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Bile acids are the catabolic end products of cholesterol metabolism that are best known
for their role in the digestion of lipids. In the last two decades, extensive investigation has
shown bile acids to be important signaling molecules in metabolic processes throughout
the body. Bile acids are ligands that can bind to several receptors, including the nuclear
receptor farnesoid X receptor (FXR) in ileal enterocytes. FXR activation induces the
expression of fibroblast growth factor (FGF) 15/19, a hormone that can modulate bile
acid levels, repress gluconeogenesis and lipogenesis, and promote glycogen synthesis.
Recent studies have described a novel intestinal protein, MAM and LDL Receptor Class A
Domain containing 1 (MALRD1) that positively affects FGF15/19 levels. This signaling
pathway presents an exciting target for treating metabolic disease and bile acid-
related disorders.
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INTRODUCTION

Bile acids are physiological detergent molecules synthesized from cholesterol that were once thought
to primarily function in the intestinal tract to solubilize and facilitate absorption of fats, steroids, and
fat-soluble vitamins. However, more recent research has revealed their broader role as signaling
molecules that activate nuclear receptors and G protein-coupled receptors to modulate a variety of
metabolic processes such as glucose homeostasis, lipid metabolism, immune cell function, and cell
growth and proliferation (1). Their role in these processes requires a tightly regulated cyclical
process of bile acid synthesis in the liver, transport, and reabsorption from the ileum to maintain
precise levels in circulation. Any alteration in this homeostasis affects hepatic metabolic processes,
potentially resulting in inflammation and development of diseases such as cholestatic liver diseases,
dyslipidemia, diabetes, and even cancer (1, 2). Numerous studies have demonstrated the importance
of the hormone, fibroblast growth factor 19 (FGF19), in the maintenance of this homeostasis. Most
recently, a newly identified intestinal protein, MALRD1, has been shown to modulate levels of
FGF19 (3, 4). This review will provide an overview of bile acid metabolism, enterohepatic bile acid
signaling, metabolic effects of FGF19, and MALRD1.
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BILE ACID METABOLISM

Bile Acid Synthesis
Bile acids are synthesized from cholesterol through a complex
multi-enzyme series of reactions in hepatocytes. The adult
human bile acid pool consists of approximately 40% cholic
acid (CA), 40% chenodeoxycholic acid (CDCA), 20%
secondary bile acid deoxycholic acid (DCA), and trace
amounts of lithocholic acid (LCA) (5). There are two main
pathways responsible for bile acid synthesis (Figure 1). In the
neutral or classic bile acid pathway, the rate-limiting cytochrome
P450 enzyme cholesterol 7a-hydroxycholesterol (CYP7A1)
initiates the conversion of cholesterol to the primary bile acids,
CA and CDCA. The intermediate product 7a-hydroxy-4-
cholestene-3-one (C4) is the common precursor for these two
bile acids. The microsomal CYP enzyme, sterol 12a-hydroxylase
(CYP8B1), is required for synthesis of CA.

In the acidic or alternative pathway, cholesterol 27-
hydroxylase (CYP27A1), a mitochondrial P450 enzyme,
catalyzes the first reaction that leads to the final production of
CDCA (6). The acidic pathway contributes to less than 10% of
the total bile acid production in humans (7). Of note, the acidic
pathway has been found to be more important in those with liver
disease and in neonates (8, 9).

Bile Acid Conjugation
The primary bile acids, CA and CDCA, are conjugated with the
amino acids glycine and taurine in a 3:1 ratio, depending on the
availability of dietary taurine and animal species (e.g., in mice
most bile acids are taurine-conjugated) (10, 11). Conjugation
serves to increase the solubility of the bile acids and enables their
transport via bile acid transporters on hepatocytes into the bile
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canalicular system and subsequently into the gallbladder. It also
limits their passive reabsorption as they pass down the biliary
system. After a meal, the secretion of cholecystokinin induces
gallbladder contraction, which releases its contents into the
gastrointestinal tract (5). Greater than 70% of the stored bile is
expelled into the proximal small intestine.

Enterohepatic Circulation
Aminority of secreted bile acids are passively reabsorbed from the
proximal small intestine. The majority of bile acids secreted into
the intestines each cycle are reabsorbed in the ileum by active
transport back into the portal system and circulated back to the
liver. Transporters on the apical membrane of ileal enterocytes and
on the sinusoidal membrane of the hepatocyte are highly efficient
in this process, with recovery of about 95% of luminal bile acids (1,
11, 12). The 5% lost in feces are replenished by de novo hepatic bile
acid synthesis (13). This synthesis of bile acids is self-regulated by
negative feedback by bile acids returning to the liver (14). This bile
acid pool of approximately 4 to 5 g is recycled 6 to 10 times per day
through the coordinated action of several bile acid transporters,
the expression of which are controlled at the transcriptional level
(Figure 2). The flow of bile also facilitates hepatobiliary secretion
of metabolites and xenobiotics (15).

Bile Acid Transformation
The small percentage of primary bile acids that reach the colon
undergo significant structural modifications by intestinal
bacteria, leading to the formation of secondary bile acids,
deoxycholic acid (DCA) and lithocholic acid (LCA), derived
from CA and CDCA respectively. LCA is highly hepatotoxic and
is mostly excreted into feces, whereas DCA circulates with the
primary bile acids (16).
FIGURE 1 | The classic and alternative bile synthetic pathways. CYP7A1, cholesterol 7a-hydroxylase, is the rate limiting enzyme in the classic (neutral) pathway.
HSD3B7, 3 beta-hydroxysteroid dehydrogenase type 7, creates the common precursor, 7a-hydroxy-4-cholesten-3-one (C4), for both primary bile acids. CYP8B1,
sterol 12-alpha-hydroxylase, initiates the pathway toward the formation of cholic acid. In the acidic pathway, CYP27A1, sterol 27-hydroxylase, catalyzes the first step
toward the formation of chenodeoxycholic acid. The primary bile acids are conjugated to the amino acids, glycine and taurine, prior to excretion into the biliary system.
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Bacterial deconjugation creates unconjugated mono- or
dihydroxy bile acids, which can be passively absorbed through
colonic epithelium and recycled back to the liver. The enzymes
that catalyze these transformations are found in bacterial
organisms such as Bacteroidetes, Clostridium species,
Bifidobacteriaceae, and Enterococcus (7, 16). Gut bacteria are
thought to benefit from bile metabolism through acquisition of
glycine and taurine, which can be used as an energy source in
metabolism (17, 18). Alterations in intestinal microbiota can
therefore have effects on bile acid pool size and composition,
relevant to multiple chronic disease states (19–21). The same is
true in reverse as changes in intra-luminal bile acid pool can
impact the composition of the gut microbiome.
THE ROLE OF BILE ACIDS AS
METABOLIC REGULATORS

Bile acids are now well recognized as ligands for multiple nuclear
receptors, including the farnesoid X receptor (FXR), the vitamin
D receptor (VDR), the pregnane X receptor (PXR), constitutive
androstane receptor (CAR), and the G protein coupled receptor
Takeda G protein receptor 5 (TGR5) (1). Activation of these
receptors leads to regulation of genes integral to metabolic
processes throughout the body including in the brain, intestine,
liver, brown adipose tissue, and macrophages (Table 1). FXR has
been implicated in the regulation of enterohepatic circulation,
glucose, lipid, and energy metabolism, and tumorigenesis
through its downstream effector, FGF 15/19 (mouse and
human orthologues).
TABLE 1 | Bile acid receptors and physiological functions.

Receptor Representative
Ligands

Cytogenetic
location

Tissue/Cell Expression Functions

FXR
(NR1H4)

CDCA>DCA>LCA>CA;
INT-747, GW4064,
fexaramine, PX-102

12q23.1 Liver, intestine, kidney, adrenal gland • Bile acid metabolism (22–28)
• Glucose metabolism (29)
• Lipid metabolism (29)
• Liver regeneration (30)
• Anti-inflammatory (31)

VDR (NR1I1) LCA; vitamin D;
LY2108491

12q13.11 Liver, intestine, gallbladder, bone, kidney, parathyroid, skin, bone
marrow

• Bile acid synthesis (32)
• Xenobiotic detoxification (33)
• Calcium homeostasis (34)
• Antimicrobial defense (35)

PXR (NR1I2) LCA, DCA, CA;
progesterone; rifampicin

3q13.33 Liver, intestine, immune cells • Bile acid synthesis (36)
• Glucose metabolism (37)
• Lipid metabolism (37, 38)
• Drug metabolism (37)
• Anti-inflammatory (37, 39)

CAR (NR1I3) CA, 6-keto-LCA,
12-keto
LCA; phenobarbital

1q23.3 Liver, intestine, kidney • Xenobiotic detoxification
(40, 41)

• Glucose metabolism (42, 43)
• Lipid metabolism (43)

TGR5 LCA>DCA>CDCA>CA;
INT-767; oleanolic acid

2q35 Liver, intestine, gallbladder, muscle, brown adipose, brain • Glucose homeostasis (44)
• Intestinal motility (45)
• Gallbladder relaxation (46)
• Energy metabolism (47)
• Anti-inflammatory (48)
January 2
FIGURE 2 | Enterohepatic circulation of bile acids. Secreted bile acids are
passively absorbed (minimally) in the proximal intestine and actively transported
(majority) in the ileum. This allows for recovery of 95% of secreted bile acids
back to the liver. Figure created on biorender.com.
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Regulation of Enterohepatic Circulation
The enterohepatic circulation of bile acids serves to control bile
acid synthesis through a negative feedback mechanism by
activation of FXR in the intestine and liver. In the ileum, bile
acids are transported across the apical membrane via the apical
sodium dependent bile acid transporter (ASBT). They bind to
FXR and induce expression of the gene encoding FGF 15/19.
FGF 15/19 is then secreted through the circulation to the liver
where it binds to the FGF receptor (FGFR) 4 and its co-receptor,
b-Klotho, on the hepatocyte cell membrane. Through
subsequent activation of both extracellular signal-regulated
kinase (ERK) and Jun N-terminal kinase (JNK) pathways,
CYP7A1 transcription is downregulated. In the liver, activation
of FXR induces expression of SHP (encodes short heterodimeric
partner, SHP) which inhibits CYP8B1 transcription and to a
lesser degree CYP7A1 (22) (Figure 3). Rats fed with bile acids
showed strongly reduced activity of CYP7A1 and bile acid
synthesis, whereas interruption of the enterohepatic circulation
with use of bile acid binding resins (e.g. cholestyramine)
increased the activity of CYP7A1 (49). A study in mice
deficient in ileal apical sodium-dependent bile acid transporter
(ASBT, SLC10A2) showed reduced intestine Fgf15 expression,
higher hepatic Cyp7A1 expression and resistance to
atherosclerosis development (50). Additionally, mice lacking
the intestinal basolateral bile acid transporter, organic solute
transporter a and b (OSTa-OSTb, SLC51A-SLC51B), exhibited
reduced bile acid pool size with a decrease in hepatic bile acid
synthesis resulting from intracellular bile acid retention and
increased Fgf15 expression (51).
Frontiers in Endocrinology | www.frontiersin.org 4
In addition to inhibition of bile acid synthesis, FXR activation
also regulates bile acid transport. FXR inhibits hepatic bile acid
uptake and ileal bile acid uptake through decreased production
of the sodium-dependent transporter, Na+-taurocholate
cotransporting polypeptide (NTCP, SLC10A1), and ASBT,
respectively. This is mediated through induction of SHP which
inhibits the retinoic acid and retinoid X receptor (RAR/RXR)
heterodimer on the gene promoter (23, 24). FXR+/+ mice fed a
1% cholic acid diet show a marked reduction of NTCP RNA
levels. FXR-/- mice fed the same diet show no change in NTCP or
bile acid import (25). In contrast, FXR activation upregulates the
bile salt export pump (BSEP, ABCB11) on the apical membrane
of hepatocytes and OSTa-OSTb transporter on the apical
membrane of enterocytes. FXR forms a heterodimer with
retinoid X receptor (RXR) which binds to an inverted repeat
(IR)-1 element on the gene promoter for BSEP or OSTa-OSTb
to induce the transporter production in a positive feed forward
manner (26). This mechanism has been demonstrated by the
induction of ABCB11mRNA and protein in mice fed a large dose
of bile acid. FXR-deficient mice have low levels of BSEP that do
not change after being fed a bile-acid enriched diet (25).
Similarly, elevated SLC51A-SLC51B mRNA levels were seen
after wild-type mice were administered a synthetic FXR
agonist, but this response was decreased in FXR-null mice
(27). Lastly, the production of cytosolic intestinal bile acid
binding protein (fatty acid binding protein 6, FABP6) is
upregulated by bile acids through activation of nuclear FXR
allowing increased transport of bile acids through the
enterocyte (28).

It is evident that FXR and FGF 15/19 have essential roles in
the enterohepatic circulation of bile acids. Dysregulation of FXR
target genes not only impairs enterohepatic circulation, but also
results in cholestatic disease.

Glucose Metabolism
Many studies have implicated the FXR-FGF19 signaling axis in
regulation of hepatic glucose metabolism. FGF15/19 acts as a
post-prandial hormone that enhances glycogen synthesis and
inhibits gluconeogenesis independent of insulin. In humans,
serum FGF19 concentrations peak 2 to 3 hours following a
meal, with a half-life of 30 minutes (52, 53). Glycogen synthesis is
mediated through activation of ERK pathway with increased
phosphorylation of glycogen synthase kinase (GSK) 3a and
GSK3b leading to decreased inhibition of glycogen synthase.
FGF15 deficient mice have impaired glucose uptake and
decreased hepatic glycogen compared to wild-type mice.
Administration of FGF19 reverses these effects. Inhibition of
gluconeogenesis occurs through inactivation of cMAP response
element-binding protein (CREB) (Figure 4). Both processes were
shown to occur independently of insulin (54). However, insulin
does increase hepatic FGFR4, indicating a priming of FGF19
action (55).

Previous research has shown that FGF19 administered to
cerebral ventricles results in decreased food intake, lower glucose
levels and improved insulin sensitivity in mice fed a high fat diet
(56, 57) indicating a potential link between diabetes and FGF19.
However, the data in humans has been inconsistent (58–60). The
FIGURE 3 | Regulation of bile acid homeostasis by FXR (farnesoid X receptor)
and FGF15 (fibroblast growth factor 15). ASBT, apical sodium dependent bile
acid transporter; BSEP, bile salt export pump; FGFR4, FGF receptor 4;
FABP6, fatty acid binding protein 6; NTCP, Na+-taurocholate cotransporting
polypeptide; OSTa-OSTb, organic solute transporter a and b; SHP, short
heterodimeric partner. Figure created on biorender.com.
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most suggestive evidence was noted in diabetic patients who have
remission of diabetes after Roux-en-Y gastric bypass surgery.
Pre-operatively, those with diabetes had lower FGF19 and bile
acid levels than nondiabetic patients. Post-operatively, levels of
FGF19 and bile acids rose higher in diabetic patients than
nondiabetic patients (61).

Lipid Metabolism
In addition to its role in carbohydrate storage, FGF19 also has long-
term effects on hepatic lipid metabolism. FGF19 inhibits the
synthesis of the transcription factor sterol regulatory element
binding protein-1c (SREBP-1c), which activates the transcription
of genes necessary for fatty acid synthesis. In addition, FGF19
increases expression of SHP which also acts to inhibit lipogenic
enzyme synthesis (62) (Figure 4). Administration of FGF19 to
FXR-null mice prevented hepatic fat deposition and decreased liver
enzyme levels (63). Clinically, pediatric patients with non-alcoholic
fatty liver disease (NAFLD) have demonstrated decreased FGF19
levels (64, 65). FGF19 levels were shown to be inversely associated
with development of steatohepatitis and fibrosis (64). Lastly, adults
with NAFLD and insulin resistance show an impaired response to
FGF19 compared to those with NAFLD and without insulin
resistance (66). This impairment may further contribute to the
dysregulation of lipid homeostasis in NAFLD.

Given the findings of these studies, there are emerging medical
therapies for treatment of nonalcoholic steatohepatitis (NASH)
that include agonists of FXR and FGF19 analogs. Of those in
clinical trials, obeticholic acid (OCA), a FXR agonist, has been
shown to improve fibrosis and prevent progression of fibrotic
disease (67). An engineered FGF19 analog, NGM282, produced a
significant reduction in liver fat content (>30%) in patients with
NASH. Liver fat content normalized in up to 39% of patients (68).
Frontiers in Endocrinology | www.frontiersin.org 5
Energy Metabolism
By regulating both glucose and lipid metabolism, FGF19 plays a
central role in energy balance. Several studies have observed that
plasma FGF19 levels are significantly lower in obese patients
compared to nonobese controls (69–71). A study of transgenic
mice overexpressing FGF19 demonstrated increased energy
expenditure with reduction in fat mass (72). When fed a high-
fat diet, the transgenic mice did not become obese or diabetic. This
is thought to be due to higher oxygen consumption, increased
insulin sensitivity, and increase in brown adipose tissue activity.
The same group later reported that administration of FGF19 to
obese mice resulted in increased metabolic rate, decreased
respiratory quotient, and prevention or reversal of diabetes (73).

These metabolic observations suggest that FGF19 may be a
potential candidate for treatment of obesity. Modified forms of
FGF19 have been created that have been effective in reducing body
weight, plasma glucose and triglyceride levels in diet induced obesity
(74). These variants were successful in uncoupling the metabolic
effects of FGF19 from its effects on hepatocyte proliferation.

Hepatocyte Growth and Proliferation
The FGF15/19-FGFR4 signaling pathway has been implicated
in the initiation and progression of several cancers including
lung, breast, colorectal, and hepatocellular carcinoma (HCC).
The initial evidence of FGF19’s role in hepatocyte growth came
from observations in FGF19 transgenic mice who developed
hepatocellular carcinomas by 12 months of age. Administration
of FGF19 led to increases in hepatocellular proliferation which
preceded tumor development (75). Tumor formation in these
mice was subsequently prevented by monoclonal antibodies that
selectively blocked the interaction of FGF19 with FGFR4 (76) or
by deficiency in FGFR4 (77). In humans, FGF19 and FGFR4 are
FIGURE 4 | Signaling pathways of FGF19 and MALRD1. AKT, serine/threonine protein kinase B; CREB, cMAP response element-binding protein; ERK, extracellular
signal-regulated kinase; GSK3, glycogen synthase kinase; JAK, Janus kinase; JNK, Jun N-terminal kinase; PI3K, phosphoinositide 3-kinase; STAT3, signal transducer
and activator of transcription 3; SREBP-1c, sterol regulatory element binding protein-1c.
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both overexpressed in HCC compared to noncancerous liver
tissue (76). FGF19 is an independent negative prognostic factor
for survival (78). The mechanism underlying this process is the
dysregulation of RAS-RAF-ERK1/12MAPK, PI3K-AKT, and
STAT3 pathways leading to decreased apoptosis and increased
cell growth and proliferation (79–81) (Figure 4). Furthermore,
FGF19 facilitates resistance to apoptosis (82) and promotes
metastasis (83) through GSK3b activation. Therapies aimed at
inhibiting FGF19 and FGFR4 are in various phases of
development, including clinical trials for several malignancies
including HCC (84). Side effects of these therapies often include
increased bile acid synthesis, change in bile acid transporter
expression, and enhanced enterohepatic circulation.
MALRD1, A REGULATOR OF BILE ACID
SIGNALING

The many roles of FGF15/19, as detailed above, in metabolism
has spurred interest in potential regulators of its activity. In the
last decade, one intestinal protein, MALRD1, has been identified
that influences the production of FGF15/19 in enterocytes.

The locus was initially identified after an observation that a
mouse sub-strain, C57BL/6ByJ (B6By), was resistant to diet-
induced hypercholesterolemia and atherosclerosis seen in
another closely related common strain, C57BL/6J (B6J) (85).
There were however no differences noted in food consumption
and cholesterol absorption. The B6By mice showed increased
bile acid excretion and an enlarged bile acid pool with elevated
expression of several genes involved in bile acid synthesis and
transport, including Cyp7a1 (86). It was established that serum
bile acid levels co-segregate with cholesterol levels, indicating
that the same locus was responsible for both phenotypes.
Through genetic mapping and sequencing, the gene was
identified on mouse chromosome 2 and named Diet1.

Diet1 encodes a 236 kDa protein that contains nine copies of the
MAM (meprin-A5-tyrosine phosphatase m) domain which are
interspersed with nine copies of the low-density lipoprotein
receptor (LDLR) class A domain. The official gene name was since
been changed to MAM and LDL Receptor Class A Domain
containing 1 (MALRD1 human, Malrd1 mice). The amino acid
sequence of MALRD1 is highly conserved between mouse and
human at 70% identity, as well as other species including zebrafish,
chicken, frog, and rat. MALRD1 is expressed mainly in the small
intestine and in lower levels at the kidney cortex.Within the intestine,
MALRD1 expression was localized to the epithelial cell layer (87).

The Effects of MALRD1 on FGF 15/19
In the seminal paper on MALRD1, deficiency of this protein was
shown to reduce ileal Fgf15mRNA and protein levels. B6By mice
with rescued Malrd1 expression had increased Fgf15 mRNA and
protein secretion by approximately 3-fold and reduced Cyp7a1
mRNA levels (87). A similar effect in FGF15 protein secretion
was seen with overexpression and knockdown of Malrd1 in
cultured intestinal cells. In contrast, Fgf15 mRNA levels were
minimally affected by either overexpression or knockdown of
Malrd1. MALRD1 was shown to interact and co-localize with
Frontiers in Endocrinology | www.frontiersin.org 6
FGF19 within an intracellular compartment (87). Taken
together, these data suggest that MALRD1 influences FGF15/
19 levels at both the mRNA and post-transcriptional levels.

Association With Disease
A recent study of Malrd1 deficient mice found that these mice
not only had elevated bile acids and reduced FGF15 levels, but
also reduced gastrointestinal transit and increased intestinal
luminal water content (88). This is similar to the phenotype
seen in patients with bile acid diarrhea (BAD), in which
increased luminal bile acid levels induce water secretion and
accelerate colonic transit. Thus far, there has been no reported
association of MALRD1 with clinical disease though many
MALRD1 variants have been found. One variant is noted to be
more common in individuals with BAD and is associated with
decreased levels of FGF19 secretion (3, 88).

A genetic analysis of patients with hepatocellular carcinoma
found MALRD1 (DIET1) to be a co-expressing protein coding
gene (PCG) for a long non-coding RNA sequence associated
with hepatocellular carcinoma. Although the study did not show
any diagnostic or prognostic value to MALRD1 expression, it is
interesting to note this association due to the role of FGF19 in
hepatocellular growth and proliferation (89). Further studies will
need to be undertaken to elucidate the relationship between
MALRD1 and the pathogenesis of this disease.

The extensive role of FGF19 in metabolic processes of lipid
metabolism and glucose metabolism provides an intriguing
potential of MALRD1 in the regulation of these processes as
well. Studies are currently in place to explore the influence of
MALRD1 in progression to NAFLD. The absence of MALRD1
can be theorized to result in increased hepatic steatosis and
fibrosis due to its effects on the reduction of FGF19 levels.

A recent study examining the genetic risk factors for development
of diabetic retinopathy revealed a single nucleotide polymorphism
(SNP), rs12267418, located within the MALRD1 gene to be
associated with severe disease in Caucasians (90). Another study in
a Chinese diabetic population also found 2 SNPs within the
MALRD1 gene, although an association was not found. This
intriguing finding raises the question of whether ethnic differences
or epigenetic effects may be responsible for the differing results (91).

Additionally, the role of MALRD1 in intestinal cellular
proliferation and growth is being examined. Previously,
administration of CDCA has been shown to induce FGF19,
GLP-1, and GLP-2 levels along with increased intestinal mucosal
growth via the FXR and TGR5 pathways. Further studies are being
undertaken to elucidate the potential effects of MALRD1 on the
TGR5 pathway.
CONCLUSION

Research in the last few decades has revealed an important role
for bile acids in the regulation of metabolic processes in the body.
Maintenance of bile acid homeostasis is critical for prevention of
metabolic disorders ranging from cholestasis to diabetes. The
identification of components of bile acid signaling pathways has
led to a deeper understanding of the regulatory mechanisms
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involved and provides a molecular basis for developing therapies
for treatment of metabolic diseases. The newly discovered
intestinal protein, MALRD1, offers another potential target for
future research.
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