya expansa
Steyskal 1938

Predator of aquatic
snails in the water

[84] F263 JN860443 JN837571 JN816330 JN837502

Dictya floridensis
Steyskal 1954

Predator of aquatic
snails in the water

[85] F258 JN860444 JN837572 JN816331 JN837503

Dictya gaigei
Steyskal 1938

Predator of aquatic
snails in the water

[84] F267 JN860445 JN837573 JN816336 JN837504

Dictya pictipes
(Loew 1859)

Predator of aquatic
snails in the water

[84] F261 JN860446 JN837574 JN816332 JN837505 JN816253

Dictya steyskali
Valley 1977

Predator of aquatic
snails in the water

[84] F270 JN860447 JN837575 JN816333 JN837506

F271 JN860448 JN837576 JN816334 JN837507 JN816254

Dictya stricta
Steyskal 1938

Predator of aquatic
snails in the water

[84] F260 JN860449 JN837577 JN837508

Dictya texensis
Curran 1932

Predator of aquatic
snails in the water

[84] F268 JN860450 JN837578 JN816335 JN837509
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Table 1 Species analyzed in this study, the feeding behavioral group [17] to which each taxon belongs, and GenBank numbers for the sequences used in this
study (Continued)

Dictyacium

Dictyacium firmum
Steyskal 1956

Unknown F187 JN860451 JN837579 JN816337 JN837510

F188 JN860452 JN837580 JN816338 JN837511

Elgiva

Elgiva connexa
Steyskal 1954

Predator of aquatic
snails in the water

[86] F150 AY875153 AY875184 AY875091 AY875122

F151 JN860453 JN837581 JN816282 JN837512

F152 JN860454 JN837582 JN816283 JN837513 JN816255

Elgiva solicita
(Harris 1780)

Predator of aquatic
snails in the water

[86] F5 AY875154 AY875185 AY875092 AY875123

F6 JN860455 JN837583 JN816284 JN837514

Ethiolimnia

Ethiolimnia geniculata
(Loew 1862)

Unknown F255 JN860456 JN837584 JN816339 JN837515 JN816256

Euthycera

Euthycera arcuata
(Loew 1859)

Parasitoid of
slugs

[87] F222 JN860457 JN837585 JN816340 JN816257

F223 JN860458 JN837586 JN816341 JN837516

F224 JN860459 JN837587 JN816342 JN837517

Hedria

Hedria mixta
Steyskal 1954

Predator of submerged
aquatic snails

[88] F168 JN860460 JN837588 JN816285 JN837518

F169 AY875155 AY875186 AY875093 AY875124

Hoplodictya

Hoplodictya acuticornis
(Wulp 1897)

Parasitoid of
succineid snails

LV Knutson
(pers. comm.)

F277 JN860461 JN837589 JN816343 JN837519 JN816258

F278 JN860462 JN837590 JN816344 JN837520

Hydromya

Hydromya dorsalis
(Fabricius 1775)

Predator of shoreline-
stranded aquatics

[89] F249 JN860463 JN837591 JN816345 JN837521 JN816259

Ilione [90]

Ilione albiseta
(Scopoli 1763)

Predator of submerged
aquatic snails

[91,92] F122 JN860464 JN837592 JN816286

Limnia

Limnia boscii Robineau-
Desvoidy 1830

Parasitoid of
succineid snails

LV Knutson
(pers. comm.)

F120 AY875156 AY875187 AY875094 AY875125 JN816260

F121 JN860465 JN837593 JN816287 JN837522
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Table 1 Species analyzed in this study, the feeding behavioral group [17] to which each taxon belongs, and GenBank numbers for the sequences used in this
study (Continued)

Limnia ottawensis
Melander 1920

Unknown F154 AY875157 AY875188 AY875095 AY875126 JN816261

Limnia sandovalensis
Fisher & Orth 1978

Unknown F155 AY875158 AY875189 AY875096 AY875127

F156 JN860466 JN837594 JN816288 JN837523

Pherbecta

Pherbecta limenitis
Steyskal 1956

Unknown F237 JN860467 JN837595 JN816346 JN837524 JN816262

Pherbina

Pherbina coryleti
(Scopoli 1763)

Predator of shoreline-
stranded aquatics

[37] F250 JN860468 JN837596 JN816347

Poecilographa

Poecilographa decora
(Loew 1864)

Unknown F212 JN860469 JN837597 JN816348 JN837525 JN816263

F230 JN860470 JN837598 JN816349 JN837526

Psacadina

Psacadina zernyi
(Mayer 1953)

Predator of shoreline-
stranded aquatics

[37] F251 JN860471 JN816350 JN837527 JN816264

Renocera

Renocera amanda
(Cresson 1920)

Parasitoid of fingernail
clams below the water's
surface

[93] F88 AY875159 AY875190 AY875097 AY875128

Renocera johnsoni
(Cresson 1920)

Predator of aquatic
snails in the water

BA Foote
(unpublished)

F90 AY875160 AY875191 AY875098 AY875129

F92 JN860472 JN837599 JN816289 JN837528 JN816265

Renocera pallida
(Fallen 1820)

Parasitoid of fingernail
clams above the water's
surface

[94] F193 JN860473 JN837600 JN816351 JN837529

F194 JN860474 JN837601 JN816352 JN837530 JN816266

Sepedon

Sepedon armipes
Loew 1859

Predator of aquatic
snails in the water

[95] F28 AY875161 AY875192 AY875099 AY875130

Sepedon fuscipennis
Loew 1859

Unknown F116 JN860475 JN837602 JN816360

F117 AY875162 AY875193 AY875100 AY875131

Sepedon praemiosa
Giglio-Tos 1893

Predator of aquatic
snails in the water

[95] F118 AY875163 AY875194 AY875101 AY875132 JN816267

Tetanocera

Tetanocera amurensis
Hendel 1809

Unknown F198 JN860478 JN837605 JN816290 JN837533

C
hapm

an
et

al.BM
C
Evolutionary

Biology
2012,12:175

Page
5
of

22
http://w

w
w
.biom

edcentral.com
/1471-2148/12/175



Table 1 Species analyzed in this study, the feeding behavioral group [17] to which each taxon belongs, and GenBank numbers for the sequences used in this
study (Continued)

F199 JN860479 JN837606 JN816291 JN837534

F200 JN860480 JN837607 JN816292

Tetanocera annae
Steyskal 1938

Predator of aquatic
snails in the water

[96] F201 JN860481 JN837608 JN816293 JN816270

F202 JN860482 JN837609 JN816294

F229 JN860483 JN837610 JN816319 JN837535

Tetanocera arnaudi
Orth & Fisher 1982

Unknown F23 JN860484 JN837611 JN816295 JN837536

F24 JN860485 JN837612 JN816296 JN837537

Tetanocera arrogans
Meigen 1830

Parasitoid of
succineid snails

[39] F93 AY875165 AY875196 AY875103 AY875134 JN816271

Tetanocera bergi
Steyskal 1954

Predator of aquatic
snails in the water

[73] F159 JN860486 JN816297 JN837538 JN816272

Tetanocera clara
Loew 1862

Parasitoid of
slugs

[97,98] F57 AY875167 AY875198 AY875105 AY875136 JN816273

Tetanocera elata
(Fabricius 1781)

Parasitoid of
slugs

[99] F245 JN860487 JN837613 JN816298 JN837539

F247 JN860488 JN837614 JN816299 JN837540

Tetanocera ferruginea
Fallén 1820

Predator of aquatic
snails in the water

[96] F34 AY875168 AY875199 AY875106 AY875137

F158 AY875166 AY875197 AY875104 AY875135

Tetanocera freyi
Stackelberg 1963

Unknown F203 JN860489 JN837615 JN816300 JN816274

Tetanocera fuscinervis
(Zetterstedt 1838)

Predator of shoreline-
stranded aquatics

[100] F53 AY875169 AY875200 AY875107 AY875138

F54 JN860490 JN837616 JN816302 JN837541

F153 JN860491 JN837617 JN816301 JN837542

Tetanocera hyalipennis
Roser 1840

Predator of shoreline-
stranded aquatics

[39] F127 JN860492 JN837618 JN816303

F191 JN860493 JN837619 JN816304 JN837543

F192 JN860494 JN837620 JN816305 JN837544

Tetanocera kerteszi
Hendel 1901

Predator of
terrestrial snails

LV Knutson
(pers. comm.)

F46 AY875170 AY875201 AY875108 AY875139

F47 JN860495 JN837621 JN816306 JN837545

Tetanocera latifibula
Frey 1924

Predator of aquatic
snails in the water

[96] F144 JN860496 JN837622 JN816357 JN837546

F146 JN860497 JN837623 JN816358 JN837547

F147 AY875171 AY875202 AY875109 AY875140

F149 JN860498 JN837624 JN816359 JN837548
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Table 1 Species analyzed in this study, the feeding behavioral group [17] to which each taxon belongs, and GenBank numbers for the sequences used in this
study (Continued)

Tetanocera loewi
Steyskal 1959

Predator of aquatic
snails in the water

[96] F189 JN860499 JN837625 JN816307 JN837549

F226 JN860500 JN837626 JN816308 JN837550

Tetanocera melanostigma
Steyskal 1959

Parasitoid of
succineid snails

[101] F2 AY875172 AY875203 AY875110 AY875141

Tetanocera mesopora
Steyskal 1959

Predator of aquatic
snails in the water

[96] F40 AY875173 AY875204 AY875111 AY875142

Tetanocera montana
Day 1881

Predator of aquatic
snails in the water

[96] F142 AY875174 AY875205 AY875112 AY875143

F143 JN860501 JN837627 JN816309 JN837551

F170 JN860502 JN837628 JN816310 JN837552

F171 JN860503 JN837629 JN816311 JN837553 JN816275

Tetanocera obtusifibula
Melander 1920

Predator of aquatic
snails in the water

[96] F275 JN860504 JN837630 JN816353 JN837554

F276 JN860505 JN837631 JN816354 JN837555

Tetanocera oxia
Steyskal 1959

Parasitoid of
succineid snails

[101] F204 JN860506 JN837632 JN816312

Tetanocera phyllophora
Melander 1920

Predator of
terrestrial snails

[98,102] F39 AY875175 AY875206 AY875113 AY875144

Tetanocera plebeja
Loew 1862

Parasitoid of
slugs

[97,98] F1 JN860507 JN837633 JN816314 JN837556

F13 AY875176 AY875207 AY875114 AY875145

F205 JN860508 JN837634 JN816313 JN816276

Tetanocera plumosa
Loew 1847

Predator of aquatic
snails in the water or
on damp shorelines

[73] F11 AY875177 AY875208 AY875115 AY875146

F43 JN860509 JN837635 JN837557

Tetanocera robusta
Loew 1847

Predator of aquatic
snails in the water

[96] F10 AY875178 AY875209 AY875116 AY875147

F16 JN860510 JN837636 JN816317 JN837558

F134 JN860511 JN837637 JN816315 JN837559 JN816277

F137 JN860512 JN837638 JN816316 JN837560

Tetanocera rotundicornis
Loew 1861

Parasitoid of
succineid snails

[101] F206 JN860513 JN837639 JN816318 JN837561

Tetanocera silvatica
Meigen 1830

Predator of shoreline-
stranded aquatics

[100] F35 JN860515 JN816321 JN837562 JN816279

F172 AY875179 AY875210 AY875117 AY875148 JN816278

F173 JN860514 JN837640 JN816320 JN837563

[103] F209 JN860516 JN837641 JN816322
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Table 1 Species analyzed in this study, the feeding behavioral group [17] to which each taxon belongs, and GenBank numbers for the sequences used in this
study (Continued)

Tetanocera soror
Melander 1920

Predator of aquatic
snails in the water

F210 JN860517 JN837642 JN816323

Tetanocera valida
Loew 1862

Parasitoid of slugs [97,98] F84 AY875180 AY875211 AY875118 AY875149 JN816280

Tetanocera vicina
Macquart 1843

Predator of aquatic
snails in the water

[96] F94 AY875181 AY875212 AY875119 AY875150

F95 JN860518 JN837643 JN816324 JN837564

F98 JN860519 JN837644 JN816325 JN837565

F99 JN860520 JN837645 JN816326 JN837566

Trypetoptera

Trypetoptera canadensis
(Macquart 1843)

Predator of
terrestrial snails

BA Foote
(unpublished)

F164 AY875164 AY875195 AY875102 AY875133 JN816268

Trypetoptera punctulata
(Scopoli 1763) Predator of

terrestrial snails

[104] F217 JN860476 JN837603 JN816355 JN837531 JN816269

F218 JN860477 JN837604 JN816356 JN837532

Sequence coverage out of 114 OTUs out of 65 species out of 23 genera

COI 114: 100% 65: 100% 23: 100%

COII 110: 96.5% 62: 95.4% 21: 91.3%

16S 111: 97.4% 63: 96.9% 22: 95.6%

28S 101: 88.6% 60: 92.3% 21: 91.3%

EF1α 34: 29.8% 33: 50.8% 19: 82.6%
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intrageneric taxon sampling within the Marinoni &
Mathis [25] phylogeny. A more recent study on inter-
generic sciomyzid relationships [23], which included
more morphological characters than did Marinoni &
Mathis [25], was similarly limited, as the taxon sampling
was nearly identical and the relationships among many
of the genera not well-supported. Therefore, a well-
resolved species-level phylogeny focusing on a lineage
that exhibits a variety of feeding behaviors and occupies
multiple habitats would enable a better understanding of
the evolutionary processes involved in transitions among
habitat, mode of feeding and host/prey selection.
Within the Tetanocerini, the genus Tetanocera is of

particular interest because it is one of the most diverse
sciomyzid genera with respect to feeding behaviors.
Twenty-eight of its 39 species have known life cycles
(see Table 1 for a partial list) and its species occupy five
of the 15 feeding groups of Knutson & Vala [17,18]: (i)
general predators of non-operculate aquatic snails in the
water (14 species), (ii) general predators of non-
operculate aquatic snails occurring on damp shorelines
(3 species), (iii) general predators of terrestrial snails
(2 species), (iv) parasitoids of slugs (4 species) or (v) para-
sitoids of succineid (semi-terrestrial) snails (5 species).
The life cycles of 11 species remain unknown. Members
of the largest feeding group within Tetanocera (i above)
spend their larval stages just under the surface of the
water, whereas the remaining groups have terrestrial lar-
vae. Only one other sciomyzid genus occupies five feeding
groups (Sepedon), whereas most only occupy one or two
[17].
In a previous paper, a DNA sequence-based phylogeny

of sciomyzids was used to examine the evolution of lar-
val characters that appeared correlated with larval habi-
tat [30]. Character states in four larval characters were
found to be significantly correlated with aquatic to ter-
restrial transitions in Tetanocera where each larval char-
acter changed in the same way as multiple lineages
made independent habitat transitions. In the present
study, we build on these findings by examining feeding
behavior evolution, as feeding behaviors are dependent
on both larval morphological adaptations to different
environments and specific requirements related to find-
ing and subduing different prey species. Given the di-
versity of feeding behaviors within Sciomyzidae and
Tetanocera, it is important to determine whether there
were single or multiple origins of feeding behaviors.
Such an analysis would simultaneously show whether
there was convergent evolution of larval habitat and the
relative frequencies of habitat transitions. Multiple
evolutionary hypotheses regarding feeding behaviors
and habitat transitions are presented in the literature
(e.g., [17,18,20,21,23,27-29]) and all should be considered
plausible until rigorously evaluated using modern
phylogenetic comparative methods. Therefore, the present
study has four specific objectives: (i) construct a robust
estimate of phylogeny for Tetanocera and Tetanocerini
based on multiple mitochondrial and nuclear genes, (ii)
estimate the evolutionary transitions in larval feeding be-
haviors, habitats and host/prey that have occurred during
the evolution of Tetanocerini and Tetanocera, (iii) test prior
hypotheses regarding the monophyly of feeding and eco-
logical groupings and (iv) identify the mechanisms
underlying habitat and feeding behavior evolution in
Tetanocera.

Results
Phylogenetic analyses
We used Bayesian inference (BI) and maximum likeli-
hood (ML) to analyze a concatenated 5-gene data set.
The BI MAP tree with BI posterior probabilities (x100)
and ML bootstrap nodal support values is shown in
Figure 1. The BI MAP and best ML tree (Additional
file 1: Figure S1) were largely congruent (also see Ad-
ditional file 1: Figure S2, Additional file 1: Figure S3 for
BI consensus and ML bootstrap trees, respectively). Both
recovered a monophyletic Tetanocerini (BI PP = 1.0; ML
bootstrap = 100), a monophyletic Sciomyzini (PP = 1.0;
BS = 100), and placed Pelidnoptera, now in Phaeomyiidae
but once considered a subfamily of Sciomyzidae (e.g.,
[31]) as the sister lineage to the Tetanocerini, suggesting
its potential status as a tribe within the Sciomyzinae
(PP=0.97; BS=80; Figure 1). All genera with multiple
species are monophyletic except for (1) Limnia, which is
rendered polyphyletic by Trypetoptera and Pherbina in
the BI MAP tree and by Trypetoptera in the best ML
tree, (2) Trypetoptera, rendered polyphyletic by Limnia
ottawensis in both trees and (3) Renocera, rendered poly-
phyletic by Ethiolimnia and Dichetophora in both trees.
The polyphyly of these genera are each supported by at
least one node with high BI PP and ML BS values
(Figure 1).
Both BI and ML recovered a monophyletic Tetanocera

(PP = 1.0; BS = 96; Figure 1). Within Tetanocera, both
trees have T. robusta+T. annae (Figures 1,2,3: clade ➀)
as sister to the remaining species. Both analyses recov-
ered Tetanocera clade ➁ (Figures 1,2,3) with identical
relationships. This clade includes all five behavioral
groups known for the genus (Table 1; Figure 2). The
other major Tetanocera clade common to both trees
(Figures 1,2,3: clade ➂) contains eight aquatic predators,
one shoreline predator, one terrestrial predator and two
species with unknown life cycles, with relatively minor
differences in species relationships between the BI and
ML trees. Finally, both analyses recovered T. silvatica +
T. freyi (Figures 1,2,3: clade ➃) as sister species: in the
BI MAP tree, clade ➃ is sister to clade ➁ + clade ➂,
however in the best ML tree, clade ➃ is sister to clade ➂



Figure 1 Majority rule consensus of 20,000 post burn-in trees from a 160 million generation Bayesian analysis of COI, COI and 16S
mtDNA and 28S nuclear DNA from 64 sciomyzid and one phaeomyiid species under a partitioned substitution model. Bayesian
posterior probabilities (x100) appear above the nodes and maximum likelihood bootstrap values (200 bootstrap replicates) appear below the
nodes. Nodal support values for individuals of the same species were generally high, but were left off due to spatial constraints (as were those for
species of Dictya), but appear in the supplemental figures. Drosophila melanogaster sequences were used to root the analysis. Numbers after
species names are specimen numbers (Table 1).
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(Additional file 1: Figure S1). The BI MAP and best ML
trees were not significantly different from one another
as judged by ML methods via GARLI and CONSEL
(Table 2).
Behavioral group optimizations
We optimized Knutson and Vala's [17] larval behavioral
groups on the BI MAP tree using ML methods in
Mesquite (Figure 2; see Additional file 1: Figure S4 for



Figure 2 Maximum likelihood optimization of Knutson and Vala's [17] larval feeding groups on the topology from Figure 1 (pruned to
include only one terminal per species) analyzed with Mesquite using the MK1 model of character evolution. Only character states that
are statistically significantly better than the others (ancestral character state estimates with a log likelihood two or more units higher than all
others) are shown in the pie charts at the nodes. A solid (one color) node indicates that state is significantly better than all other possible states.
Grey indicates unknown character states. Numbers after species names are specimen numbers (Table 1).
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optimization on the best ML tree). From these optimiza-
tions, we infer that (i) the evolution of aquatic larvae oc-
curred relatively early in tetanocerine phylogenesis, (ii)
from this aquatic ancestor, at least 10 lineages made in-
dependent, evolutionary reversals to terrestrial existence
and, during the process, made at least 15 feeding behav-
ioral transitions, (iii) the ancestor of Tetanocera was a
general predator of non-operculate snails just below the
water surface and (iv) a minimum of five Tetanocera
lineages made independent, evolutionary reversals to ter-
restrial existence during which at least seven transitions
in feeding behaviors occurred. All of these transitions
were judged significant by ML criteria. The optimization
of larval habitat (Figure 3) demonstrates an identical
aquatic to terrestrial transition pattern (as compared to
Figure 2) within the Tetanocerini subsequent to the



Figure 3 Maximum likelihood optimization of larval habitat on the topology from Figure 1 (pruned to include only one terminal per
species) analyzed with Mesquite using the AsymmMk model of character evolution. Only character states that are statistically significantly
better than the others are shown along the branches. A solid (one color) node indicates that state is significantly better than all other possible
states. Numbers after species names are specimen numbers (Table 1). Lagrange-estimated ancestral charater states are denoted by blue (aquatic)
and black (terrestrial) boxes. Only those nodes with a single state estimated to be significantly better than all other states are plotted. The full
Lagrange output is shown in Additional file 1: Figure S5.
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divergence of Sepedon. Removal of species with unknown
life cycles had no significant effects on either optimization.
We also estimated the evolution of habitat changes

using the dispersal-extinction-cladogenesis (DEC) model
implemented in the program Lagrange [32]. We found the
optimal ratio of aquatic-to-terrestrial vs. terrestrial-to-
aquatic transitions was between 11:1 and 13:1 which was
significantly better than the null model with no bias in
habitat transition rates (i.e., the global ML estimate was
more than two log-likelihood units higher; Additional
file 1: Table S1) and congruent with the Mesquite
optimization. Therefore, the DEC model-estimated ancestral
states plotted on Figure 3 are those with Lagrange set
to a 12:1 ratio of aquatic-to-terrestrial vs. terrestrial-to-
aquatic transitions. This procedure significantly esti-
mated a terrestrial habitat for the sciomyzid ancestral



Table 2 Results of the likelihood-based approximately unbiased (AU), Shimodiara-Hasegawa (SH), weighted
Kishino-Hasegawa (WKH), and weighted Shimodiara-Hasegawa (WSH) tests calculated using CONSEL

Test

Constraint -ln L Difference AU SH WKH WSH

Tetanocera feeding group analysis (59-taxon data set)

Unconstrained −38932.126 (Best)

Aquatic snail predators1* −39212.682 280.556 p=4e-06 p< 1e-100 p<1e-100 p<1e-100

Aquatic snail predators2* −39252.447 320.321 p=2e-41 p< 1e-100 p<1e-100 p<1e-100

Shoreline snail predators1 −38971.538 39.412 p=0.001 p= 0.002 p= 0.002 p= 0.002

Shoreline snail predators2* −39004.527 72.401 p=1e-07 p= 0.005 p< 1e-100 p=4e-05

Slug parasitoids −38941.015 8.889 p=0.038 p= 0.631 p= 0.062 p= 0.193

Terrestrial snail predators* −39051.229 119.103 p=1e-08 p< 1e-100 p<1e-100 p<1e-100

Renocerinae monophyly analysis (entire 115-taxon data set)

Unconstrained −73022.049 (Best)

Renocerinae −73056.937 34.89 p= 0.055 p= 0.059 p= 0.059 p= 0.059

Comparison of Bayes MAP (Figure 1) and best ML (Additional file 1: Figure S1) trees (entire data set)

ML tree −72999.441 (Best)

Bayes MAP tree −73005.315 5.875 p= 0.377 p= 0.388 p= 0.388 p= 0.388

Knutson and Vala [17] feeding group constraints were done with an abbreviated data set containing 59 terminal taxa (all Tetanocera plus 4 outgroups). Trees
compared were the best topology from unconstrained analysis versus an analysis where the feeding groups (see Table 1) were constrained to be monophyletic.
Tetanocera plumosa, which can either live in the water or on the shoreline was coded both ways (Aquatic2 & Shoreline2 = T. plumosa considered a shoreline snail
predator). The monophyly of Anticheta + Renocera, proposed as subfamily Renocerinae by Verbeke [74], was tested by constraining them to be outside of the
Tetanocerini and Sciomyzini. The Bayesian MAP tree and ML tree were tested to see if they were significantly different from one another. P-values in bold are
significant. Constraints with an asterisk (*) were constrained trees that were significantly worse than the unconstrained tree in all statistical tests.
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lineage, a single terrestrial-to-aquatic transition and five
unambiguous aquatic-to-terrestrial transitions. Further-
more, both the DEC and Mesquite optimizations are
congruent and complementary such that only one node,
near the base of the tree, does not have a significant
habitat estimation (Figure 3). The tetanocerine feeding
behavior and habitat transitions based on the Mesquite
optimizations in Figures 2 and 3 are better visualized in
Figure 4.

Constraint analyses
To test hypotheses of multiple independent feeding be-
havior and habitat transitions, ML analyses were per-
formed in which the monophyly of each polyphyletic
Tetanocera behavioral group was constrained (Table 2).
In the analyses where (1) aquatic snail predators (two
variations), (2) stranded shoreline snail predators (two
variations) and (3) terrestrial snail predators were con-
strained, all topology tests rejected their monophyly as
the constrained trees yielded significantly lower log-
likelihoods than the unconstrained trees (Table 2). These
results support the hypothesis that there were multiple
independent transitions from aquatic snail predation in
the water to (1) aquatic snail predation on the shoreline
and (2) terrestrial snail predation. Constraining the
monophyly of slug parasitoid Tetanocera species did not
result in a significantly different topology from the un-
constrained tree. Finally, constraining Anticheta+Renocera
to be monophyletic and further constrained to be a
separate lineage outside of the currently recognized
tribes produced a tree that was not significantly worse
than the unconstrained tree (Table 2).

Discussion
Evolutionary transitions in sciomyzid larvae
Based on life history and larval morphological studies,
Knutson & Vala [18] concluded that “terrestrial behavior
and morphology in the Tetanocerini are apomorphic fea-
tures of that tribe.” The present study and others sup-
port this conclusion. Wiegmann et al. [33] performed
phylogenetic analyses of a comprehensive dipteran data
set that yielded a monophyletic Sciomyzoidea that in-
cluded eight families currently classified in the Sciomyzoi-
dea, the Huttoninidae (elevated to family) and Conopidae,
a family not previously included in the Sciomyzoidea
(also see [34]). The Sciomyzidae occupies a relatively
derived position within the Sciomyzoidea in the Wieg-
mann et al. [33] phylogeny. The only sciomyzoid taxon
known to contain aquatic larvae is the Tetanocerini.
Therefore, higher-level studies of Sciomyzoidea [33] sup-
port a terrestrial ancestor for Sciomyzidae and their clos-
est relatives. The derived position of Tetanocerini within
Sciomyzidae (Figures 1, 2) suggests the freshwater aquatic
habit is a unique derived feature of this clade, and terres-
trial behavior and morphology in the Tetanocerini are
largely derived from aquatic ancestry. Our habitat opti-
mizations (Figure 3) strongly support a terrestrial ances-
tor for Sciomyzidae and both Mesquite optimizations



Figure 4 Diagram showing the evolution of feeding behaviors and habitat changes in the Tetanocerini based on the topology and
optimization of Knutson and Vala's [17] behavioral groups in Figure 2 (unknowns removed). Aquatic lineages in black type are all general
predators of aquatic snails. Every line that crosses from blue to white background represents an aquatic-to-terrestrial transition. Branches that split
at the aquatic-terrestrial interface indicate uncertainty of ancestral habitat.
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(Figures 2, 3) strongly support an aquatic ancestor for
Tetanocerini minus Anticheta and Psacadina (i.e., the
third basal-most Tetanocerini node). These analyses
clearly demonstrate a (i) sciomyzid ancestor with terres-
trial larva, (ii) derived aquatic habitat for the ancestor of
most Tetanocerini and (iii) secondarily derived terrestrial
habitat for multiple tetanocerine lineages.
The genus Tetanocera is one of the most remarkable

sciomyzid genera with respect to feeding behaviors,
microhabitat and host/prey preference as its species are
members of five of Knutson and Vala's [17] behavioral
groups. The monophyly of Tetanocera is well-supported
(BI PP = 1.0; ML bootstrap = 96; Figure 1, Additional file 1:
Figure S1), and the ancestor to Tetanocera was strongly
suported as being a predator of aquatic snails (Figure 2).
From this ancestral condition, there were three inde-
pendent transitions to shoreline predation on aquatic
snails, two independent transitions to terrestrial snail
predation, and one transition to slug parasitoidism with
one lineage subsequently transitioning to succineid snail
parasitoidism (Figures 2, 4). Furthermore, the monophyly
of three of these behavioral groups has been rejected
(Table 2). In a more general sense, this implies that
Tetanocera lineages made between three (Lagrange) and
five (Mesquite) independent transitions to terrestrial
habitats (Figure 3). These transitions were estimated
to be statistically significant by ML (Figures 2, 3,
Additional file 1: Figure S4, Additional file 1: Figure S5).
In their modification of Steyskal’s [35] morphology-based,
Tetanocera species groups, Boyes et al. [36] stated that
“the derived, terrestrial modes of [feeding] behavior have
clearly arisen several times in different species groups.”
Our species-level phylogeny, ML optimizations and
topology tests clearly support this conclusion.

Sciomyzids violate trends in habitat transitions
In their study of evolutionary aquatic-terrestrial habitat
transitions, Vermeij and Dudley [14] concluded that with
the exception of tetrapod vertebrates, aquatic-to-terrestrial
habitat transitions are rare as compared to the reverse.
However, within Diptera, more than 20 lineages have
made such transitions (inferred from Figure 1 of [33]).
From the present study, it can be concluded that scio-
myzid lineages have made an exceptional number of
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independent transitions between aquatic and terrestrial
habitats. Specifically, they have made at least one transi-
tion from terrestrial to aquatic habitats, with Mesquite
estimating at least 10 lineages subsequently experiencing
evolutionary reversals to terrestrial habitats (Figures 2, 3,
Additional file 1: Figure S4). Additionally, the Lagrange
analysis demonstrated a significant bias in the transition
rate towards aquatic-to-terrestrial transitions with the
overall log-likelihood maximizing near a ratio of 12:1
(Additional file 1: Table S2). Furthermore, some species
in each of nine tetanocerine genera not included in our
analyses (Dichetophora, Dictya, Eulimnia, Neolimnia,
Perilimnia, Protodictya, Sepedon, Sepedonella, Shannonia)
have terrestrial larvae [17], so it is quite likely that there
have been additional aquatic-to-terrestrial transitions dur-
ing the phylogenesis of the Tetanocerini. If we assume that
Dichetophora, Dictya, Neolimnia, Protodictya and Sepedon
are monophyletic and arose after the early tetanocer-
ine ancestor entered the water (obviously true for
three of these genera in Figure 1, Additional file 1:
Figure S1), then as many as five additional aquatic-to-
terrestrial transitions have occurred, because each of
these genera have both aquatic and terrestrial members
[17,18]. Given that life cycle, habitat and host/prey in-
formation is available for only 240 of 540 sciomyzid species
and 41 of the 61 genera [17], the actual number of in-
dependent aquatic to terrestrial habitat transitions could
easily number in the 20s. Clearly, aquatic-to-terrestrial
habitat transitions are strikingly common in the
Sciomyzidae.

Possible mechanisms for aquatic to terrestrial transitions
Vermeij and Dudley [14] also concluded that predation
intensities are generally lower in freshwater habitats than
they are on land, therefore offering less biotic resistance
to transitions from terrestrial to freshwater habitats than
the reverse. However, our estimated evolutionary transi-
tions within the Tetanocerini show the opposite pattern,
with a 10:1 ratio of aquatic-to-terrestrial vs. terrestrial-
to-aquatic transitions (Figures 2, 3, 4; Additional file 1:
Table S2). This raises the question of why sciomyzids are
going against the trend observed by Vermeij and Dudley
[14]. A portion of the answer likely lies in the larval
morphological adaptations necessary for survival in each
habitat. Chapman et al. [30] examined changes in four
larval characters that were found to be significantly corre-
lated with aquatic-to-terrestrial transitions in Tetanocera.
They found that in each independent transition, the larvae
of terrestrial lineages experienced reductions or losses
in three characters associated with breathing while
under water and lost pigmentation (also see [37]). This
trend was observed across the Tetanocerini by Vala and
Gasc [38], who found a series of reductions in the same
breathing-related characters as lineages moved from
aquatic to shoreline to drier terrestrial habitats. In
order for a terrestrial Tetanocerini lineage to enter the
water, it would have to gain those adaptations necessary to
respire while mostly submerged. Therefore, the relative
ease of losing aquatic adaptations versus the relative diffi-
culty of gaining such adaptations de novo is likely one of
the primary reasons that there is a much higher rate of
aquatic to terrestrial habitat transitions than the reverse
in sciomyzids. This significant reduction in aquatic-to-
terrestrial adaptive morphological constraints indicates
that tetanocerine phylogenesis likely tracked some eco-
logical pressures (e.g., increased aquatic predation and/
or increased terrestrial food availability) more accur-
ately than did more constrained lineages.
In order for a lineage to make a successful transition

to a new habitat, the members must be able to compete
for and acquire resources in the new habitat [14]. Gener-
ally, it seems rather unlikely that a lineage could make
multiple parallel transitions into a new habitat as the
success of these transitions would typically depend upon
a simultaneous adaptation to new physical conditions as
well as the utilization of new food resources. However,
in the case of the Tetanocerini, the intermediate nature
of the damp, shoreline habitat likely played a significant
role in facilitating parallel aquatic-to-terrestrial habitat
transitions. Our analyses demonstrate that five of the 10
independent transitions to terrestrial habitats were to
the shoreline habitat where the prey taxa are the same as
their aquatic ancestors (Hydromya, Renocera, Tetanocera;
Figures 2, 4). Both aquatic snails and fingernail clams occur
on damp shorelines where they are either periodically
stranded by receding or fluctuating waters, or in the case of
snails, temporarily foraging out of the water or migrating
between aquatic habitats [17]. The availability of the same
food resources on the shoreline as in the water likely facili-
tated stepwise transitions to terrestrial existence in multiple
sciomyzid lineages. Like aquatic snails, aquatic sciomyzid
larvae can move onto the damp shoreline in search of their
prey. However, shoreline-adapted species have lost their
adaptations to breathing while under the surface of the
water, and will actively swim to shore if placed in water
[39]. Once a lineage has adapted to living on damp shore-
lines (possessing only vestiges of the adaptations to breath-
ing while under water), they may find it more
difficult to go back into the water (having to re-
express the aquatic-adapted traits) than to move to
even drier habitats or switch prey type. Once accus-
tomed to feeding on aquatic snails on terrestrial shor-
elines, tetanocerine lineages then are pre-adapted to
preying on non-aquatic gastropods. Relative to the
Tetanocerini, derived terrestrial food items include
slugs, succineid (semi-terrestrial) snails and land
snails. Given this evolutionary scenario, it is easy to
imagine how the ancestors of dry-land terrestrial
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snail-feeding lineages like Trypetoptera, Tetanocera
phyllophora and T. kerteszi used the shoreline as a
stepping-stone environment facilitating a gradual
movement to dry-land habitats where they became
generalist predators of land snails.
A central question remains as to what selection pres-

sures led multiple lineages of Tetanocerini to transition
to terrestrial habitats with some lineages switching to
prey other than aquatic pulmonate snails. Chapman
et al. [30] speculated that it was a combination of (1)
eliminating competition with other aquatic snail preda-
tors, (2) compensating for prolonged declines in aquatic
snail populations, (3) escaping aquatic insect predators/
parasitoids and (4) the reduction and/or loss of suitable
aquatic habitats due to the general drying climatic trend
that took place between 65 and 5 mya (beginning of
Cenozoic era to the end of the Pliocene epoch) that drove
these terrestrial transitions. Wiegmann et al. [33], using
the penalized likelihood method in r8s [40], estimated that
the Sciomyzidae originated ~30 mya (see Fig. S3 in [33]).
The oldest known fossil Tetanocerini are preserved in Bal-
tic amber (55–24 mya [41]), and the oldest known fossil
Tetanocera (although this generic assignment is question-
able [41]) is from the Oligocene epoch (34–24 mya
[42,43]). These data place Tetanocerini lineages within the
general drying period mentioned above. Therefore, (i) the
relative ease of reducing or losing morphological charac-
ters (compared to gaining them de novo), (ii) the occur-
rence of the same prey on damp shorelines as occur in the
water and (iii) the general drying trend all likely played
key roles resulting in multiple tetanocerine lineages mak-
ing independent aquatic-to-terrestrial transitions during
their phylogenesis.

General implications for evolutionary transitions
The results of this study may have implications for how
changes between aquatic and terrestrial habitats have oc-
curred in other animals. Any lineage that (1) occurs in
aquatic and terrestrial habitats, (2) respires the same
way in aquatic and moist shoreline habitats (e.g., cuticu-
lar respiration or open tracheal system) and (3) has the
same type of food available in both habitats (e.g., pul-
monate snails) could show a similar pattern of multiple
independent habitat transitions coincident with changes
in behavioral and morphological traits. Borda & Sidall
[44] found multiple aquatic-to-terrestrial transitions in
arynchobdellid leeches, and Rubinoff [45] found either
multiple independent terrestrial-to-aquatic transitions or
an evolutionary reversal to terrestrial habitats in one
lineage of cosmopterigid moths in Hawaii. Both of these
taxa fit the above criteria. Like Sciomyzidae, at least 34
other dipteran families have both aquatic and terrestrial
lineages [33] and many of the larger such families have
larvae that are, in general, restricted to air-breathing (e.g.,
Culicidae, Dixidae, Dolichopodidae, Stratiomyidae, Syr-
phidae, Tipulidae and Tabanidae [13]). Air-breathing
insects have open tracheal systems and must establish
contact between their spiracles and the atmosphere to
respire and must therefore either remain at or come to
the surface periodically. Of these families, the Tipulidae
(crane flies), unlike many of the families traditionally
classified in the suborder Nematocera (primitive flies
with long, filamentous antennae) that probably share an
aquatic ancestor, may have originated in damp terres-
trial, tropical habitats [11]. Wiegmann et al.'s [33] plot
of aquatic habitat on their comprehensive dipteran phyl-
ogeny indicated that most of the families of suborder
Brachycera (derived flies with short antennae) with
aquatic lineages were likely of terrestrial origin. There-
fore, the findings presented herein should broadly in-
terest anyone studying the evolution of aquatic and
terrestrial habitat transitions and associated behavioral
and morphological changes in Diptera, a group that in-
cludes over 152,000 currently named species [33]. Other
lineages that fit the above criteria include oligochaete
worms, pulmonate gastropods, decapods, isopods, am-
phipods, orbatid mites, true bugs in the infraorder
Nepomorpha and beetles in the suborder Adephaga, su-
perfamily Byrrhoidea and family Lampyridae. The results
of the present study are suggestive that some lineages
within these groups will also show multiple convergences
on aquatic or terrestrial habits when examined with
modern phylogenetic comparative methods.

Conclusions
Phylogenetic analyses of sciomyzid DNA sequences pro-
vided strong support that the Sciomyzini, Tetanocerini
and Tetanocera are monophyletic (Figure 1). We signifi-
cantly estimated that (i) the ancestor of the Sciomyzidae
was terrestrial (Figures 2, 3), (ii) there was a single ter-
restrial-to-aquatic transition early in the evolution of the
Tetanocerini and, subsequently, (iii) there were at least
10 independent aquatic-to-terrestrial transitions and at
least 15 transitions in feeding behaviors (Figures 2, 3, 4,
Additional file 1: Figure S2). The 10:1 ratio of aquatic-to-
terrestrial vs. terrestrial-to-aquatic transitions goes against
the general trend observed in animals. We found that the
ancestor to Tetanocera was aquatic and five Tetanocera
lineages made independent aquatic-to-terrestrial transi-
tions and seven independent transitions in feeding
behaviors (Figures 2, 3, Additional file 1: Figure S2).
Classifications of sciomyzids into ecological assemblages
of species resulted in many non-monophyletic groupings
(Figures 2, 3, 4, Additional file 1: Figure S2, Additional
file 1: Figure S3) whose monophyly were rejected via
phylogenetic constraint analyses (Table 2). Therefore,
these findings strongly support our inferences of multiple
independent transitions in feeding behaviors, habitats
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and prey/host usage. The damp shoreline habitat is
likely a crucial transitional habitat where tetanocerine
lineages that move out of the water to forage can find
the same prey taxa as in the water. Once tetanocerine
lineages are established on the shoreline, terrestrial
molluscan taxa are available as potential food resources.
From a morphological standpoint, transitioning from
aquatic to terrestrial habitats is easier than the reverse,
as adaptations to air-breathing just below the surface of
the water are more difficult to gain than to lose. Fur-
thermore, tetanocerine phylogenesis occurred as the
Earth was going through a general drying period. These
factors likely explain why so many tetanocerine lineages
made secondary transitions to terrestrial environments.
Finally, the results herein imply that any animal lineage
that has aquatic and terrestrial members, respire the
same way in both habitats and have the same type of
food available in both habitats could show a similar pat-
tern of multiple independent habitat transitions coincident
with changes in behavioral and morphological traits.

Materials and methods
Taxon sampling
Phylogenetic analyses were performed on DNA se-
quences from five genes obtained from 60 Tetanocera
specimens (representing 28 species) and 53 individuals
representing 21 additional genera within the Sciomyzi-
dae (19 from the Tetanocerini (34 species)), two from
the Sciomyzini (2 species) and Pelidnoptera (Phaeomyii-
dae) which is not currently considered to be a member
of the Sciomyzidae but is thought to be its sister taxon
([23,25,26] but see [33]). Therefore, our analyses include
72% of Tetanocera species, 42% of the genera of Tetano-
cerini, and 15% of the genera of Sciomyzini. Drosophila
melanogaster (Drosophilidae) was used as the outgroup
in all unconstrained phylogenetic analyses. Table 1 con-
tains a complete listing of the taxa analyzed in this study
including GenBank accession numbers and the percentage
Table 3 Genes / primer information used in this study

Gene Primer pair References Analyz

Mitochondrial loci:

16S LR-N-13398 / LR-J-12887 [105] 426 bp

COI LCO1490 [46] 658 bp

HCO-700ME [106]

C1-J-2183 / TL2-N-3014 [105] 813 bp

COII TL2-J-3034 / TK-N-3785 [105] 681 bp

Nuclear loci:

28S D1F / D6R [107] 1095 b

Ef-1α ScioEF1a-F Designed herein 876 bp

ScioEF1a-R

Analyzed fragment size is the number of base pairs remaining after primer sequenc
of OTUs, species and genera sequenced for each gene.
For 18 of the 28 Tetanocera species, multiple individuals
were available and sequenced for replicate sampling pur-
poses. Of the 29 Tetanocera species with known life
cycles, 25 are examined. Of the 41 sciomyzid genera that
have behavioral information known for the larvae of at
least one species, at least one representative of 17 genera
is included. Ten of Knutson and Vala's [17] 15 feeding
groups are represented.

Laboratory protocols
Field collections of adult specimens were preserved imme-
diately in 95% ethanol. In the laboratory, specimens were
transferred to vials containing 100% hexamethyldisilazane
(Polysciences, Inc., Warrington, Pennsylvania, USA) for at
least 24 hours, after which the liquid was decanted and the
specimens allowed to dry under a fume hood. Prior to
preparation for total DNA isolation, the head, legs, wings
and abdomen of each specimen were removed from the
thorax. Total DNA was isolated from each thorax, and the
remaining body parts (which contain the morphological
characters necessary for species determination) are stored
as vouchers in 95% ethanol at the University of Kentucky.
Each specimen and associated DNA extraction was given a
unique number. Species identification, collecting locality
information and habitat notes were recorded in a database.
Total DNA was isolated from single individuals using

Qiagen DNeasy Tissue Kits (QIAGEN Inc., Chatsworth,
California, USA) following the manufacturer’s animal tis-
sue protocol. We PCR-amplified fragments of the mito-
chondrial cytochrome c oxidase subunits I (COI) and II
(COII) and 16S rDNA genes, and the nuclear 28S rDNA
and elongation factor-1 alpha (EF-1α) genes using the
primer pairs listed in Table 3. Each amplicon was puri-
fied in NuSieveW GTGW low melting temperature agar-
ose (Lonza, Rockland, Maine, USA) and separated from
the agarose with WizardW PCR preps DNA purification
system (Promega Corp., Madison, Wisconsin, USA).
ed fragment size Notes

Primer sequences identical to those of “Locust”

Together, both COI primer pairs encompass
nearly the entire gene

Amplify all of COII

p

CAYMGDGATTTCATYAARAACATGA

GCRATGTGAGCGGTGTGRCAATCC

es and regions of ambiguous alignment were removed.
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PCR reactions (total volume= 50 μL) consisted of 1X
Qiagen PCR buffer, 0.2 mM of each dNTP, 0.5 mM of
each primer, 1.25 U of Qiagen Taq and 1–5 μL of tem-
plate DNA. Cycle sequencing protocols followed Folmer
et al. [46]; both strands were cycle sequenced using ei-
ther end-labeled primers (Perkin Elmer AmpliCycle
Sequencing Kits; Li-COR sequencer) or labeled dideoxy-
nucleotides (ABI Big-Dye Terminator mix v. 3.0; Applied
Biosystems, Foster City, California, USA; ABI sequencer).
The separation of cycle sequencing reaction products
was done in 3.7% and 5.5% polyacrylamide gels in LI-COR
4200 L-2 and 4200S-2 automated DNA sequencers, re-
spectively, or Applied Biosystems 3730XL or 3730 DNA
Analyzers.

Phylogenetic analyses
Bi-directional sequences were aligned using AlignIR
(v. 2.0, LI-COR Biosciences, Inc., Lincoln, Nebraska,
USA). Multiple sequence alignments of each gene region
were produced with MAFFT [47]. The alignments of the
COI, COII and EF-1α sequences contained no indels,
however, indels that presented alignment ambiguities
were found in the sciomyzid 16S and 28S sequences.
The GUIDANCE server [48] was used to assess confi-
dence scores for each column in the MAFFT alignments.
Columns with confidence scores < 95% were removed
prior to all phylogenetic analyses. The data sets analyzed
herein (including program-specific commands) have
been deposited on Dryad (http://dx.doi.org/10.5061/
dryad.cb098).
Bayesian inference (BI) phylogenetic analyses were

conducted on a concatenated (using MacClade v. 4.08
[49]) 4,549-character data set (COI= 1471 nt, COII= 681
nt, 16S= 426 nt, 28S= 1095 nt, EF-1α= 876 nt) with
MrBayes (v. 3.1.2 [50,51]). The data set contained 114
terminal taxa for which we generated sequences (includ-
ing 31 terminals from Chapman et al. [30]), plus one
additional terminal (D. melanogaster) whose sequences
were obtained from GenBank (Table 1). The data were
partitioned by gene region and codon position when ap-
propriate (11 total partitions: three gene regions × three
codon positions for the COI, COII and EF-1α partitions
plus a single partition each for 28S and 16S) and jModeltest
(v. 12.9.0 [52]) was used to determine the best-fit model for
each partition (Additional file 1: Table S2). To allow each
partition to have its own set of parameter estimates,
revmat, tratio, statefreq, shape, and pinvar were all unlinked
during the analyses. To obtain the most accurate
branch length estimates possible, the option prset
ratepr = variable (assigns a separate branch length
parameter for each partition) was employed as per
the recommendations of Marshall et al. [53], who found
that BI analyses of partitioned data with a global branch
length parameter resulted in significantly longer overall tree
length. Four 5-million generation pilot analyses (temp=
0.2, 0.1, 0.02, 0.01) were run to determine the optimal
temperature setting to assure an appropriate acceptance
rate of swaps between chains [54]. Subsequently, two in-
dependent, simultaneous BI searches were run for 160
million generations, saving a tree every 5000 generations,
with four search chains each (temp=0.01). The analysis
was terminated ~100 million generations after the aver-
age standard deviation of the split frequencies fell below
0.02. The 20,000 post-burn-in trees from each run, de-
termined by examination of the log probability of observ-
ing the data by generation plot with Tracer (v. 1.5 [55]),
were used to calculate the majority rule consensus tree
whose nodal support values were plotted on the BI
MAP tree (= maximum a posteriori probability tree).
A maximum likelihood (ML) tree was generated using

GARLI (v. 2.0 [56]) using the same partitioning scheme
and model assignments as the BI analysis (above) and using
the default settings except for the following: searchreps=5,
numberofprecreductions=20, treerejectionthreshold=100.
The parameter estimates from the search replicate that
obtained the tree with the highest log-likelihood value were
fixed in a 200-replicate ML bootstrap analysis [57] using
default settings.

Character optimizations
The estimation of ancestral feeding groups, based on the
BI MAP tree and best ML tree, were carried out using
ML methods in Mesquite (v. 2.74 [58]). We followed the
behavioral groups of Knutson and Vala [17], which are
based on the most recent analysis of sciomyzid life
cycles. Our data set included taxa from ten sciomyzid
behavioral groups plus Pelidnoptera (Phaeomyiidae) and
the outgroup (Drosophila) as 11th and 12th states. The
Markov k-state one parameter model (MK1 [59]) was
used to infer ancestral character states in the ML opti-
mizations. We also optimized larval habitat (coded as
aquatic or terrestrial) for which we utilized the Asym-
metrical Markov k-state 2 parameter model (AsymmMK;
available only for binary characters [60-62]) which allows
forward and backward rates to be different. This model
was used because the behavioral group optimization
estimated a 10:1 ratio of aquatic-to-terrestrial versus
terrestrial-to-aquatic transitions. To make decisions
regarding the significance of ancestral character state
reconstructions, we followed Pagel [63] (following Edwards
[64]) who recommended that ancestral character state
estimates with a log-likelihood two or more units lower
than the best state estimate (decision threshold [T] set
to T = 2) be rejected. Generally viewed as a conservative
cutoff, this threshold has been used by numerous
recent authors (e.g., [65-69]). The DEC model imple-
mented in the program Lagrange [32] was also used to
estimate ancestral habitats using the BI MAP tree.

http://dx.doi.org/10.5061/dryad.cb098
http://dx.doi.org/10.5061/dryad.cb098
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Unlike the Mesquite ML optimization which assumes
instantaneous habitat transitions, Lagrange models
habitat evolution along branches (i.e., over time), there-
fore allowing ancestors to occur in two habitats simul-
taneously. While apparently rare in sciomyzids, we did
have one taxon (Tetanocera plumosa; see Hypothesis
testing section below) that is known to occur both in
aquatic and shoreline habitats. Because the Mesquite
optimization suggested a 10:1 ratio of aquatic-terrestrial
vs. terrestrial-aquatic transitions, we optimized this par-
ameter in Lagrange and used a 12:1 ratio to infer ances-
tral habitats.

Hypothesis testing
Because many of Knutson and Vala's [17] behavioral
groups within Tetanocera were not monophyletic in the
unconstrained analyses, we conducted separate analyses
constraining each of these groups to be monophyletic.
Each resulting constrained tree was statistically com-
pared (see below) to the unconstrained tree to test
whether the monophyly of Knutson and Vala's [17] be-
havioral groups in Tetanocera could be rejected, thereby
adding statistical support to inferences of multiple inde-
pendent feeding behavior and habitat transitions. One
unconstrained and six constrained analyses were done
with RAxML (iMAC Pthreads-version [70,71]) using the
same partitioning scheme as above under the GTR+G+
I model [72]. Twenty replicate searches were done for
each analysis (constrained and unconstrained) and the
tree with the highest log-likelihood from each was used
for topology testing (below). To assure that only top-
ology changes within Tetanocera were the major differ-
ences between constrained and unconstrained trees, all
but five outgroups were removed, leaving one individual
each of D. melanogaster, Atrichomelina pubera, Anticheta
melanosoma, Hoplodictya acuticornis and Limnia boscii
and 54 Tetanocera terminals for which behavioral
group is known (see Table 1). The non-Tetanocera
taxa remaining in the analyses were chosen because
each represents a major lineage in the BI MAP
(maximum a-posteriori probability) tree and best ML
trees and they had the lowest percentage of missing
data. Behavioral groups that were not monophyletic
on either the BI MAP or best ML trees were con-
strained in separate analyses as follows (see Table 1):
Aquatic1: all Tetanocera with aquatic larvae includ-
ing the facultative T. plumosa which can also occur
on damp shorelines [73]; Aquatic2: same as Aquatic1
excluding T. plumosa; Shoreline1: all Tetanocera with
larvae occurring on damp shorelines and preying on
aquatic snails excluding T. plumosa; Shoreline2: same
as Shoreline1 plus T. plumosa; Slug: all slug parasi-
toids; Terrestrials: both species predatory on terres-
trial snails.
The full 115-taxon data set was used to test the mono-
phyly of the Renocerinae, proposed by Verbeke [74] to
include Renocera+Anticheta, two genera quite distantly
separated in the BI and ML analyses presented herein.
To constrain Renocera+Anticheta as a lineage outside
of the other tribes, the Sciomyzini, Tetanocerini and
Renocera+Anticheta were each constrained to be mono-
phyletic with three separate constraint statements. Fi-
nally, this data set was also used to evaluate whether the
BI MAP tree and the best ML tree were significantly dif-
ferent from one another.
To test for significant differences in topologies be-

tween unconstrained and constrained analyses, GARLI
(v. 2.0), under the same partitioning scheme and mod-
els as the BI analysis, was used to create the site-
likelihoods file used as input for the topology-testing
program CONSEL (v. 0.1 k [75]). CONSEL was used
to do the likelihood-based approximately unbiased test
(AU [76]), Shimodaira-Hasegawa test (SH [77]), weighted
Kishino-Hasegawa test and weighted Shimodaira-
Hasegawa test (WKH and WSH [76]). Results of the KH
test [78] were omitted due to its inappropriateness for
testing a posteriori significant differences among tree
topologies [79].

Additional file

Additional file 1: Figure S1. Maximum likelihood tree produced by
using the partitioning scheme and model assignments in Additional file
1: Table S2 using the default settings in Garli (v. 2.0) except for the
following: searchreps = 5, numberofprecreductions = 20,
treerejectionthreshold = 100. Drosophila melanogaster sequences were
used to root the analysis. Numbers after species names are specimen
numbers (Table 1). Figure S2. Bayesian consensus tree produced by
using the partitioning scheme and model assignments in Additional file
1: Table S2. Drosophila melanogaster sequences were used to root the
analysis. Numbers after species names are specimen numbers (Table 1).
Figure S3. Maximum likelihood bootstrap tree (200 replicates) produced
by using the partitioning scheme and model assignments in Additional
file 1: Table S2 using the default settings in Garli (v. 2.0). Parameter
estimates from the non-bootstrap search replicate that obtained the tree
with the highest log-likelihood value were fixed. Drosophila melanogaster
sequences were used to root the analysis. Numbers after species names
are specimen numbers (Table 1). Figure S4. Maximum likelihood
optimization of Knutson and Vala's [17] larval feeding groups on the
maximum likelihood topology. Additional file 1: Figure S1; pruned to
include only one terminal per species) analyzed with Mesquite using the
MK1 model of character evolution. Only character states that are
statistically significantly better than the others (ancestral character state
estimates with a log likelihood two or more units higher than all others)
are shown in the pie charts at the nodes. A solid (one color) node
indicates that state is significantly better than all other possible states.
Grey indicates unknown character states. Numbers after species names
are specimen numbers (Table 1). Table S1. Model log-likelihood scores
for variations of the ratio of aquatic-terrestrial:terrestrialaquatic transitions
using the DEC model in Lagrange with dispersal and extinction rates for
each. Bold font indicates significantly better log-likelihoods (i.e., greater
than 2 lnL units) than the null (1:1) model. Red font indicates the
parameter setting used in the plot of ancestral character states on
Figure 3. Figure S5. Lagrange output with ratio of aquatic-to-terrestrial
vs. terrestrial-to-aquatic transitions set to 12:1. Only states within 2 log-
likelihood units of the best were considered for plotting on Figure 3, and

http://www.biomedcentral.com/content/supplementary/1471-2148-12-175-S1.pdf
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only unambiguous states were plotted. Table S2. Gene information and
evolutionary models selected by jModelTest for BI and ML phylogenetic
analyses).
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