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Abstract

Cell motility is critical to biological processes from wound healing to cancer metastasis to

embryonic development. The involvement of organelles in cell motility is well established,

but the role of organelle positional reorganization in cell motility remains poorly understood.

Here we present an automated image analysis technique for tracking the shape and motion

of Golgi bodies and cell nuclei. We quantify the relationship between nuclear orientation and

the orientation of the Golgi body relative to the nucleus before, during, and after exposure of

mouse fibroblasts to a controlled change in cell substrate topography, from flat to wrinkles,

designed to trigger polarized motility. We find that the cells alter their mean nuclei orienta-

tion, in terms of the nuclear major axis, to increasingly align with the wrinkle direction once

the wrinkles form on the substrate surface. This change in alignment occurs within 8 hours

of completion of the topographical transition. In contrast, the position of the Golgi body rela-

tive to the nucleus remains aligned with the pre-programmed wrinkle direction, regardless of

whether it has been fully established. These findings indicate that intracellular positioning of

the Golgi body precedes nuclear reorientation during mouse fibroblast directed migration on

patterned substrates. We further show that both processes are Rho-associated kinase

(ROCK) mediated as they are abolished by pharmacologic ROCK inhibition whereas mouse

fibroblast motility is unaffected. The automated image analysis technique introduced could

be broadly employed in the study of polarization and other cellular processes in diverse cell

types and micro-environments. In addition, having found that the nuclei Golgi vector may be

a more sensitive indicator of substrate features than the nuclei orientation, we anticipate the

nuclei Golgi vector to be a useful metric for researchers studying the dynamics of cell polar-

ity in response to different micro-environments.
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Introduction

The organization and reorganization of intracellular structures and organelles is key to the

complex biological processes of both cell motility and collective cell behaviors at the tissue

scale. For example, fixed slide images of stained nuclei and microtubule-organizing centers

(MTOCs) have implicated these organelles in fibroblast wound-edge polarization and cell-cell

contact polarity [1]. Indeed, during the process of polarization and directed motility, both the

MTOC and Golgi become positioned towards the wound edge while the nucleus becomes

positioned away from the leading edge, with coordination of these events dependent on the

small RhoGTPase Cdc42 [1–4]. The repositioning of the Golgi apparatus contributes to polar-

ized cell migration by facilitating the efficient transfer of Golgi-derived vesicles, via microtu-

bules, to the cells leading edge [5, 6]. These vesicles provide the membrane and associated

proteins necessary for directed lamellipodial protrusion [7]. Importantly, the timing of Golgi

repositioning in relation to changes in overall cell morphology and intracellular signaling

remain poorly understood.

Despite the recognized involvement of organelles in cell motility, the role of organelle posi-

tional reorganization in cell motility is not entirely clear, in part due to limitations of existing

experimental approaches. In particular, the existence of simultaneous biochemical and bio-

mechanical signaling has complicated in vivo efforts to understand the forces regulating intra-

cellular reorganization, individual cell motility, and collective cell behaviors [8]. This coupling

can be especially challenging to unravel for processes in which extracellular signals evolve over

long timescales (e.g., hours to days). The spatial organization and reorganization of intracellu-

lar structures and organelles that gives rise to polarized motility in structured environments is

such a process.

To better understand the complex relationship between organelles and cell motility, we

recently developed software to track thousands of cell nuclei over long time periods (24 h) [9]

and applied it to the study of cells on programmable shape memory polymer (SMP) substrates.

SMP substrates and scaffolds have emerged as experimental platforms that can help isolate the

relationship between biomechanical changes in the microenvironment and cellular responses

(e.g., cell alignment or motility). SMPs can be fabricated in an initial shape and then temporar-

ily “fixed” in a secondary shape that can be triggered via stimuli such as heat, hydration, or

electrical current to change shape back to the initial shape [10], thereby dynamically altering,

with a controlled timescale, the extracellular environment of cells cultured thereon. We [11–

14] and others [15–20] have demonstrated that SMP-actuated changes induce cytoskeletal and

nuclear reorganization of cells to realign to changes in 2D topographies and 3D structures.

We have previously applied the computational cell-tracking system to characterize on-com-

mand on/off switching of polarized motility responses to changes in SMP scaffold architecture.

The biomechanical signaling provided by the SMP allowed study of polarization and motility,

as might occur during a process such as wound-edge polarization or cell-cell contact polarity,

without the confounding simultaneous biochemical signaling that generally exists in vivo. That

work demonstrated a clear correlation between nuclear alignment, cell body alignment, and

directional motility in dynamically changing environments [21]. While the work investigated

the cellular response before and after a biomechanical change in a 3D environment, it did not

explore how intracellular reorganization or cell motility responses varied during the dynamic

change in the extracellular environment. Additionally, other organelles likely to provide criti-

cal insight into polarized motility, particularly the Golgi body, were not studied. Monitoring

the position of both the nucleus and other organelles that rearrange during directed migration

may provide greatly improved understanding and experimental metrics for determining and

quantifying cell orientation.

Nuclear and Golgi-nuclear orientation are differentially responsive indicators of motility
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To improve understanding of how organization and reorganization of intracellular organ-

elles regulate cell motility, the goal of the present study was to examine the temporal evolution

of mouse fibroblast polarization through monitoring the position and shape of the nucleus

and Golgi body in response to changes in substrate topography. To achieve this goal, a novel

tracking process was developed to identify and track Golgi bodies and link them positionally

with their respective cell nuclei. This process was combined with our established approach for

tracking cell nuclei [9] to study mouse fibroblast motility on SMP substrates as they transi-

tioned from a flat surface to an aligned nanowrinkled topography.

Materials and methods

Substrate preparation

Poly(tert-butyl acrylate-co-butyl acrylate) (tBA:BA) SMP films were prepared as previously

reported [12]. 95:5 wt% tBA:BA films were fabricated using 5 wt% tetraethylene glycol di-

methacrylate as crosslinker and 0.06 wt% 2,2-dimethoxy-2-phenylacetophenone as a photoini-

tiator. Samples were cured for 30 mins under UV light, followed by extraction in a 1:1 solution

of methanol and distilled water overnight. Samples were then dried for at least 2 days in a 40˚C

vacuum oven prior to sample processing. SMP films were processed in one of three ways: 1) as

static, flat controls (hereafter referred to as non-wrinkled, NW), 2) as static, wrinkled controls

(hereafter referred to as wrinkled, W), or 3) as the active wrinkling experimental group (here-

after referred to as active, A). Static non-wrinkled samples were cut into 6x6 mm squares and

heated to 80˚C on a hotplate to ensure no surface flaws were present. Static wrinkled and active

wrinkling films were strained 7% in tension in an 80˚C isothermal oven for 10 minutes and

subsequently cooled at -4˚C for 5 mins to fix in the strain. Wrinkled and active groups were

cut into 6x6 mm squares using a hammer and razorblade in order to avoid premature recovery

of the samples due to the heating that can accompany alternative methods of cutting. All three

sample groups were then sputter coated with gold for a total of 100 secs, resulting in an

approximately 33 nm thick coating on the material surface. Wrinkled samples were recovered

for 2 hrs at 60˚C in an isothermal oven, resulting in a nanotopographic pattern with features

on the order of 400 nm in amplitude and 1–5 um in wavelength [12]. All sample groups were

then UV sterilized for one hour on each side in a biological safety cabinet (ThermoFisher,

1300 Series A2) for subsequent cell culture.

Fibroblast cell culture, golgi infection, and time-lapse imaging

C3H10T1/2 mouse fibroblast cells (ATCC) were cultured in Basal Medium Eagle (BME) com-

plete growth medium supplemented with 10% fetal bovine serum (FBS) (v/v), 1% penicillin/

streptomycin (v/v), and 1% GlutaMax (v/v). Cells were expanded in a 37˚C humidified incuba-

tor with regulated 5% CO2 and passaged at 80% confluence using 0.25% Trypsin EDTA. For

time-lapse experiments, cells were restricted to passage numbers 12–18.

To enable visualization and tracking of the Golgi, cells were infected with a biological

marker of the Golgi cisternae. Briefly, cells were passaged using 0.25% Trypsin EDTA and

plated at 50,000 cells/well in 1 mL of media (per well) in a 6-well plate. Cells were then infected

with an average of ~30 particles per cell of CellLight Golgi-RFP, BacMam 2.0 (ThermoFisher

Scientific). 1 μL of Bacmam Enhancer (ThermoFisher Scientific) was added per well to

improve infection efficiency to ~70%. Infected cells were then cultured for 24 hrs in a 37˚C

humidified incubator with 5% CO2 to ensure cell uptake of the viral particles.

Prior to cell seeding, SMP samples were soaked in room temperature BME medium for 6

hrs to promote FBS protein adsorption to the material surface. RFP infected cells were then

passaged using 0.25% Trypsin EDTA warmed to 30˚C. Each sample was transferred into an

Nuclear and Golgi-nuclear orientation are differentially responsive indicators of motility
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individual well in a 48-well plate and cells were solution seeded (500 μL/well) at a density of

4000 cells/cm2. Cell samples were then incubated at 30˚C for 16 hrs to establish a relative equi-

librium of cell motility prior to time-lapse image set-up. Hoechst dye was added to fresh BME

complete medium at a concentration of 0.01 ug/ml as previously described [9].

To investigate the underlying signaling mechanisms, we studied the extent to which Rho

signaling affects the response of cells to static and dynamic topographies by inhibiting Rho

kinase (ROCK) activity through the addition of 10 μM Y-27632 ROCK inhibitor (Calbiochem)

[22].

To stain the nuclei and image the cells, 800 uL of the staining or staining/ROCK solution

were added to each well of a 4-well LabTek borosilicate chamber slide (Fisher Scientific). Static

wrinkled, static non-wrinkled, and active wrinkling samples were transferred into the chamber

slide and incubated at 30˚C for 1 hr. Samples were then inverted and weighed down with ster-

ilized glass slide inserts, cut to fit into the chamber wells. The chamber slide was then trans-

ferred to a live-cell stage incubator (INC-2000, 20/20 Technology, Inc.) and cells were imaged

using a Leica DMI 6000B inverted fluorescence microscope. The live-cell stage incubator was

equilibrated at 30˚C with constant 5% CO2. One image per position of interest was captured

every five minutes in each of phase, A4 (excitation/emission peak of 360/470 nm), and N3

(excitation/emission peak of 546/600 nm) using 50 ms, 100 ms, and 50 ms exposure times

respectively on an Andor Luca R camera with a 10x/0.63 NA objective. Samples were imaged

in succession for 4 hrs at 30˚C, followed by 20 hrs at 37˚C. Video was captured at a minimum

of three positions on each substrate, replicated at least three times for each substrate type. The

shape-memory polymer properties of the specific synthetic batches chosen for the active group

were such that active group substrates showed very slow recovery during the 4 hrs at 30˚C,

resulting in slow appearance of substrate anisotropy and topography during that period, fol-

lowed by more rapid and pronounced topographic shape change upon heating to 37˚C, with

completion of formation of the nano-wrinkled topography during the subsequent isothermal

culture.

Dual nuclear and golgi tracking

To generate the polarization data (Fig 1), live-cell time-lapse motility videos were characterized

using a combination approach of ACTIVE nuclear tracking [9] and the new Golgi body track-

ing code. This Golgi body tracking software (see Supporting Information for details) was used

to correlate Golgi body motion to nuclear directional behaviors in order to track cell polariza-

tion over time as the cells were exposed to both the initial gradual change in topography and

the subsequent more rapid change. We identified cell nuclei before and after the wrinkling

activation (Fig 1A and 1B) and also tracked Golgi bodies to construct another metric for orien-

tation, the vector that connects the center of mass of the nucleus to the Golgi (Fig 1C and 1D),

with corresponding polar histograms used to report the aggregate data.

To track and quantify orientation for a large number of nuclei across many samples, we

used ACTIVE, an accurate, robust cell tracking algorithm developed for analyzing migratory

behaviors of adherent cells stained, infected, or transfected with a nuclear marker that has suc-

cessfully been used to analyze C3H10T1/2 mouse fibroblast [9, 21], HT-1080 human fibrosar-

coma [21], and Escherichia coli [23, 24] migratory behaviors. The accuracy of ACTIVE when

compared to manual tracking has been reported previously [9]. ACTIVE was applied here as

previously described [9].

Although ACTIVE was very successful at tracking cell nuclei, it relied heavily on their ellip-

soidal shape. In contrast, the Golgi body varies substantially in density and can have a very

irregular shape. To overcome this challenge, we used a hard-cutoff threshold to remove

Nuclear and Golgi-nuclear orientation are differentially responsive indicators of motility
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background noise and the clusterData MATLAB function [25] to roughly group pixels. We

developed an additional algorithm to combine (associate) cluster fragments into the correct

parent Golgi bodies, using a single input “distance” parameter that identifies a rough estimate

of the average expected distance between Golgi bodies, determined by the seeding density,

transfection efficiency, and micron-to-pixel ratio. Golgi bodies across frames were linked

using an established method [26] and successfully tracked nuclei and Golgi bodies were then

linked together to create a master identification list.

Cell speed

Cell speed was calculated from changes in nuclei center-of-mass frame-to-frame. This posi-

tional data was obtained from the ellipses fit by the ACTIVE tracking package. The ACTIVE

software contains a "memory" parameter, which represents the number of frames the linking

code will allow between positions for a nucleus to retain the same identification number.

ACTIVE utilizes the feature controlled by this parameter, which is standard in many particle

tracking algorithms [26, 27], to more accurately track cells over time. More specifically, since

cells (and organelles in this particular case) display variability in fluorescent signal intensity

over time, every cell or organelle will not necessarily be identified in every video frame. Simi-

larly, as cells interact with one another, the algorithm may identify two interacting cells as a

single cell. The memory parameter allows the ACTIVE system to retain information on cells

that may be absent for one or more frames. This feature was optimized for the original

ACTIVE tracking study via a comparison to manual tracking data [9] to allow for cells to “dis-

appear” for a maximum of 10 frames prior to being assigned a new ID for tracking upon reap-

pearing. Since the imaging conditions for fluorescently labeled nuclei were very similar

between this study and reference [9], we retained the memory parameter of 10 for this study.

Visual inspection comparing image stacks and tracked trajectories confirmed that this parame-

ter choice performed well for the data sets in this manuscript. This, in combination with a cost

function, allows cells to accurately be tracked over long timescales (�24 h) and in dense

Fig 1. Representative example of the process for dual nuclear and Golgi tracking. Image tracking. Images of nuclei

(blue) and Golgi bodies (green) are shown before (A,C) and after (B,D) activation, where the wrinkle direction is

vertical in all images shown. Nuclei were fit with ellipses (shown in red) before (A) and after (B) wrinkling, with

orientation defined as the ellipse major axis. In addition, we identified both the nucleus and Golgi body to determine

cell orientation before (C) and after (D) wrinkling, indicated by red arrows between a Golgi body and nucleus in the

same cell. Polar histograms in the bottom right show a similar mean and truncated standard deviation. Scale bar is

100 μm.

https://doi.org/10.1371/journal.pone.0211408.g001
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environments (1000+ cells per field of view). Due to this feature, gaps in positional data as a

function of time may occur. Since the speed represents a change in position, we filled these

gaps by assuming that, while a nucleus was missing, it was travelling in a straight line between

the last known position before it disappeared and the first position after it reappeared. Given

the small number of frames for potential gaps, the distance interpolated was negligible and

allowed us to smoothly calculate the speed with these filled-in trajectories. We then examined

the absolute value of change in the x-direction to calculate the x-component of the velocity

and performed an analogous process for the y-direction. The x-axis was always rotated to cor-

relate with the wrinkle direction, where one existed. We combined these results to calculate

the speed at which the nuclei centers-of-mass were moving frame to frame and to ultimately

plot the mean squared displacement of cells over time.

Nuclear and nuclear-golgi truncated standard deviation

A focus and main contribution of the present work was in improving both the tools available

to study and the understanding of cell polarization responses by developing an approach for

analyzing and quantifying nuclei orientation and the nuclear-Golgi polarization vector formed

by pairing the nucleus and Golgi body orientation from the same cell over time. As previously

noted, the Golgi body orients toward the leading edge while the nucleus orients towards the

rear of the cell. Therefore, we can use the nuclei Golgi vector as a metric for internal cell polari-

zation that can be compared to nuclei orientation. We treated all of the directions as apolar (so

that angles of 0 and 180 degrees are equivalent), as we were primarily concerned about whether

the cells were aligning to the surface topography. To calculate the nuclear and nuclear-Golgi

orientation, we used the truncated standard deviation [28]. The truncated standard deviation

was chosen for this analysis, because, unlike the standard deviation, the truncated standard

deviation can quantify angular variability in both random and highly aligned systems, thereby

providing a metric that facilitates direct comparison across systems of varying alignment. All

angles were first wrapped between [1˚, 180˚]. Next the standard deviation, σ, of this distribu-

tion was calculated. From this, the truncated standard deviation was calculated:

st ¼
52

ð1þ 543 � s� 1:96Þ ð1Þ

A uniform random distribution of σt would generate an angular spread of 52˚, while perfect

alignment would result in an angular spread of 0˚. Therefore, smaller values indicate more

highly aligned cells. After calculating the angular spread, the distribution was shifted by one

degree and re-wrapped from [1˚, 180˚]. The mean of the distribution was then calculated and

the process was repeated until the reference angle reached 180˚. The mean distribution with the

smallest truncated standard deviation was identified as the mean orientation for the system.

Statistics

Kruskal-Wallis nonparametric testing with post-hoc Bonferroni corrections was used for sta-

tistical comparisons. A nonparametric design was chosen due to the potentially non-normal

distribution of cell data. Significance was determined at 95% and 99% p-values.

Radius of gyration

The radius of gyration, RG, quantifies the amount of space that a cell explores over time [29].

We constructed the full radius of gyration tensor and then compared the diagonal elements

Rxx and Ryy, which quantify cell exploration along the x and y directions, respectively. By

Nuclear and Golgi-nuclear orientation are differentially responsive indicators of motility
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averaging over all cell trajectories and taking a ratio of these two quantities, we generated a

metric for the anisotropy of cell trajectories. Values of Rxx/Ryy below unity indicate that cells

have traveled farther perpendicular to the x-axis, while values above unity indicate preferential

travel along the x-axis direction.

Velocity auto-correlation function (VACF)

We calculate the standard directional velocity auto-correlation function:

Cvv ¼< v! t0ð Þ v
! t0 þ dtð Þ >¼

v!ðt0Þ
j v!ðt0Þj

v!ðt0 þ dtÞ
j v!ðt0 þ dtÞj

;

where the velocities, v!ðtÞ, are the instantaneous displacements between two sequential frames

and the brackets indicate averaging over the ensemble and initial times t0.

Results and discussion

Shape memory polymer characterization

Optical micrographs of an active SMP substrate in its fixed, flat state pre-activation (Fig 2A)

and subsequently in its recovered, wrinkled topography post-activation (Fig 2B) confirmed the

intended change in topography in the active SMP substrate system.

Cell motility is directed along wrinkles in active and static wrinkled substrates

As we have previously observed [9], nuclear cell tracking by ACTIVE showed that cells on

non-wrinkled substrates have no preference in how they explore space (Fig 3D–3F), while cells

on both active (Fig 3G–3I) and wrinkled (Fig 3A–3C) substrates showed a strong preference to

travel along the direction of forming (in the case of active wrinkles) and established (in the

case of static wrinkles) wrinkle direction. We characterized cell trajectories (Fig 3) using two

simple metrics which identify a directional preference. First, we calculated the radius of gyra-

tion tensor and examined the ratio between the two components along (x-direction) and per-

pendicular (y-direction) to the wrinkle direction for wrinkled substrates, the direction of

wrinkle formation for active substrates, or a random direction for flat substrates (Fig 3J). This

Fig 2. Topographic change of the shape memory polymer substrates. Optical micrographs of an active wrinkling shape memory polymer substrate (A) before and (B)

after completion of formation of the nano-wrinkled topography employed to examine the temporal evolution of mouse fibroblast polarization. The direction of

programmed tensile strain in (A) is horizontal, and, thus, the direction of wrinkle formation in (B) is vertical, as indicated by the double-headed arrow. Scale bar is

50 μm.

https://doi.org/10.1371/journal.pone.0211408.g002
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ratio of Rxx/Ryy corresponds to how fast cells are exploring the direction parallel to the wrin-

kles relative to the perpendicular direction. We see that cells on non-wrinkled substrates have

a radius of gyration ratio close to 1, indicating no preference in how cells are exploring space

in those environments, as expected. In contrast, both active and wrinkled substrates show val-

ues significantly higher than 1, corresponding to a strong preference to travel along the wrinkle

direction. For cells on active substrates, the preference was even observed prior to thermal-

activation during which time the nanotopography had not yet been fully established in the

Fig 3. SMP trajectory statistics. (A-I) Mouse fibroblast cell trajectories with a normalized origin on wrinkled (W;

A-C), non-wrinkled (NW; D-F) and active (A; G-I) substrates for each time region. Trajectories have been rotated so

that the x-axis corresponds with the wrinkle direction. Cells on static non-wrinkled substrates explore space equally in

all directions, while cells on static wrinkled substrates show preferred motion along the wrinkle direction. (J) Ratio of

the components of the radius of gyration tensor along (R_xx) and perpendicular to (R_yy) the direction of wrinkles,

quantifying the degree of anisotropy in cell trajectories on non-wrinkled (blue), wrinkled (green) and active (red)

substrates. Cells on non-wrinkled substrates explore space equally in all directions, while cells on wrinkled and active

substrates prefer motion along substrate wrinkles. (K) The ratio of the x and y components of mouse fibroblast

velocities also quantifies the anisotropy of cell trajectories, averaged over all times. Cells on wrinkled and active

substrates have significantly higher speeds along wrinkles, while cells on non-wrinkled substrates have approximately

equal speeds in all directions. Single asterisks (�) indicate significance levels below 0.05, while double asterisks (��)

indicate levels below 0.01. There were approximately 103 cells per substrate type across 3 technical replicates and 3

biological replicates.

https://doi.org/10.1371/journal.pone.0211408.g003
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active group (Fig 2A). This indicates some measure of pattern sensing by mouse fibroblasts

before transition when the SMP appears to be flat, possibly due to strain sensing or nanowrin-

kle formation. The ratio of cell speed along and perpendicular to wrinkles (Fig 3K), displays

similar trends with regards to directional preference. Together, this indicates that cell motion

is directed along the wrinkle direction.

Second, we calculated the velocity auto-correlation function (VACF), which is a standard

metric for quantifying the persistence time for cell trajectories (Fig 4). The slope of these lines

on a semi-log plot provides a measure of the persistence time for the trajectories [30]. The per-

sistence time was approximately 4 hours and is nearly constant across substrate type. This indi-

cates that the presence of wrinkles does not change the inherent timescale for trajectory

persistence in these fibroblasts.

Internal cellular organization is also sensitive to active and static wrinkled

substrates

In order to better understand how cells sense and respond to nanotopographies, we measured

internal markers for cell polarization and correlated them with the cell motions measured

Fig 4. Mouse fibroblast velocity auto-correlation function. Velocity auto-correlation function (VACF) of control

(solid lines) and ROCK-inhibited (dotted lines) mouse fibroblast cells on non-wrinkled (NW), wrinkled (W), and

active (A) substrates. Given the proximity of each curve, we have excluded error bars in this figure so that more data

would be visible. Curves are cut off at a timescale of 10 hours, after which the signal to noise ratio is low enough that

results are unreliable. The black line shows a best-fit slope for all of the VACFs with an exponential decay of

approximately 4 hours, corresponding to the transition timescale between ballistic and diffusive motion for trajectories

in these systems. It is remarkable that even when the ROCK pathway is inhibited cells retain roughly the same

diffusion timescale, indicating that ROCK-inhibition is not directly interfering with persistent cell motion, but rather

the ability of cells to sense and align with wrinkles, quantified by the truncated standard deviation (TSD).

https://doi.org/10.1371/journal.pone.0211408.g004
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above. We first examined non-wrinkled and wrinkled static substrates (Fig 5). Using both the

nuclei and NGV metrics, it is apparent that cells have a preferred direction on static wrinkled

substrates (Fig 5A and 5C), with significantly closer alignment to the wrinkle direction at all

times when compared to the non-wrinkled case. The TSD shows significantly higher align-

ment on wrinkled substrates than on non-wrinkled substrates. For example, cells on non-

wrinkled substrates exhibit TSD values exceeding 50˚, while TSD values in a static wrinkled

system are under 40˚.

We next examined the active substrates to quantify the extent to which cells respond to a

changing substrate topography. We found that mouse fibroblasts on active substrates have mean

nuclei orientations very close to the wrinkle direction at all times, indicating some amount of

substrate-sensing during the gradual shape change that occurs before activation, confirmed by

polar histograms in Fig 1. Interestingly, we still see a decrease in the active substrate nuclei TSD

from values similar to a non-wrinkled substrate before activation to values similar to a wrinkled

substrate after the activation. This is reinforced by the polar histograms (Fig 1A and 1B). This

indicates that cells become more aligned with the wrinkle direction post-activation, as expected.

The TSD for nuclei orientation exponentially decays from values statistically similar to a non-

wrinkled substrate to values similar to a wrinkled substrate over a timescale of approximately 2

hours (Fig 5E). In contrast, the NGV metric shows a different trend. We see that directional

alignment of the NGV, measured using TSD, is statistically equivalent between active and wrin-

kled substrate at all times (Fig 5F). This indicates that the NGV is already strongly aligned with

the future wrinkle direction pre-activation, and, importantly, suggests that the NGV may be a

more sensitive indicator of substrate features than the nuclei orientation. In fact, the behavior of

the NGV mirrors the ratio of radius of gyration and velocity components (Fig 3J and 3K) respec-

tively, both of which indicate a pre-activation alignment on active substrates.

Inhibiting ROCK reduces the ability of cells to internally polarize on active

substrates

Following our characterization of cell orientation on active substrates, we inhibit ROCK activ-

ity to determine that both nuclei shape alignment and Golgi-nuclei organization are ROCK-

mediated.

We first observe that inhibiting ROCK does not change the persistence time for individual

cell motion (Fig 4). The dashed lines in Fig 4 shows the ensemble-averaged VACF of ROCK

inhibited trajectories, which have a similar persistence timescale (~4 hours) to that of uninhib-

ited cells on all substrates.

Next, to quantify directionality, we calculated the ratio of a cell’s velocity along the wrinkle

direction compared to perpendicular to that direction, on both active and wrinkled substrates,

as shown in Fig 6A. We see statistically similar ratios of velocity components in all cases, sug-

gesting that displacement of ROCK-inhibited cells is not less directed along the wrinkles.

We also compared the intracellular organization of uninhibited and ROCK-inhibited cells

on wrinkled and active substrates, including the mean nuclei orientation Fig 6B, and the NGV

truncated standard deviation Fig 6C. Both measures of internal structural directionality tell an

interesting story: on static wrinkled substrates there is no difference between uninhibited and

ROCK-inhibited cells, but ROCK-inhibited cells are significantly less directed on active sub-

strates. In the case of mean orientation, we see a significant change in behavior for ROCK

inhibited cells on an active substrate, where the mean orientation never decreases. Similarly,

we see a statistically significant increase in the NGV truncated standard deviation for ROCK

inhibited mouse fibroblasts. Both of these metrics point towards ROCK inhibition preventing

mouse fibroblasts from sensing and responding to a patterned topography.

Nuclear and Golgi-nuclear orientation are differentially responsive indicators of motility
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Fig 5. Control mouse fibroblast orientation statistics. Mean cell orientation with respect to the wrinkle direction, in

degrees, (A,C) and truncated standard deviation of orientations, in degrees, (B,D) for nuclei orientation (A,B) and the

axis between the nuclei and Golgi body centers-of-mass (NGV) (C,D) for control mouse fibroblast cells on non-

wrinkled (NW), wrinkled (W), and active (A) substrates. Importantly, the truncated standard deviation (TSD) of

nuclei orientation decreases over time, showing increasing alignment. Furthermore, the NGV has a truncated standard

deviation similar to wrinkled substrates at all times, indicating that this definition of orientation could be more

sensitive to environmental cues, whether pre-programmed patterns or substrate topography. (E) To elucidate the time

evolution of alignment, we show a times series for nuclei truncated standard deviation, in degrees, fit with a decaying

exponential (black line) with a timescale of approximately 2 hours. (F) Time evolution of NGV truncated standard
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Conclusions

In the present study, we quantified the relationship between nuclei orientation and the orienta-

tion of the Golgi body relative to the nucleus before, during, and after exposure to a change in

SMP substrate topography designed to trigger polarized motility, and our findings suggest that

the displacement vector between the nucleus and Golgi body (NGV) may be a more sensitive

indicator of substrate features than the nuclei orientation. The mean orientation of the nuclei

and the NGV both direct toward future or pre-existing wrinkles. Interestingly, the spread in

the orientation is different between these two internal metrics: while the nuclei orientation

becomes increasingly aligned during the gradual and then rapid formation of wrinkles on

deviation, in degrees. Single asterisks (�) indicate significance levels below 0.05, while double asterisks (��) indicate

levels below 0.01. There were approximately 103 cells per substrate type across 3 technical replicates and 3 biological

replicates.

https://doi.org/10.1371/journal.pone.0211408.g005

Fig 6. ROCK-inhibited comparisons with control mouse fibroblasts. A comparison between velocity ratio (A), mean nuclei orientation, in degrees, (B),

and NGV truncated standard deviation, in degrees, for control (solid) and ROCK-inhibited (lined) systems. Inhibiting the ROCK pathway does not

prevent those systems from reaching a state statistically similar to control wrinkled substrates. However, ROCK inhibition has a large effect on active

substrates where it prolongs or prevents reorientation. Single asterisks (�) indicate significance levels below 0.05, while double asterisks (��) indicate levels

below 0.01. There were approximately 103 cells per substrate type across 3 technical replicates and 3 biological replicates.

https://doi.org/10.1371/journal.pone.0211408.g006
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active substrates, the Golgi-nuclei remains aligned throughout, indicating that the NGV is

more sensitive to environmental cues such as substrate strain.

These findings suggest that the two distinct metrics—nuclei orientation and the NGV—are

differentially sensitive to or respond differently to substrate topography. Specifically, one pos-

sibility is that the Golgi location relative to the nucleus, and thus NGV, becomes polarized

more easily than nuclei orientation, with the NGV responding to substrate topographies that

do not produce a change in nuclei orientation. A second possibility is that these internal polar-

izations occur on different timescales. In other words, it is possible that the timescale over

which the NGV responds to substrate changes is much faster than that of nuclei orientation.

Distinguishing these possibilities and determining what anisotropic features of the substrate

are being sensed by the cells, even before observable wrinkles form, may reveal NGV as sensi-

tive to and a metric of strain sensing, stiffness or compliance sensing, or even sensing topo-

graphic fluctuations that are too small to be quantified with the optical microscopy used in the

present work.

In this system, which was optimized to image a large number of cells simultaneously, there

are fluctuations in image intensity that make the frame-to-frame displacements of nuclei

somewhat noisy, and this prevents us from being able to correlate the NGV and nuclei orienta-

tion with displacements on a frame-by-frame basis; we instead focused on average quantities

within a given time window. Future work could focus on increased resolution of single cells to

facilitate a comparison between these two orientation metrics and overall cell displacement.

Providing some insight into the mechanisms involved, our data implicates the Rho signal-

ing pathway, as inhibiting ROCK prevents cells from dynamically responding to topographic

features on active substrates. ROCK-inhibited cells retain roughly the same truncated standard

deviation at all times (S1 Fig). Coupled with comparisons to cell orientations on active sub-

strates (Fig 6B and 6C), our study indicates that ROCK-inhibited cells are unable to sense or

respond to environmental cues regardless of timescale or substrate type. However, the VACF

of cell trajectories shows that ROCK-inhibited mouse fibroblast cells remain motile and retain

similar persistence to uninhibited cells. In fact, it has been shown that ROCK inhibition pro-

motes cell-cell adhesion and expansion of a wound edge in human corneal endothelial cells

[31]. Similarly, our results for mouse fibroblast cells show that ROCK inhibition, while inhibit-

ing cell-substrate interactions, does not contribute to an overall loss of motility.

The ACTIVE algorithm has broad applicability in organelle and cell analyses. The ACTIVE

system has previously been employed in analyzing single and collective cell (mouse fibroblasts

and HT1080) motility behaviors on static, two-dimensional patterned surfaces [9] and in

dynamic, three-dimensional, shape-changing scaffolds [21]. The segmentation portion of the

code has additionally been modified to investigate how shape memory dynamics positively or

negatively affect cell infiltration in three-dimensional, shape-changing scaffolds [32]. The

ACTIVE system is not limited to mammalian cell analysis; it has been adapted in its full form

to track E. Coli orientation patterns [23] and motility dynamics [24] for biofilm formation

applications on surfaces with varying patterns and stiffness, respectively. The current work

represents a natural progression of the ACTIVE system, allowing for novel dual-organelle

tracking that will enable insight into how intracellular dynamics directly impact single or col-

lective cell responses.

The importance of cell motility in development, homeostasis, disease, and healing has been

appreciated for some time, but with the advent of tissue engineering, regenerative medicine,

and other cell-based therapies there is increased need not only to understand but also to pre-

cisely control cell motility. Here we have presented an automated image analysis technique for

tracking the shape and motion of Golgi bodies and cell nuclei and to link the Golgi bodies

positionally with their respective cell nuclei. We applied the technique to the study of mouse

Nuclear and Golgi-nuclear orientation are differentially responsive indicators of motility
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fibroblast polarization in response to changes in substrate topography, but it is important to

note that the utility of the technique is not specific to the cell type (fibroblasts), micro-environ-

ment (shape-changing SMP topography), or specific process (polarization) we have studied.

Moreover, the automated image analysis technique used for tracking the shape and motion of

Golgi bodies in the present work could be applied to tracking of other organelles. In addition,

the technique was found to be robust and capable of analyzing even low contrast, noisy images

(S2 Fig). Thus, it is anticipated that the technique could be broadly employed in the study of

diverse cell types, diverse micro-environments, and any cellular process involving motion of

organelles and cell nuclei.

In the present work, we found that the NGV may be a more sensitive indicator of substrate

features than the nuclei orientation. Based on our findings, we suggest that this metric could

be a complementary tool to understand and control motility in both the fundamental fields of

development, homeostasis, disease, and healing and the more emergent and applied fields of

tissue engineering, regenerative medicine, and other cell-based therapies. In particular, the

metric is anticipated to be useful for researchers studying the dynamics of cell polarity in

response to different micro-environments.

Appendix: Golgi tracking software

Although some of us had previously developed a software package dedicated to tracking cell

nuclei (ACTIVE) [9], this image analysis procedure was unable to accurately identify mouse

fibroblast Golgi bodies in our images due to their irregular shape and often fragmented

appearance. To that end we developed a software tool to identify and track mouse fibroblast

Golgi bodies and then pair these Golgi bodies with corresponding nuclei belonging to the

same cell.

The first step in this software package appropriately processes lab images to account for

experimental features such as phototoxicity or photobleaching. These images are recorded in a

tiff stack and imported to MATLAB for analysis. For each image in a movie, we construct a

distribution of pixel intensities and perform a Gaussian fit. Our goal is to adjust the brightness

and contrast of each image using the imadjust function in MATLAB in an automated fashion.

To that end, we estimate the input parameters for imadjust from the Gaussian distributions of

pixel intensities, using values N�σ away from the distribution mean, where σ is the standard

deviation and N is a user input parameter. The user must identify a value of Nhigh and Nlow

which are used to calculate the high_out and low_out input parameters for imadjust, respec-

tively. Alternatively default values are provided which may not result in optimal performance.

The software will then process the entire tiff stack and appropriately adjust the brightness and

contrast to account for experimental effects and remove background noise to provide the best

input for the identification component of the package.

After the images are suitably prepared, the Golgi bodies must be correctly identified in each

frame. To that end we utilize the MATLAB function clusterData [25], which takes in a list of

positions and a cutoff parameter, then uses a distance based clustering algorithm to group

coordinates. Due to the fragmented nature of the Golgi body, we use an overly sensitive cutoff

of 0.1, determined empirically from a test set of images. A complete list of user-defined param-

eters and their default values is given in S1 Table. The unitless sensitivity is multiplied by the

maximum distance between pixels in an image to generate a distance cutoff. This means that

pixel coordinates corresponding to a single Golgi body are more likely to be split apart than

accurately grouped together. Following this first pass, we utilize a novel algorithm to combine

all of the fragments identified by clusterData. We first examine all of the clusters the were iden-

tified in the image, remove any clusters with less than 3 pixels, and calculate the complex hull

Nuclear and Golgi-nuclear orientation are differentially responsive indicators of motility
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for each individual cluster to approximate its edge. Then, our algorithm begins with the largest

cluster, where size corresponds to the number of pixels included, and searches near the edge

for other clusters. An input parameter for this portion of the package is a distance cutoff,

which the user provides as an estimate of average distance between cells in units of pixels. If

the algorithm finds a cluster within this cutoff distance it will get added to the largest cluster.

The cutoff distance is based on distance between cells, because the algorithm is more accurate

when constructing individual Golgi bodies than when constructing multiple Golgi bodies in

close proximity. After this, the convex hull of the largest cluster must be recalculated and the

program looks around that edge for other clusters. We repeat this process until there are no

clusters within the cutoff distance, at which point this largest cluster is taken out of the pool of

candidate clusters and added to a master identification list. We return to the image, identify

the largest remaining cluster and repeat the above procedure until all cluster fragments are cor-

rectly combined. To test validity, we used a sample data set of 5 frames randomly selected

from each video, with approximately 15–30 Golgi bodies per frame. The tracking algorithm

agreed with user identified Golgi bodies in nearly every case, with an average of 0–2 errors in

each frame. The most difficult scenario is when two separate Golgi bodies from different cells

are nearly on top of each other, making it almost impossible to distinguish even by eye, in

which case the tracking algorithm would incorrectly group the two Golgi bodies together.

Since the transfection efficiency in our system was approximately 40%, this was not a common

occurrence.

Following the correct identification of Golgi bodies in individual frames across the course

of a time series, we use the same Kilfoil tracking algorithm as the ACTIVE software package to

link Golgi bodies correctly across frames, again using a distance-based algorithm where posi-

tions corresponded to Golgi body centers-of-mass.

After this was complete, we had an identification list for all of the Golgi bodies in each

frame and all of the nuclei in each frame. The next portion of the software package looks at

each cell nucleus and calculates the distance from it to all Golgi bodies in each frame. The user

then inputs a new cutoff distance in pixels to exclude Golgi bodies which are too far away, and

look at which Golgi body is, on average, the best candidate for being paired with the current

nucleus. We perform this distance-based analysis for all nuclei and compare between them to

make sure that there is no overlap in nuclei-Golgi body pairings and also to ensure the best

pairings possible. For example, we have nucleus A which is, on average, 10 microns away from

its closest Golgi body A throughout the course of the video. However, nucleus B is only 5

microns away from Golgi body A on average throughout the course of the video (these num-

bers are normalized by the number of frames the Golgi body is visible). In that case, the code

checks and sees that the appropriate pairing is nucleus B and Golgi body A, and nucleus A

defers to its second best choice assuming that there are no additional conflicts where other

nuclei are closer still. This technique was quite successful in appropriately pairing nuclei and

Golgi bodies to generate the nuclei Golgi vector (NGV) which is referenced in the manuscript.

Supporting information

S1 Fig. Rock-inhibited orientation statistics. Mean cell orientation (A,C) and truncated stan-

dard deviation (B,D) for nuclei orientation (A,B) and the axis between the nuclei and Golgi

body centers-of-mass (C,D) for control mouse fibroblast cells on non-wrinkled (NW), wrin-

kled (W), and active (A) substrates. (E) Times series for nuclei truncated standard deviation

(TSD), showing a similarity between cells on active and non-wrinkled substrates and an

increase in TSD over time for cells on wrinkled substrates. Single asterisks (�) indicate signifi-

cance levels below 0.05, while double asterisks (��) indicate levels below 0.01. There were
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approximately 103 cells per substrate type across 3 technical replicates and 3 biological repli-

cates.

(TIF)

S2 Fig. Representative live-cell images demonstrate the robustness of the Golgi tracking

technique. In the present work, the nuclear and Golgi live-cell staining was deliberately cap-

tured at low signal intensity to reduce phototoxicity and enable extended imaging to 24 h. A

representative example of the nuclear (left), Golgi (middle), and RGB false colored (right)

images illustrate the resulting low contrast, noisy images, which were successfully processed by

the Golgi tracking code, thereby demonstrating the robustness of the approach and the poten-

tial for broad application in the study of diverse cell types, diverse micro-environments, and

any cellular process involving motion of organelles and cell nuclei.

(TIF)

S1 Table. User-defined input parameters for the Golgi tracking code.

(PDF)

Author Contributions

Conceptualization: Megan E. Brasch, Giuseppe Passucci, Christopher E. Turner, M. Lisa

Manning, James H. Henderson.

Data curation: Megan E. Brasch, Anushree C. Gulvady, Christopher E. Turner, James H.

Henderson.

Formal analysis: Megan E. Brasch, Giuseppe Passucci, M. Lisa Manning, James H.

Henderson.

Funding acquisition: Christopher E. Turner, M. Lisa Manning, James H. Henderson.

Investigation: Megan E. Brasch, Giuseppe Passucci, M. Lisa Manning, James H. Henderson.

Methodology: Megan E. Brasch, Giuseppe Passucci, Christopher E. Turner, M. Lisa Manning,

James H. Henderson.

Project administration: Christopher E. Turner, M. Lisa Manning, James H. Henderson.

Resources: Christopher E. Turner, M. Lisa Manning, James H. Henderson.

Software: Giuseppe Passucci, M. Lisa Manning.

Supervision: Christopher E. Turner, M. Lisa Manning.

Validation: Giuseppe Passucci.

Visualization: Giuseppe Passucci.

Writing – original draft: Megan E. Brasch, Giuseppe Passucci, Christopher E. Turner, M. Lisa

Manning, James H. Henderson.

Writing – review & editing: Megan E. Brasch, Giuseppe Passucci, Anushree C. Gulvady,

Christopher E. Turner, M. Lisa Manning, James H. Henderson.

References

1. Desai RA, Gao L, Raghavan S, Liu WF, Chen CS. Cell polarity triggered by cell-cell adhesion via E-cad-

herin. J Cell Sci. 2009; 122(7):905–11.

2. Serrador JM, Nieto M, Sanchez-Madrid F. Cytoskeletal rearrangement during migration and activation

of T lymphocytes. Trends Cell Biol. 1999; 9(6):228–32. PMID: 10354569

Nuclear and Golgi-nuclear orientation are differentially responsive indicators of motility

PLOS ONE | https://doi.org/10.1371/journal.pone.0211408 February 13, 2019 16 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0211408.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0211408.s003
http://www.ncbi.nlm.nih.gov/pubmed/10354569
https://doi.org/10.1371/journal.pone.0211408


3. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, et al. Cell migration: Integrating

signals from front to back. Science. 2003; 302(5651):1704–9. https://doi.org/10.1126/science.1092053

PMID: 14657486

4. Friedl P, Wolf K, Lammerding J. Nuclear mechanics during cell migration. Curr Opin Cell Biol. 2011; 23

(1):55–64. https://doi.org/10.1016/j.ceb.2010.10.015 PMID: 21109415

5. Vinogradova T, Miller PM, Kaverina I. Microtubule network asymmetry in motile cells Role of Golgi-

derived array. Cell Cycle. 2009; 8(14):2168–74. https://doi.org/10.4161/cc.8.14.9074 PMID: 19556895

6. Yadav S, Linstedt AD. Golgi positioning. Cold Spring Harb Perspect Biol. 2011; 3(5).

7. Yadav S, Puri S, Linstedt AD. A primary role for Golgi positioning in directed secretion, cell polarity, and

wound healing. Mol Biol Cell. 2009; 20(6):1728–36. https://doi.org/10.1091/mbc.E08-10-1077 PMID:

19158377

8. Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF, Harrington K, et al. Fibroblast-led

collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells.

Nature Cell Biology. 2007; 9(12):1392–U92. https://doi.org/10.1038/ncb1658 PMID: 18037882

9. Baker RM, Brasch ME, Manning ML, Henderson JH. Automated, contour-based tracking and analysis

of cell behaviour over long time scales in environments of varying complexity and cell density. Journal

of The Royal Society Interface. 2014; 11(97).

10. Liu C, Qin H, Mather PT. Review of progress in shape-memory polymers. Journal of Materials Chemis-

try. 2007; 17(16):1543–58.

11. Davis KA, Luo XF, Mather PT, Henderson JH. Shape Memory Polymers for Active Cell Culture. Jove-J

Vis Exp. 2011(53).

12. Yang P, Baker RM, Henderson JH, Mather PT. In vitro wrinkle formation via shape memory dynamically

aligns adherent cells. Soft Matter. 2013; 9(18):4705–14.

13. Tseng L-F, Mather PT, Henderson JH. Shape-memory-actuated change in scaffold fiber alignment

directs stem cell morphology. Acta Biomaterialia. 2013; 9(11):8790–801. https://doi.org/10.1016/j.

actbio.2013.06.043 PMID: 23851156

14. Davis KA, Burke KA, Mather PT, Henderson JH. Dynamic cell behavior on shape memory polymer sub-

strates. Biomaterials. 2011; 32(9):2285–93. https://doi.org/10.1016/j.biomaterials.2010.12.006 PMID:

21224032

15. Ebara M, Akimoto M, Uto K, Shiba K, Yoshikawa G, Aoyagi T. Focus on the interlude between topo-

graphic transition and cell response on shape-memory surfaces. Polymer. 2014; 55(23):5961–8.

16. Ebara M, Uto K, Idota N, Hoffman JM, Aoyagi T. The taming of the cell: shape-memory nanopatterns

direct cell orientation. International journal of nanomedicine. 2014; 9 Suppl 1:117–26.

17. Gong T, Zhao K, Yang G, Li JR, Chen HM, Chen YP, et al. The Control of Mesenchymal Stem Cell Dif-

ferentiation Using Dynamically Tunable Surface Microgrooves. Advanced healthcare materials. 2014; 3

(10):1608–19. https://doi.org/10.1002/adhm.201300692 PMID: 24648133

18. Le DM, Kulangara K, Adler AF, Leong KW, Ashby VS. Dynamic topographical control of mesenchymal

stem cells by culture on responsive poly(epsilon-caprolactone) surfaces. Advanced Materials. 2011; 23

(29):3278–83. https://doi.org/10.1002/adma.201100821 PMID: 21626577

19. Mengsteab PY, Uto K, Smith AST, Frankel S, Fisher E, Nawas Z, et al. Spatiotemporal control of car-

diac anisotropy using dynamic nanotopographic cues. Biomaterials. 2016; 86:1–10. https://doi.org/10.

1016/j.biomaterials.2016.01.062 PMID: 26874887

20. Uto K, Aoyagi T, DeForest CA, Hoffman AS, Ebara M. A Combinational Effect of "Bulk" and "Surface"

Shape-Memory Transitions on the Regulation of Cell Alignment. Advanced healthcare materials. 2017;

6(9).

21. Wang J, Quach A, Brasch ME, Turner CE, Henderson JH. On-command on/off switching of progenitor

cell and cancer cell polarized motility and aligned morphology via a cytocompatible shape memory poly-

mer scaffold. Biomaterials. 2017; 140:150–61. https://doi.org/10.1016/j.biomaterials.2017.06.016

PMID: 28649015

22. Narumiya S, Ishizaki T, Uehata M. Use and properties of ROCK-specific inhibitor Y-27632. Method

Enzymol. 2000; 325:273–84.

23. Gu H, Chen A, Song X, Brasch ME, Henderson JH, Ren D. How Escherichia coli lands and forms cell

clusters on a surface: a new role of surface topography. Sci Rep-Uk. 2016; 6:29516.

24. Song F, Brasch ME, Wang H, Henderson JH, Sauer K, Ren D. How Bacteria Respond to Material Stiff-

ness during Attachment: A Role of Escherichia coil Flagellar Motility. ACS applied materials & inter-

faces. 2017; 9(27):22176–84.

25. Shoelson B. clusterData. 01 Sep 2016 ed. MATLAB File Exchange: MathWorks; 2016.

Nuclear and Golgi-nuclear orientation are differentially responsive indicators of motility

PLOS ONE | https://doi.org/10.1371/journal.pone.0211408 February 13, 2019 17 / 18

https://doi.org/10.1126/science.1092053
http://www.ncbi.nlm.nih.gov/pubmed/14657486
https://doi.org/10.1016/j.ceb.2010.10.015
http://www.ncbi.nlm.nih.gov/pubmed/21109415
https://doi.org/10.4161/cc.8.14.9074
http://www.ncbi.nlm.nih.gov/pubmed/19556895
https://doi.org/10.1091/mbc.E08-10-1077
http://www.ncbi.nlm.nih.gov/pubmed/19158377
https://doi.org/10.1038/ncb1658
http://www.ncbi.nlm.nih.gov/pubmed/18037882
https://doi.org/10.1016/j.actbio.2013.06.043
https://doi.org/10.1016/j.actbio.2013.06.043
http://www.ncbi.nlm.nih.gov/pubmed/23851156
https://doi.org/10.1016/j.biomaterials.2010.12.006
http://www.ncbi.nlm.nih.gov/pubmed/21224032
https://doi.org/10.1002/adhm.201300692
http://www.ncbi.nlm.nih.gov/pubmed/24648133
https://doi.org/10.1002/adma.201100821
http://www.ncbi.nlm.nih.gov/pubmed/21626577
https://doi.org/10.1016/j.biomaterials.2016.01.062
https://doi.org/10.1016/j.biomaterials.2016.01.062
http://www.ncbi.nlm.nih.gov/pubmed/26874887
https://doi.org/10.1016/j.biomaterials.2017.06.016
http://www.ncbi.nlm.nih.gov/pubmed/28649015
https://doi.org/10.1371/journal.pone.0211408


26. Gao YX, Kilfoil ML. Accurate detection and complete tracking of large populations of features in three

dimensions. Optics Express. 2009; 17(6):4685–704. PMID: 19293898

27. Crocker JC, Grier DG. Methods of digital video microscopy for colloidal studies. J Colloid Interf Sci.

1996; 179(1):298–310.

28. Davidson P, Bigerelle M, Bounichane B, Giazzon M, Anselme K. Definition of a simple statistical param-

eter for the quantification of orientation in two dimensions: Application to cells on grooves of nanometric

depths. Acta Biomaterialia. 2010; 6(7):2590–8. https://doi.org/10.1016/j.actbio.2010.01.038 PMID:

20123045

29. Elliott LCC, Barhoum M, Harris JM, Bohn PW. Trajectory analysis of single molecules exhibiting non-

Brownian motion. Phys Chem Chem Phys. 2011; 13(10):4326–34. https://doi.org/10.1039/c0cp01805h

PMID: 21258684

30. Zaburdaev V, Uppaluri S, Pfohl T, Engstler M, Friedrich R, Stark H. Langevin Dynamics Deciphers the

Motility Pattern of Swimming Parasites. Phys Rev Lett. 2011; 106(20).

31. Pipparelli A, Arsenijevic Y, Thuret G, Gain P, Nicolas M, Majo F. ROCK Inhibitor Enhances Adhesion

and Wound Healing of Human Corneal Endothelial Cells. PloS one. 2013; 8(4).

32. Wang J, Brasch ME, Baker RM, Tseng LF, Pena AN, Henderson JH. Shape memory activation can

affect cell seeding of shape memory polymer scaffolds designed for tissue engineering and regenera-

tive medicine. J Mater Sci-Mater M. 2017; 28(10).

Nuclear and Golgi-nuclear orientation are differentially responsive indicators of motility

PLOS ONE | https://doi.org/10.1371/journal.pone.0211408 February 13, 2019 18 / 18

http://www.ncbi.nlm.nih.gov/pubmed/19293898
https://doi.org/10.1016/j.actbio.2010.01.038
http://www.ncbi.nlm.nih.gov/pubmed/20123045
https://doi.org/10.1039/c0cp01805h
http://www.ncbi.nlm.nih.gov/pubmed/21258684
https://doi.org/10.1371/journal.pone.0211408

