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Abstract

Preprocessing of functional MRI (fMRI) involves numerous steps to clean and standardize data 

before statistical analysis. Generally, researchers create ad-hoc preprocessing workflows for each 

new dataset, building upon a large inventory of tools available. The complexity of these workflows 

has snowballed with rapid advances in acquisition and processing. We introduce fMRIPrep, an 

analysis-agnostic tool that addresses the challenge of robust and reproducible preprocessing for 

fMRI data. FMRIPrep automatically adapts a best-in-breed workflow to the idiosyncrasies of 

virtually any dataset, ensuring high-quality preprocessing with no manual intervention. By 

introducing visual assessment checkpoints into an iterative integration framework for software-

testing, we show that fMRIPrep robustly produces high-quality results on a diverse fMRI data 

collection. Additionally, fMRIPrep introduces less uncontrolled spatial smoothness than 

commonly used preprocessing tools. FMRIPrep equips neuroscientists with a high-quality, robust, 

easy-to-use and transparent preprocessing workflow, which can help ensure the validity of 

inference and the interpretability of their results.

INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a commonly used technique to map 

human brain activity1. However, the blood-oxygen-level dependent (BOLD) signal measured 

by fMRI is typically mixed with non-neural sources of variability2. Preprocessing identifies 

the nuisance sources and reduces their effect on the data3,4, and further addresses particular 

imaging artifacts and the anatomical localization of signals5. For instance, slice-timing6 

correction (STC), head-motion correction (HMC), and susceptibility distortion correction 

(SDC) address particular artifacts, while co-registration, and spatial normalization are 

concerned with signal localization (Supplementary Note 1). Extracting a signal that is most 

faithful to the underlying neural activity is crucial to ensure the validity of inference and 

interpretability of results7. Thus, a primary goal of preprocessing is to reduce sources of 

false positive errors without inducing excessive false negative errors. An illustration of false 

positive errors familiar to most researchers is finding activation outside of the brain due to 

faulty spatial normalization. As a more practical example, Power et al. demonstrated that 

unaccounted-for head-motion in resting-state fMRI generated systematic correlations that 

could be misinterpreted as functional connectivity8. Conversely, false negatives can result 

from a number of preprocessing failures, such as anatomical misregistration across 

individuals which reduces statistical power.

Workflows for preprocessing fMRI produce two broad classes of outputs. First, preprocessed 
time-series derive from the original data after the application of retrospective signal 

corrections, temporal/spatial filtering, and the resampling onto a target space appropriate for 

analysis (e.g. a standardized anatomical reference). Second, experimental confounds are 

additional time-series such as physiological recordings and estimated noise sources that are 
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useful for analysis (e.g. to be modeled as nuisance regressors). Some commonly used 

confounds include: motion parameters, framewise displacement9 (FD), spatial standard 

deviation of the data after temporal differencing (DVARS8), global signals, etc. 

Preprocessing may include further steps for denoising and estimation of confounds. For 

instance, dimensionality reduction methods based on principal components analysis (PCA) 

or independent components analysis (ICA), such as component-based noise correction 

(CompCor10) or automatic removal of motion artifacts (ICA-AROMA11).

The neuroimaging community is well equipped with tools that implement the majority of the 

individual steps of preprocessing described so far (Table 1). These tools are readily available 

within software packages including AFNI12, ANTs13, FreeSurfer14, FSL15, Nilearn16, or 

SPM17. Despite the wealth of accessible software and multiple attempts to outline best 

practices for preprocessing2,5,7,18, the large variety of data acquisition protocols have led to 

the use of ad-hoc pipelines customized for nearly every study19. In practice, the 

neuroimaging community lacks a preprocessing workflow that reliably provides high-quality 

and consistent results on arbitrary datasets.

RESULTS

FMRIPrep is a robust and convenient tool for researchers and clinicians to prepare both task-

based and resting-state fMRI data for analysis. Its outputs enable a broad range of 

applications, including within-subject analysis using functional localizers, voxel-based 

analysis, surface-based analysis, task-based group analysis, resting-state connectivity 

analysis, and many others.

A modular design alongside BIDS allow for a flexible, adaptive workflow

FMRIPrep is composed of sub-workflows that are dynamically assembled into different 

configurations depending on the input data. These building blocks combine tools from 

widely-used, open-source neuroimaging packages (Table 1). The workflow engine Nipype20 

is used to stage the workflows and to deal with execution details (such as resource 

management). As presented in Figure 1, the workflow comprises two major blocks, 

separated into anatomical and functional MRI processing streams. The Brain Imaging Data 

Structure21 (BIDS, Supplementary Note 2) allows fMRIPrep to precisely identify the 

structure of the input data and gather all the available metadata (e.g. imaging parameters) 

with no manual intervention. FMRIPrep reliably self-adapts to dataset irregularities such as 

missing acquisitions or runs through a set of heuristics.

Visual reports ease quality control and maximize transparency

Users can assess the quality of preprocessing with an individual report generated per 

participant (see Supplementary Figure 1). Reports contain dynamic and static mosaic views 

of images at different quality control points along the preprocessing pipeline. Written in 

hypertext markup language (HTML), reports can be opened with any web browser, are 

amenable to integration within online science services (e.g. OpenNeuro, or CodeOcean22), 

and maximize shareability between peers. These reports effectively minimize the amount of 

time required for assessing the quality of the results. As an additional transparency 
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enhancement, reports include a citation boilerplate that follows the guidelines by Poldrack et 

al.23, and gives due credit to all authors of all of the individual pieces of software used 

within fMRIPrep.

Highlights of fMRIPrep within the neuroimaging context

FMRIPrep is analysis-agnostic to currently-available analysis choices, as it supports a wide 

range of higher-level analysis and modeling options. Alternative workflows such as 

afni_proc.py (AFNI12), feat (FSL15), C-PAC24 (configurable pipeline for the analysis of 

connectomes), Human Connectome Project (HCP25) Pipelines26, or the Batch Editor of 

SPM, are not agnostic because they prescribe particular methodologies to analyze the 

preprocessed data. Important limitations to compatibility with downstream analysis derive 

from the coordinates space of the outputs and the regular (volume) vs. irregular (surface) 

sampling of the BOLD signal. For example, HCP Pipelines supports surface-based analyses 

on subject or template space. Conversely, C-PAC and feat are volume-based only. Although 

afni_proc.py is volume-based by default, pre-reconstructed surfaces can be manually set for 

sampling the BOLD signal prior to analysis. FMRIPrep allows a multiplicity of output 

spaces including subject-space and atlases for both volume-based and surface-based 

analyses. While fMRIPrep avoids including processing steps that may limit further analysis 

(e.g. spatial smoothing), other tools are designed to perform preprocessing that supports 

specific analysis pipelines. For instance, C-PAC performs several processing steps towards 

the connectivity analysis of resting-state fMRI. Further advantages of fMRIPrep are 

described in Online Methods, and include the “fieldmap-less” susceptibility distortion 
correction (SDC), the community-driven development and high-standards of software 
engineering, and the focus on reproducibility.

FMRIPrep yields high-quality results on diverse data

We iteratively maximized the robustness and overall quality of the results generated by 

fMRIPrep using the two-stage validation framework shown in Supplementary Figure 2. In a 

Phase I for fault-discovery, we tested fMRIPrep on a set of 30 datasets from OpenfMRI (see 

Table 2). Since data showing substandard quality are known to likely degrade the outcomes 

of image processing, we used MRIQC27 to select the set of test images. Phase I concluded 

with the release of fMRIPrep version 1.0 on December 6, 2017. We addressed the quality 

assurance and reliability validation in Phase II. Figure 2 illustrates how the quality of results 

improved during Phase II. After Phase II, 50 datasets out of the total 54 were rated above the 

“acceptable” average quality level. The remaining 4 datasets were all above the “poor” level 

and in or nearby the “acceptable” rating. Correspondingly, Supplementary Figure 3 shows 

the individual evolution of every dataset at each of the seven quality control points. Phase II 

concluded with the release of fMRIPrep version 1.0.8 on February 22, 2018. Supplementary 

Results 1 presents some examples of issues resolved during validation.

FMRIPrep prevents loss of spatial accuracy via smoothing

We demonstrate that the focus on robustness against data irregularity does not come at a cost 

in quality of the preprocessing outputs. Moreover, as shown in Figure 3A, the preprocessing 

outcomes of FSL feat are smoother than those of fMRIPrep. Although preprocessed data 
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were resampled to an isotropic voxel size of 2.0×2.0×2.0 [mm], the smoothness estimation 

(before the prescribed smoothing step) for fMRIPrep was below 4.0mm, very close to the 

original resolution of 3.0×3.0×4.0 [mm] of these data. We calculated standard deviation 

maps in MNI space28 for the temporal average map derived from preprocessing with both 

alternatives. Visual inspection of these variability maps (Figure 3B) reveals a higher 

anatomical accuracy of fMRIPrep over feat, likely reflecting the combined effects of a more 

precise spatial normalization scheme and the application of “fieldmap-less” SDC. FMRIPrep 
outcomes are particularly better aligned with the underlying anatomy in regions typically 

warped by susceptibility distortions such as the orbitofrontal lobe, as demonstrated by close-

ups in Supplementary Figure 4. We also compared preprocessing done with fMRIPrep and 

FSL’s feat in two common fMRI analyses. First, we performed within subject statistical 

analysis using feat –the same tool provides preprocessing and first-level analysis– on both 

sets of preprocessed data. Second, we perform a group statistical analysis using ordinary 

least-squares (OLS) mixed modeling (flame29, FSL). In both experiments, we applied 

identical analysis workflows and settings to both preprocessing alternatives. The first-level 

analysis showed that the thresholded activation count maps for the go vs. successful stop 

contrast in the “stopsignal” task were very similar (Figure 4). It can be seen that the results 

from both pipelines identified activation in the same regions. However, since data 

preprocessed with feat are smoother, the results from fMRIPrep are more local and better 

aligned with the cortical sheet. The overlap of statistical maps, as well as Pearson’s 

correlation, were tightly related to the smoothing of the input data. In the group analysis, 

fMRIPrep and feat perform equivalently (see Supplementary Results 2).

DISCUSSION

FMRIPrep is an fMRI preprocessing workflow developed to excel at four aspects of 

scientific software: robustness to data idiosyncrasies, high quality and consistency of results, 

maximal transparency, and ease-of-use. We describe how using the Brain Imaging Data 

Structure (BIDS21) along with a flexible design allows the workflow to self-adapt to the 

idiosyncrasy of inputs (sec. A modular design alongside BIDS allow for a flexible, 
adaptive workflow). The workflow (briefly summarized in Figure 1) integrates state-of-art 

tools from widely used neuroimaging software packages at each preprocessing step (see 

Table 1).

Some other relevant facets of fMRIPrep and how they relate to existing alternative pipelines 

are presented in sec. Highlights of fMRIPrep within the neuroimaging context. We stress 

that fMRIPrep is developed with the best software engineering principles, which are 

fundamental to ensure software reliability. The pipeline is easy to use for researchers and 

clinicians without extensive computer engineering experience, and produces comprehensive 

visual reports (Supplementary Figure 1).

In sec. FMRIPrep yields high-quality results on diverse data, we demonstrate the 

robustness of fMRIPrep on a representative collection of data from datasets associated with 

different studies (Table 2). We then interrogate the quality of those results with the 

individual inspection of the corresponding visual reports by experts (sec. Visual reports 
ease quality control and maximize transparency and the corresponding summary in 
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Figure 2). A comparison to FSL’s feat (sec. FMRIPrep prevents loss of spatial accuracy 
via smoothing) demonstrates that fMRIPrep achieves higher spatial accuracy and introduces 

less uncontrolled smoothness (Figure 3, 4). Group 𝑝-statistical maps only differed on their 

smoothness (sharper for the case of fMRIPrep). The fact that first-level and second-level 

analyses resulted in small differences between fMRIPrep and our ad-hoc implementation of 

a feat-based workflow indicates that the individual preprocessing steps perform similarly 

when they are fine-tuned to the input data. That justifies the need for fMRIPrep, which 

autonomously adapts the workflow to the data without error-prone manual intervention. To a 

limited extent, that also mitigates some concerns and theoretical risks that arise from 

analytical degrees-of freedom19 available to researchers. FMRIPrep stands out amongst 

pipelines because it automates the adaptation to the input dataset without compromising the 

quality of results.

One limitation of this work is the use of visual (the reports) and semi-visual (e.g. Figure 3, 

4) assessments for the quality of preprocessing outcomes. Although some frameworks have 

been proposed for the quantitative evaluation of preprocessing on task-based (such as 

NPAIRS30) and resting-state31 fMRI, they impose a set of assumptions on the test data and 

the workflow being assessed that severely limit their suitability in general. The modular 

design of fMRIPrep defines an interface to each processing step, which will permit the 

programmatic evaluation of the many possible combinations of software tools and 

processing steps. That will also enable the use of quantitative testing frameworks to pursue 

the minimization of Type I errors without the cost of increasing Type II errors. The range of 

possible applications for fMRIPrep also presents some boundaries. For instance, very narrow 

field-of-view (FoV) images often do not contain enough information for standard image 

registration methods to work correctly. Reduced FoV datasets from OpenfMRI were 

excluded from the evaluation since they are not yet fully supported by fMRIPrep. Extending 

fMRIPrep’s support for these particular images is already a future line of the development 

road-map. FMRIPrep may also under-perform for particular populations (e.g. infants) or 

when brains show nonstandard structures, such as tumors, resected regions or lesions. 

Despite these challenges, fMRIPrep performed robustly on data from a simultaneous MRI/

electrocorticography study, which is extremely challenging to analyze due to the massive 

BOLD signal drop-out near the implanted cortical electrodes (see Supplementary Figure 5). 

In addition, fMRIPrep’s modular architecture makes it straightforward to extend the tool to 

support specific populations or new species by providing appropriate atlases of those brains. 

This future line of work would be particularly interesting in order to adapt the workflow to 

data collected from rodents and nonhuman primates.

Approximately 80% of the analysis pipelines investigated by Carp19 were implemented 

using either AFNI12, FSL15, or SPM17. Ad-hoc pipelines adapt the basic workflows 

provided by these tools to the particular dataset at hand. Although workflow frameworks like 

Nipype20 ease the integration of tools from different packages, these pipelines are typically 

restricted to just one of these alternatives (AFNI, FSL or SPM). Otherwise, scientists can 

adopt the acquisition protocols and associated preprocessing software of large consortia26,32 

like the Human Connectome Project (HCP) or the UK Biobank33. The off-the-shelf 

applicability of these workflows is contravened by important limitations on the experimental 
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design. Therefore, researchers typically opt to recode their custom preprocessing workflows 

with nearly every new study19. That practice entails a “pipeline debt”, which requires the 

investment on proper software engineering to ensure an acceptable correctness and stability 

of the results (e.g. continuous integration testing) and reproducibility (e.g. versioning, 

packaging, containerization, etc.). A trivial example of this risk would be the leakage of 

magic numbers that are hard-coded in the source (i.e. a crucial imaging parameter that 

inadvertently changed from one study to the next one). Until fMRIPrep, an analysis-agnostic 

approach that builds upon existing software instruments and optimizes preprocessing for 

robustness to data idiosyncrasies, quality of outcomes, ease-of-use, and transparency, was 

lacking.

The rapid increase in volume and diversity of data, as well as the evolution of available 

techniques for processing and analysis, presents an opportunity for significantly advancing 

research in neuroscience. The drawback resides in the need for progressively complex 

analysis workflows that rely on decreasingly interpretable models of the data. Such context 

encourages “black-box” solutions that efficiently perform a valuable service but do not 

provide insights into how the tool has transformed the data into the expected outputs. Black-

boxes obscure important steps in the inductive process mediating between experimental 

measurements and reported findings. This way of moving forward risks producing a future 

generation of cognitive neuroscientists who have become experts in using sophisticated 

computational methods, but have little to no working knowledge of how data were 

transformed through processing. Transparency is often identified as a treatment for these 

problems. FMRIPrep ascribes to “glass-box” principles, which are defined in opposition to 

the many different facets or levels at which black-box solutions are opaque. The visual 

reports that fMRIPrep generates are a crucial aspect of the glass-box approach. Their quality 

control checkpoints represent the logical flow of preprocessing, allowing scientists to 

critically inspect and better understand the underlying mechanisms of the workflow. A 

second transparency element is the citation boilerplate that formalizes all details of the 

workflow and provides the versions of all involved tools along with references to 

corresponding scientific literature. A third asset for transparency is the thorough 

documentation which delivers additional details on each of the building blocks that are 

represented in the visual reports and described in the boilerplate. Further, fMRIPrep is open-

source since its inception: users have access to all the incremental additions to the tool 

through the history of the version-control system. The use of GitHub (https://github.com/

poldracklab/fmriprep) grants access to the discussions held during development, allowing 

the retrieval of how and why the main design decisions were made. GitHub also provides an 

excellent platform to foster the community with useful tools such as source browsing, code 

review, bug tracking and reporting, submission of new features and bug fixes through pull 

requests, etc. The modular design of fMRIPrep enhances its flexibility and improves 

transparency, as the main features of the software are more easily accessible to potential 

collaborators. In combination to some coding style and contribution guidelines, this 

modularity has enabled multiple contributions by peers and the creation of a rapidly growing 

community that would be difficult to nurture behind closed doors. A number of existing 

tools have implemented elements of “glass-box” philosophy (for example visual reports in 

feat, documentation in C-PAC, open source community of Nilearn), but the complete 
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package (visual reports, educational documentation, reporting templates, collaborative open 

source community) is still rare among scientific software. FMRIPrep’s transparent and 

accessible development and reporting aims to better equip fMRI practitioners to perform 

reliable, reproducible, statistical analyses with a high-standard, consistent, and adaptive 

preprocessing instrument.

DATA

Data used in the validation of fMRIPrep

Participants were drawn from a multiplicity of studies available in OpenfMRI, accessed on 

September 30, 2017. Studies were sampled uniformly (four participants each), except for 

DS000031 that consists of only one participant. Data selection criteria are described below. 

Magnetic resonance imaging (MRI) data were acquired at multiple scanning centers, with 

the following frequencies of vendors: ∼70% SIEMENS, ∼14% PHILIPS, ∼14% GE. Data 

were acquired by 1.5T and 3T systems running varying software versions. Acquisition 

protocols, as well as the particular acquisition parameters (including relevant BOLD settings 

such as the repetition time −TR−, the echo time −TE−, the number of TRs and the 

resolution) also varied with each study. However, only datasets including at least one T1-

weighted (T1w) and one BOLD per subject run were included. Datasets containing BIDS 

errors (DS000210), and degenerate data (many T1w images of DS000223 are skull-stripped) 

at the time of access were discarded. Similarly, very-narrow FoV BOLD datasets 

(DS000172, DS000217, and DS000232) were also excluded. In total, 54 datasets (46 single-

session datasets, 8 multi-session) were included in this assessment. Table 2 overviews the 

particular properties of each dataset, summarizing the large heterogeneity of the resource.

This evaluation covered0i 54 studies out of a total of 58 studies in OpenfMRI that included 

the two required imaging modalities (T1w and BOLD). Therefore, by covering 93% of the 

studies in OpenfMRI, we ensured a large heterogeneity in terms of acquisition protocols, 

settings, instruments and parameters that is necessary to demonstrate the robustness of 

fMRIPrep against the variability in input data features.

Data used in the comparison to FSL feat

We reuse the UCLA Consortium for Neuropsychiatric Phenomics LA5c Study34, a dataset 

that is publicly available on OpenfMRI under data accession DS000030. During the 

experiment, subjects performed six tasks, a block of rest, and two anatomical scans. The 

study includes imaging data of a large group of healthy individuals from the community, as 

well as samples of individuals diagnosed with schizophrenia, bipolar disorder, and attention-

deficit/hyperactivity disorder. As described in their data descriptor34, MRI data were 

acquired on one of two 3T Siemens Trio scanners, located at the Ahmanson-Lovelace Brain 

Mapping Center (syngo MR B15) and the Staglin Center for Cognitive Neuroscience (syngo 

MR B17). FMRI data were collected using an echo-planar imaging (EPI) sequence (slice 

thickness=4mm, 34 slices, TR=2s, TE=30ms, flip angle=90deg, matrix 64×64, 

i Data coverage is a metric used in software engineering that measures the area that a given test or test-set covers with respect to the 
full domain of possible input data.
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FoV=192mm, oblique slice orientation). Additionally, a T1w image is available per 

participant (MPRAGE, TR=1.9s, TE=2.26ms, FoV=250mm, matrix=256×256, sagittal 

plane, slice thickness=1mm, 176 slices). For this experiment, only images including both the 

T1w and the functional scans corresponding the Stop Signal task (referred to as 

“stopsignal”) were included (totaling N=257 participants).

Stop Signal task.—Participants were instructed to respond quickly to a “go” stimulus. 

During some of the trials, at unpredictable times, a stop signal would appear after the 

stimulus is presented. During those trials, the subject has to inhibit any planned response. In 

this experiment, we specifically look into the difference between the brain activation during 

a successful stop trial and a go trial (contrast: Go - StopSuccess). Thus, we expect to see 

brain regions responsible for response inhibition (negative) and motor response (positive). 

Further details on the task are available with the dataset descriptor34.

THE FMRIPREP WORKFLOW

Preprocessing anatomical images

The T1w image is corrected for intensity non-uniformity using N4BiasFieldCorrection35 

(ANTs), and skull-stripped using antsBrainExtraction.sh (ANTs). Skull-stripping is 

performed through coregistration to a template, with two options available: the OASIS 

template36 (default) or the NKI template37. Using visual inspection, we have found that this 

approach outperforms other common approaches, which is consistent with previous 

reports26. When several T1w volumes are found, the intensity non-uniformity-corrected 

versions are first fused into a reference T1w map of the subject with mri_robust_template38 

(FreeSurfer). Brain surfaces are reconstructed from the subject’s T1w reference (and T2w 

images if available) using recon-all39 (FreeSurfer). The brain mask estimated previously is 

refined with a custom variation of a method (originally introduced in Mindboggle40) to 

reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical gray matter 

(GM). Both surface reconstruction and subsequent mask refinement are optional and can be 

disabled to save run time when surface-based analysis is not needed. Spatial normalization 

to the ICBM 152 Nonlinear Asymmetrical template41 (version 2009c) is performed through 

nonlinear registration with antsRegistration42 (ANTs), using brain-extracted versions of both 

the T1w reference and the standard template. ANTs was selected due to its superior 

performance in terms of volumetric group level overlap43. Brain tissues –cerebrospinal fluid 

(CSF), white matter (WM) and GM– are segmented from the reference, brain-extracted T1w 

using fast44 (FSL).

Preprocessing functional runs

For every BOLD run found in the dataset, a reference volume and its skull-stripped version 

are generated using an in-house methodology (described in Supplementary Note 3). Then, 

head-motion parameters (volume-to-reference transform matrices, and corresponding 

rotation and translation parameters) are estimated using mcflirt45 (FSL). Among several 

alternatives (see Table 1), mcflirt is used because its results are comparable to other tools46 

and it stores the estimated parameters in a format that facilitates the composition of spatial 

transforms to achieve one-step interpolation (see below). If slice timing information is 
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available, BOLD runs are (optionally) slice time corrected using 3dTshift (AFNI12). When 

field map information is available, or the experimental “fieldmap-less” correction is 

requested (see “Fieldmap-less” susceptibility distortion correction), SDC is performed 

using the appropriate methods (see Supplementary Figure 6). This is followed by co-

registration to the corresponding T1w reference using boundary-based registration47 with 

nine degrees of freedom (to minimize remaining distortions). If surface reconstruction is 

selected, fMRIPrep uses bbregister (FreeSurfer). Otherwise, the boundary based 

coregistration implemented in flirt (FSL) is applied. In our experience, bbregister yields the 

better results47 due to the high resolution and the topological correctness of the GM/WM 

surfaces driving registration. To support a large variety of output spaces for the results (e.g. 

the native space of BOLD runs, the corresponding T1w, FreeSurfer’s fsaverage spaces, the 

template used as target in the spatial normalization step, etc.), the transformations between 

spaces can be combined. For example, to generate preprocessed BOLD runs in template 

space (e.g. MNI), the following transforms are concatenated: head-motion parameters, the 

warping to reverse susceptibility-distortions (if calculated), BOLD-to-T1w, and T1w-to-

template mappings. The BOLD signal is also sampled onto the corresponding participant’s 

surfaces using mri_vol2surf (FreeSurfer), when surface reconstruction is being performed. 

Thus, these sampled surfaces can easily be transformed onto different output spaces 

available by concatenating transforms calculated throughout fMRIPrep and internal 

mappings between spaces calculated with recon-all. The composition of transforms allows 

for a single-interpolation resampling of volumes using antsApplyTransforms (ANTs). 

Lanczos interpolation is applied to minimize the smoothing effects of linear or Gaussian 

kernels48. Optionally, ICA-AROMA can be performed and corresponding “non-

aggressively” denoised runs are then produced. When ICA-AROMA is enabled, the time-

series are first smoothed and then denoised, following the description of the original 

method11.

Extraction of nuisance time-series

To avoid restricting fMRIPrep’s outputs to particular analysis types, the tool does not 

perform any temporal denoising by default. Nonetheless, it provides researchers with a 

diverse set of confound estimates that could be used for explicit nuisance regression or as 

part of higher-level models. This lends itself to decoupling preprocessing and behavioral 

modeling as well as evaluating robustness of final results across different denoising schemes. 

A set of physiological noise regressors are extracted for the purpose of performing 

component-based noise correction (CompCor10). Principal components are estimated after 

high-pass filtering the BOLD time-series (using a discrete cosine filter with 128s cut-off) for 

the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). Six 

tCompCor components are then calculated from the top 5% variable voxels within a mask 

covering the subcortical regions. This subcortical mask is obtained by heavily eroding the 

brain mask, which ensures it does not include cortical GM regions. For aCompCor, six 

components are calculated within the intersection of the aforementioned mask and the union 

of CSF and WM masks calculated in T1w space, after their projection to the native space of 

each functional run (using the inverse BOLD-to-T1w transformation). FD and DVARS are 

calculated for each functional run, both using their implementations in Nipype (following 

the definitions by Power et al.8). Three global signals are extracted within the CSF, the WM, 

Esteban et al. Page 10

Nat Methods. Author manuscript; available in PMC 2019 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and the whole-brain masks using Nilearn16. If ICA-AROMA11 is requested, the 

“aggressive” noise-regressors are collected and placed within the corresponding confounds 

files. Since the non-aggressive cleaning with ICA-AROMA is performed after extraction of 

other nuisance signals, the “aggressive” regressors can be used to orthogonalize those other 

nuisance signals to avoid the risk of re-introducing nuisance signal within regression. In 

addition, a “non-aggressive” version of preprocessed data is also provided since this variant 

of ICA-AROMA denoising cannot be performed using only nuisance regressors.

“Fieldmap-less” susceptibility distortion correction

Many legacy and current human fMRI protocols lack the MR field maps necessary to 

perform standard methods for SDC. As described in Supplementary Figure 6, the BIDS 

dataset is queried to discover whether extra acquisitions containing field map information 

are available. When no fieldmap information is found, fMRIPrep adapts the “fieldmap-less” 

correction for diffusion EPI images introduced by Wang et al.49. They propose using the 

same-subject T1w reference as the undistorted target in a nonlinear registration scheme. To 

maximize the similarity between the T2★ contrast of the EPI scan and the reference T1w, the 

intensities of the latter are inverted. To regularize the optimization of the deformation field, 

only displacements along the phase-encoding direction are allowed, and the magnitude of 

the displacements is modulated using priors. To our knowledge, no other existing pipeline 

applies “fieldmap-less” SDC to the BOLD images. Further details on the integration of the 

different SDC techniques and particularly this “fieldmap-less” option are found in 

Supplementary Note 3.

FMRIPrep is thoroughly documented, community-driven, and developed with high-
standards of software engineering

Preprocessing pipelines are generally well documented, however the extreme flexibility of 

fMRIPrep makes its proper documentation substantially more challenging. As for other large 

scientific software communities, fMRIPrep contributors pledge to keep the documentation 

thorough and updated along coding iterations. Packages also differ on the involvement of the 

community: while fMRIPrep includes researchers in the decision making process and invites 

their suggestions and contributions, other packages have a more closed model where the 

feedback from users is more limited (e.g. a mailing list). In contrast to other pipelines, 

fMRIPrep is community-driven. This paradigm allows the fast adoption of cutting-edge 

advances on fMRI preprocessing, which tend to render existing workflows (including 

fMRIPrep) obsolete. For example, while fMRIPrep initially performed STC before HMC, 

we adapted the tool to the recent recommendations of Power et al.18 upon a user’s requestii. 

This model has allowed the user base to grow rapidly and enabled substantial third-party 

contributions to be included in the software, such as the support for processing multi-echo 

datasets. The open-source nature of fMRIPrep has permitted frequent code reviews that are 

effective in enhancing the software’s quality and reliability50. Supplementary Note 4 

describes how the community interacts, discusses the code review process, and underscores 

how the modular design of fMRIPrep successfully facilitates contributions from peers. 

Finally, fMRIPrep undergoes continuous integration testing (see Supplementary Fig. SN4.1), 

ii https://neurostars.org/t/obtaining-movement-estimates-before-slice-time-correction/1007
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a technique that has recently been proposed as a means to ensure reproducibility of analyses 

in computational sciences51,52. Additional comparison points, such as the graphical user 

interface of several preprocessing workflows, are given in Supplementary Note 5.

Ensuring reproducibility with strict versioning and containers

For enhanced reproducibility, fMRIPrep fully supports execution via the Docker (https://

docker.com) and Singularity53 container platforms. Container images are generated and 

uploaded to a public repository for each new version of fMRIPrep. These containers are 

released with a fixed set of software versions for fMRIPrep and all its dependencies, 

maximizing run-to-run reproducibility in an easy way. This helps address the widespread 

lack of reporting of specific software versions and the large variability of software versions, 

which threaten the reproducibility of fMRI analyses19. Except for C-PAC, alternative 

pipelines do not provide official support for containers. The adoption of the BIDS-Apps51 

container model makes fMRIPrep amenable to a multiplicity of infrastructures and 

platforms: PC, high-performance computing, Cloud, etc.

VALIDATION OF FMRIPREP ON DIVERSE DATA

The general validation framework presented in Supplementary Figure 2 implements a testing 

plan elaborated prior the release of version 1.0 of the software. The plan is divided into two 

validation phases in which different data samples and validation procedures are applied. 

Table 2 describes the data samples used on each phase. In Phase I, we ran fMRIPrep on a 

manually selected sample of participants that are potentially challenging to the tool’s 

robustness, exercising the adaptiveness to the input data. Phase II focused on the visual 

assessment of the quality of preprocessing results on a large and heterogeneous sample.

Methodology and test plan

To ensure that fMRIPrep fulfills the specifications on reliability and scientific-software 

standards, the tool undergoes a thorough acceptance testing plan. The plan is structured in 

three phases: the first was aimed at the discovery of faults, the second at the evaluation of 

the robustness, and the final phase at the full coverage of OpenfMRI. To note, an early test 

Phase 0 was conducted as a proof of concept for the tool.

Validation Phase I – Fault-discovery testing.—During Phase I, a total of 120 subjects 

from 30 different datasets (see Table 2) were manually identified as low-quality using 

MRIQC27. Data showing substandard quality are known to likely degrade the outcomes of 

image processing, and therefore they are helpful to test software reliability. This sub-sample 

of OpenfMRI underwent preprocessing in the Stampede2 supercomputer of the Texas 

Advanced Computer Center (TACC), Austin, TX. Results were visually inspected and 

failures reported in the GitHub repository. Once software faults were fixed, fMRIPrep 1.0.0 

of was released and the Phase II of validation was launched.

Validation Phase II – Quality assurance and reliability testing.—In this second 

phase, the coverage of OpenfMRI was extended to 54 available datasets (Table 2), randomly 

selecting four participants per dataset (with replacement of participants covered in Phase I). 
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A total of 325 participantsiii were preprocessed in the Sherlock cluster of Stanford 

University, Stanford, CA. Validation Phase II integrated a protocol for the screening of 

results into the software testing (Supplementary Figure 2). Three raters evaluated each 

participant’s report following the protocol described below. Their ratings are made available 

with the corresponding reports for scrutiny.

Protocol for manual assessment.—Each visual report generated in Phase II was 

inspected by one expert (selected randomly between authors CJM, KJG and OE) at seven 

quality checkpoints: i) overall performance; ii) surface reconstruction from anatomical MRI; 

iii) T1w brain mask and tissue segmentation; iv) spatial normalization; v) brain mask and 

regions-of-interest (ROIs) for CompCor application in native BOLD space (“BOLD ROIs”); 

vi) intra-subject BOLD-to-T1w co-registration; and vii) SDC. Experts were instructed to 

assign a score on a scale from 1 (poor) to 3 (excellent) at each quality control point. A 

special rating score of 0 (unusable) was assigned to tasks that failed in a critical way 

hampering further preprocessing. Poor (1) was assigned when fMRIPrep did not critically 

failed at the task, but the outcome would likely affect negatively downstream analysis. For 

example, when “fieldmap-less” correction unwarped in the expected direction, although 

some distorted areas remained (or were overcorrected), then the acceptable (2) rating was 

assigned. Finally, excellent (3) was assigned when the expert did not notice any substantial 

defect that would indicate a lower rating. Supplementary Figure 3 shows the evolution of the 

quality ratings at the seven checkpoints at the beginning and completion of Phase II 

(indicated by versions 1.0.0 and 1.0.7, respectively).

COMPARISON TO AN ALTERNATIVE PREPROCESSING TOOL

For comparison, data were preprocessed with two alternate pipelines: fMRIPrep 1.0.8 and 

FSL’s feat 5.0.10. We then performed identical analyses on each dataset preprocessed with 

either pipeline. On the first level analysis, we calculate a 𝑡-statistic map per participant for 

the task under analysis (N=257). Second level analyses were performed in a specific 

resampling scheme to allow a statistical comparison between the pipelines: two random 

(non-overlapping) subsets of 𝑛 participants are repeatedly entered into a group level analysis. 

The first step is the experimental manipulation resulting in two conditions: (1) the data are 

preprocessed with fMRIPrep, and (2) the data are preprocessed using feat. The next two 

steps are identical for both conditions.

Preprocessing

Preprocessing with fMRIPrep is described using the corresponding citation boilerplate 

(Supplementary Box SN3.1). We configured feat using its graphical user interface (GUI) and 

generated a template.fsf file, which can be found in GitHubiv. We manually extended 

execution to all participants in our sample creating the script fsl_feat_wrapper.py that 

accompanies the template.fsf file in GitHub. As it can be seen on the template.fsf file, we 

disabled band-pass filtering and spatial smoothing to make results of preprocessing 

comparable. Both processing steps (temporal filtering and spatial smoothing) were 

iii DS000031 contains one participant only.
iv https://github.com/oesteban/misc/tree/16660df9fe80d20107b6abd7fc8ce1f4946791e6/fsl-feat
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implemented in a common, subsequent analysis workflow described below. Additionally, we 

manually configured the ICBM 152 Nonlinear Asymmetrical template41 version 2009c as 

target for spatial normalization. Finally, we manually resampled the preprocessed BOLD 

files into template space using FSL’s flirt.

Mapping the BOLD variability on standard space.—To investigate the spatial 

consistency of the average BOLD across participants, we calculated standard deviation maps 

in MNI space for the temporal average map28 derived from preprocessing with both 

alternatives.

Smoothness.—We used AFNI’s 3dFWHMx to estimate the (average) smoothness of the 

data at two check- points: i) before the first-level analysis workflow, and ii) after applying a 

5.0mm full-width half-maximum (FWHM) spatial smoothing, which was the first step of the 

analysis workflow described in the following.

First-level statistical analysis

We analyzed the “stopsignal” task data using FSL and AFNI tools, integrated in a workflow 

using Nipype. Spatial smoothing was applied using AFNI’s 3dBlurInMask with a Gaussian 

kernel of FWHM=5mm. Activity was estimated using a general linear model (GLM) with 

FSL’s feat. For the one condition under comparison (go - successful), one task regressor was 

included with a fixed duration of 1.5s. An extra regressor was added with equal amplitude, 

but the duration equal to the reaction time. These regressors were orthogonalized with 

respect to the fixed duration regressor of the same condition. Predictors were convolved with 

a double-gamma canonical hemodynamic response function. Temporal derivatives were 

added to all task regressors to compensate for variability on the hemodynamic response 

function. Furthermore, the six rigid-motion parameters (translation in three directions, 

rotation in three directions) were added as regressors to avoid confounding effects of head-

motion. We included a high-pass filter (100Hz) in FSL’s feat.

Activation-count maps.—The statistical map for each participant was binarized at 𝑧=

±1.65 (which corresponds to a two-sided test of 𝑝<0.1). Then, the average of these maps is 

computed across participants. The average negative map (percentage of subjects showing a 

negative effect with 𝑧 < −1.65) is subtracted from the average positive map to indicate the 

direction of effects. High values in certain regions and low values in other regions show a 

good overlap of activation between subjects.

Second-level statistical analysis

Subsequent to the single subject analyses, two random, non-overlapping subsamples of 𝑛 
subjects were taken and entered into a second level analysis. We vary the sample size 𝑛 of 

groups between 10 and 120. We ran the group level analyses based on two variants of the 

first level: with a prescribed smoothing of 5.0mm FWHM, and without such smoothing step. 

The resampling process was repeated 200 times per group sample-size and smoothing 

condition. To investigate the implications of either pipeline on the group analysis use-case, 

we ran the same OLS mixed modeling using FSL’s flame on each two disjoint subsets of 

randomly selected subjects and resampling repetition. We calculated several metrics of 
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spatial agreement on the resulting maps of (uncorrected) 𝑝-statistical values. We also 

calculated the spatial agreement of the thresholded statistical maps, binarized with a 

threshold chosen to control for the false-discovery rate (FDR) at 5% (using FSL’s fdr 

command).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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LIST OF ACRONYMS AND ABBREVIATIONS

BIDS Brain Imaging Data Structure

BOLD blood-oxygen-level dependent

C-PAC configurable pipeline for the analysis of connectomes

CompCor component-based noise correction

CSF cerebrospinal fluid

DVARS spatial standard deviation of the data after temporal differencing

EPI echo-planar imaging

FD framewise displacement

FDR false-discovery rate

fMRI functional MRI

FoV field-of-view

FWHM full-width half-maximum

GM gray matter

GUI graphical user interface

HCP Human Connectome Project

HMC head-motion correction

HTML hypertext markup language

ICA independent components analysis
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ICA-AROMA automatic removal of motion artifacts

MRI magnetic resonance imaging

OLS ordinary least-squares

PCA principal components analysis

ROI region-of-interest

SDC susceptibility distortion correction

STC slice-timing correction

T1w T1-weighted

TR repetition time

WM white matter
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Figure 1. FMRIPrep is an fMRI preprocessing tool that adapts to the input dataset.
Leveraging the Brain Imaging Data Structure (BIDS21), the software self-adjusts 

automatically, configuring the optimal workflow for the given input dataset. Thus, no 

manual intervention is required to locate the required inputs (one T1-weighted image and 

one BOLD series), read acquisition parameters (such as the repetition time –TR– and the 

slice acquisition-times) or find additional acquisitions intended for specific preprocessing 

steps (like field maps and other alternatives for the estimation of the susceptibility 

distortion).
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Figure 2. Integrating visual assessment into the software testing framework effectively increases 
the quality of results.
In an early assessment of quality using fMRIPrep version 1.0.0, the overall rating of two 

datasets was below the “poor” category and four below the “acceptable” level (left column 

of colored circles). After addressing some outstanding issues detected by the early 

assessment, the overall quality of processing is substantially improved (right column of 

circles), and no datasets are below the “poor” quality level. Only two datasets are rated 

below the “acceptable” level in the second assessment (using fMRIPrep version 1.0.7).
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Figure 3. FMRIPrep affords the researcher finer control over the smoothness of their analysis.
A | Estimating the spatial smoothness of data before and after the initial smoothing step of 

the analysis workflow confirmed that results of preprocessing with feat are intrinsically 

smoother. B | Mapping the standard deviation of averaged BOLD time-series displayed 

greater variability around the brain outline (represented with a black contour) for data 

preprocessed with feat. This effect is generally associated with a lower performance of 

spatial normalization28. Reference contours correspond to the brain tissue segmentation of 

the MNI atlas.
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Figure 4. The activation count maps from fMRIPrep are better aligned with the underlying 
anatomy.
The mosaics show thresholded activation count maps for the go vs. successful stop contrast 

in the “stopsignal” task after preprocessing using either fMRIPrep (top row) or FSL’s feat 

(bottom row), with identical single subject statistical modeling. Both tools obtained similar 

activation maps, with fMRIPrep results being slightly better aligned with the underlying 

anatomy.
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Table 1.

State-of-the-art neuroimaging offers a large catalog of readily available software tools. FMRIPrep integrates 

best-in-breed tools for each of the preprocessing tasks that its workflow covers, except for steps implemented 

as part of the development of fMRIPrep (in-house implementations). Tasks listed on the first column are 

described in detail in Supplementary Note 1.

Preprocessing task fMRIPrep includes Alternatives (not included within fMRIPrep)

Anatomical T1w brain-extraction antsBrainExtraction.sh (ANTs) bet (FSL), 3dSkullstrip (AFNI), MRTOOL (SPM 
Plug-in)

Anatomical surface reconstruction recon-all (FreeSurfer) CIVET, BrainSuite, Computational Anatomy (SPM 
Plug-in)

Head-motion estimation (and correction) mcflirt (FSL) 3dvolreg (AFNI), spm_realign (SPM), 
cross_realign_4dfp (4dfp), antsBrainRegistration 
(ANTs)

Susceptibility-derived distortion estimation 
(and unwarping)

3dqwarp (AFNI) fugue and topup (FSL), FieldMap and HySCO (SPM 
Plug-ins)

Slice-timing correction 3dTshift (AFNI) slicetimer (FSL), spm_slice_timing (SPM), 
interp_4dfp (4dfp)

Intra-subject registration bbregister (FreeSurfer), flirt (FSL) 3dvolreg (AFNI), antsRegistration (ANTs), 
Coregister (SPM GUI)

Spatial normalization (inter-subject co-
registration)

antsRegistration (ANTs) @auto_tlrc (AFNI), fnirt (FSL), Normalize (SPM 
GUI)

Surface sampling mri_vol2surf (FreeSurfer) SUMA (AFNI), MNE, Nilearn

Subspace projection denoising (ICA, PCA, 
etc)

melodic (FSL), ICA-AROMA Nilearn, LMGS (SPM Plug-in)

Confounds in-house implementation fsl_motion_outliers (FSL), TAPAS PhysIO (SPM 
Plug-in)

Detection of nonsteady-states in-house implementation Ad-hoc implementations, manual setting
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