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Abstract: A sequential design strategy was applied to optimize the secretion of pectinases by a
Saccharomyces cerevisiae strain, from Brazilian sugarcane liquor vat, on passion fruit residue flour
(PFRF), through solid-state fermentation (SSF). A factorial design was performed to determine the
influence variables and two rotational central composite designs were executed. The validated
experimental result was of 7.1 U mL−1 using 50% PFRF (w/w), pH 5, 30 ◦C for 24 h, under static
SSF. Polygalacturonase, pectin methyl esterase, pectin–lyase and pectate–lyase activities were 3.5;
0.08; 3.1 and 0.8 U mL−1, respectively. Shotgun proteomics analysis of the crude extract enabled the
identification of two pectin–lyases, one pectate–lyase and a glucosidase. The crude enzymatic extract
maintained at least 80% of its original activity at pH values and temperatures ranging from 2 to 8
and 30 to 80 ◦C, respectively, over 60 min incubation. Results revealed that PFRF might be a cost-
effective and eco-friendly substrate to produce pectinases. Statistical optimization led to fermentation
conditions wherein pectin active proteins predominated. To the extent of our knowledge, this is the
first study reporting the synthesis of pectate lyase by S. cerevisiae.

Keywords: response surface methodology; solid-state fermentation; carbohydrate active enzymes;
pectinolytic enzymes; nano LC-MS/MS analysis

1. Introduction

Pectinases are important enzymes to the industry and stand out due to their increasing
demand that stems from their wide application in the manufacture of agro-industrial prod-
ucts [1]. Pectinolytic enzymes are applied in various processes in the food industry, such
as fruit juice extraction and clarification; grape pretreatment for winemaking; maceration
and liquefaction of plant tissues, extraction of oil from oleaginous fruits; acceleration of
tea, coffee and cocoa fermentation; reduction of bitterness in citrus peels, among many
others [2–4].

Although pectinases are produced by plants and microorganisms, there is a greater
interest in pectinases secreted by the latter. Some advantages of the microbial sources
are the possibility of secretion induction by cultivation media, oriented biosynthesis with

Molecules 2022, 27, 4981. https://doi.org/10.3390/molecules27154981 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27154981
https://doi.org/10.3390/molecules27154981
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-6306-4998
https://orcid.org/0000-0003-3992-8474
https://orcid.org/0000-0003-2823-1305
https://orcid.org/0000-0002-8594-2667
https://orcid.org/0000-0002-5558-570X
https://doi.org/10.3390/molecules27154981
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27154981?type=check_update&version=1


Molecules 2022, 27, 4981 2 of 15

specific catalytic sites and large-scale production associated with yield optimization and
productivity, regardless of seasonal factors or high-cost substrate [3,5,6]. Yeasts have drawn
attention in the past years as a consequence of the diversity of pectinases that can be
produced by this fungal group and their biochemical plasticity, simplifying cultivation
and handling [1,7]. Among the yeast’s genera, Saccharomyces, Kluyveromyces, Cryptococcus,
Rhodotorula, Aureobasidium, Candida and Metschnikowia are noteworthy for their pectinase se-
cretion capability. The production of pectinolytic enzymes by yeasts, mainly by S. cerevisiae,
has been targeted in the later years, aiming to establish optimized, economic and sustain-
able fermentation processes [1,8], as this species has been thoroughly studied and thrives
even through adverse industrial conditions [9].

SSF may be an interesting alternative to overcome the challenge of cost-effectiveness in
enzyme production. When compared to submerged fermentation, SSF results in higher en-
zyme concentration and a possibility to use low-cost growth media—such as agro-industrial
residues—reducing the environmental impact and adding value to the residue [1,10].
Among the residues used as alternative substrates for pectinases production, wheat bran,
banana, lemon, orange, and passion fruit peels; apple core; seedless sunflower heads;
sugarcane bagasse and coffee pulp were already reported in the literature [11]. According
to the FAO Food Outlook from July 2018 [12], a little under 1500 thousand tons of pas-
sion fruit are produced per year worldwide. Brazil is the largest producer, with around
950,000 tons/year. Over 40% of the production is destined to the juice industry and around
50% of the fruits total mass is discarded as peel, which may be dried, ground and marketed
as a flour PFRF [13,14]. Passion fruit peel shows a pectin content of around 7 g 100 g−1,
considerably higher than apple, persimmon, beet pulp, orange, strawberry, tomato, and
grape, of which agro-industrial residues contain between 0.2 and 4 g 100 g−1 of pectin [15].

Considering the above, this study aimed to optimize the secretion of the pectinolytic
enzyme-complex by a previously selected S. cerevisiae strain, on PFRF, using sequential
multivariate experimental designs, as well as to characterize the enzymatic extract obtained
in the validated optimized culture conditions. As the presence of several pectinolytic
enzymes in the crude extract was evidenced, a shotgun proteomics approach was applied,
for the first time to the extent of our knowledge, to identify the set of proteins, specifically
different enzymes.

2. Material and Methods
2.1. Microorganism

Yeasts from the Microorganisms Collection of the State of Bahia, isolated from Brazilian
sugarcane liquor (cachaça) vats and identified as S. cerevisiae by analyzing their respective
DNA sequences representative of the D1/D2 region of the 26S gene from ribosomal DNA
according to [16], were kindly donated and previously selected as potential pectinases
producers [17]. Among the strains tested, the best pectinases producer was selected for
these optimization assays, and the culture was kept in microtubes with 80% of saline
solution (0.9% NaCl) and 20% of sterile glycerol and stored in a freezer at −80 ◦C (Indrel,
IULT 335 D, Londrina, PR, Brazil).

2.2. Sequential Strategy of Experimental Designs for the Production of Pectinases by SSF
2.2.1. Culture Medium and Inoculum

The assays consisted of 250 mL conical Erlenmeyer flasks containing 20 g of culture
medium, whose composition varied according to the experimental design, with the addition
of water (pH 7) or buffer (pH 5, 7, and 9) to different amounts of peptone and PFRF, to reach
the concentrations (% w/w of medium) shown in Table 1. Depending on the proportions of
PFRF and water/buffer used, the culture medium could turn out liquid or solid, generating
a submerged fermentation process or a SSF process. The flasks containing the medium
were capped with cotton and gauze and sterilized under pressure for 15 min at 121 ◦C.
A standard yeast cell suspension was prepared using turbidity as determined by the
absorbance at 600 nm (Shimadzu spectrophotometer, UV-VIS 2700, Japan) from the culture
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cultivated overnight in Sabouraud agar medium (Kasvi, São José dos Pinhais, PR, Brazil)
and progressively adjusted with saline solution to 0.7 absorbance units, which corresponded
to 108 cells/mL [18]. To each assay, 2 mL (0.1 mL/g) of standard cellular suspension
was inoculated, and the experiments were kept in a rotatory incubator (Nova Técnica,
Incubadora Shaker Refrigerada NT 715, Piracicaba, SP, Brazil), at controlled temperature
and under agitation or statically, according to the experimental design (Table 1).

Table 1. Independent variables and coded and noncoded values used in the sequential strategy of
experimental designs aiming an increased secretion of pectinase.

Coded Variable (Level) pH Agitation (rpm) Peptone (% w/w) Temperature (◦C) PFRF (% w/w)

Fractional
factorial

−1 5 0 0.0 21.0 1.0
0 7 100 0.5 28.0 6.0

+1 9 200 1.0 35.0 11.0

CCRD 1

−α (−1.68) - - 0.0 12.0 4.0
−1 - - 0.4 15.2 15.0
0 - - 1.0 20.0 28.0

+1 - - 1.6 24.7 41.0
+α (+1.68) - - 2.0 28.0 50.0

CCRD 2

−α (−1.41) - - - 12.0 4.0
−1 - - - 15.5 12.0
0 - - - 24.0 32.0

+1 - - - 32.5 52.0
+α (+1.41) - - - 52.0 60.0

2.2.2. Experimental Designs

A sequential strategy of experimental designs was applied to optimize the SSF process,
aiming for increased pectinases secretion [19]. Initially, a fractional factorial design (2n−1)
was performed, in which five independent variables (pH, agitation, temperature and
concentration of peptone and PFRF) were evaluated in three levels. The ranges studied
were selected based on the literature and are shown in Table 1.

After determining the significant variables, (p < 0.05), two central composite rotational
designs (CCRD) were performed in sequence, with three (peptone and PFRF concentrations
and temperature) and two independent variables (PFRF concentration and temperature),
respectively (Table 1). The dependent variable (response) analyzed in all designs was the
total pectinolytic activity (U mL−1), determined according to the specified in ‘Enzyme
Assays’ below. The data analysis was performed using the software STATISTICA (version
7.0) [20].

After the assays proposed by the sequential strategy of experimental designs, the
process was validated in order to verify the adequacy of the model. Thus, independent
experiments were performed in triplicates under optimized conditions. The values mathe-
matically predicted by the equation generated in CCRD-2 were compared to those obtained
with experiments in the process validation using the Student’s t-test (p < 0.05).

2.2.3. Crude Enzymatic Extract

The recovery of the crude enzymatic extract for the fractional factorial design was
performed by adding 0.5 mL of distilled water per gram of wet basis fermentation medium,
and for CCRD-1 and CCRD-2, 1 mL of acetate buffer solution (0.2 mol L−1, pH 5) per
gram of culture medium. The culture medium was centrifuged (Heraeus Megafuge, 16 R,
Canada) at 4 ◦C, 3500× g, for 15 min, for precipitation of the cellular mass and remaining
PFRF, and the supernatant (crude enzymatic extract) was aliquoted and frozen (−20 ◦C).
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2.2.4. Enzyme Assays

Total pectinolytic activity was evaluated according to the method described by [21].
One unit of pectinase activity (U mL−1) was defined as the amount (µmol) of mono galactur-
onic acid released by 1 mL of enzymatic crude extract per min. The values mathematically
predicted by the Equation (1) [22]:

Pectinase activity
(

U mL−1
)
=

[RS]× Vr

Venzymatic extract × t × M.W.
(1)

where,
[RS] = concentration of reducing sugar (mg/mL);
Vr = reaction volume (mL);
Venzymatic extract = volume of enzymatic extract (mL);
t = reaction time (min);
MW = molecular weight of the reducing sugar (mg µmol−1).
Polygalacturonase (PG) activity was determined according to the method adapted

from [23]. One unit of polygalacturonase was defined as the amount (µmol) of mono
galacturonic acid released by 1 mL of enzymatic crude extract per min. The PG activity
was calculated according to Equation (1).

Pectin methyl esterase (PME) activity was determined according to [24]. One unit
of pectin methyl esterase was defined as the amount (µmol) of mono galacturonic acid
released by 1 mL of enzymatic crude extract per min. The PME activity was calculated
according to Equation (1).

Pectin lyase (PL) activity and Pectate lyase (PTL) activity were determined according
to the adapted procedure of [1]. One unit of activity was defined as the amount of enzyme
needed to increase the medium absorbance in 1 × 10−3 absorbance unit. per min, per mL

2.2.5. Effect of pH and Temperature on the Crude Extract Activity and Stability

For optimum pH evaluation, the pH of the reaction media, as described above, ranging
from 2 to 8 (pH 2—potassium hydrochloride buffer, pH 3—glycine, pH 4 to 5—sodium
acetate and pH 6–8—sodium phosphate, all in a concentration of 0.2 mol L−1). The effect
of pH on stability was evaluated by incubating 300 µL of the enzymatic crude extract in
150 µL of the buffer with pH values ranging from 2 to 8, for 60 min and 12 h, at 8 ◦C (±3 ◦C).
After the pH treatment, the reaction was performed as described above.

The optimal temperature of the enzymatic crude extract was assessed in the range
between 20 and 80 ◦C, with 10 ◦C intervals, by conducting the reaction with the previously
selected optimal pH. The effect of the temperature on stability was studied by incubating
300 µL of the enzymatic crude extract in the same temperature range, for 60 min, in
water-baths. After the thermic treatment, the reaction was performed as described above.

2.3. Proteomic Analysis

To determine the enzymatic composition of the crude extract, a proteomic profiling
analysis of soluble proteins was carried out using a shotgun strategy via nano LC-MS/MS
analysis followed by a comparison to specific databases according to Santos et al. [25].

2.4. Protein Digestion

The proteins were treated with 100 mM dithiothreitol (Sigma-Aldrich, SP, Brazil) at
60 ◦C for 30 min for protein reduction, then alkylated with 300 mM iodoacetamide (Sigma-
Aldrich, SP, Brazil) for 30 min, and digested with trypsin (Promega, Fitchburg, WI, USA)
overnight at 37 ◦C.
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2.5. Mass Spectrometry: Nano LC-MS/MS

The mixture of peptides was re-suspended in 0.1% formic acid and analyzed in a Q
Exactive Plus mass spectrometer (Thermo Scientific, Waltham, MA USA) connected to an
Easy nLC 1000 nano-liquid chromatography system (Thermo Scientific, Waltham, MA,
USA). Peptides were loaded in a pre-column (2 cm length, 200 µm inner diameter, packed in-
house with ReproSil-Pur C18-AQ 5 µm resin—Dr. Maisch GmbH HPLC) and fractionated
in a column (25 cm length, 75 µm inner diameter, packed in-house with ReproSil-Gold C18
3 µm resin—Dr. Maisch GmbH HPLC) at a constant flow rate of 250 nL min−1.

A gradient was established using solvents A (95% H2O, 5% ACN, 0.1% formic acid)
and B (95% ACN, 5% H2O, 0.1%formic acid) to elute the peptides. The gradient started with
5% solvent B and increased to 45% during 24 min. In the next 3 min, solvent B increased to
95% and it was kept at 95% for 8 min.

Samples were analyzed using a top 15 data-dependent acquisition (DDA) method.
The operating parameters of the mass spectrometer were: spray voltage at 2.5 kV, zero flow
of sheath and auxiliary gas and 250 ◦C in the heated capillary. MS1 scan was acquired in
the Orbitrap analyzer with a m/z 350–2000 interval, 70,000 (at m/z 200) resolution, target
AGC value of 1 × 106 and maximum injection time of 100 ms. The 15 most intense ions
(charge ≥ 2) were selected and fragmented in a higher energy collisional dissociation cell
with a normalized collision energy of 30. MS2 spectra were acquired with a 17,500 (at
m/z 200) resolution, target AGC value of 1 × 105 and maximum injection time of 100 ms.
The ion selection threshold was set to 3 × 105, and dynamic exclusion was set to 45 s.

2.6. Data Analysis

Raw files were processed by the Proteome Discoverer (PD) 2.1 software (Thermo
Scientific, Waltham, MA, USA) and spectral data were searched using Sequest HT® algo-
rithm. The UniProt database limited to S. cerevisiae (strain ATCC 204508/S288c) reference
proteome set was downloaded from UniProt consortium in January 2019 (6729 entries). For
a more specific pectinase search, a pectinase database was assembled and downloaded,
also from UniProt consortium, comprising of all the pectin active related proteins from
Basidiomycota and Ascomycota Subkingdom (16,702 entries) spectral data were searched
using Sequest HT® algorithm. The parameters used in PD Sequest HT® were: full-tryptic
search space, up to two missed cleavages allowed for trypsin, precursor mass tolerance
of 10 ppm, and fragment mass tolerance of 0.05 Da. Carbamidomethylation of cysteine
was included as fixed modification, and methionine oxidation and protein N-terminal
acetylation were included as dynamic modifications. To estimate the False Discovery Rate
(FDR) of <1% and protein grouping, we used the nodes Percolator and Target Decoy PSM
and maximum parsimony, respectively. A cutoff score was established to accept a FDR of
1% at the peptide level.

The S. cerevisiae identified proteins were annotated according to gene ontology (GO)
terms, classified with Blast2GO software (v 3.0) [26] into biological processes, molecular
functions, and cellular components under the default parameters [27].

3. Results
3.1. Fractional Factorial Experimental Design

The Pareto’s chart in Figure 1 enables the verification of the significant variables for the
model and to evaluate their trend. The positive sign (+) of the independent variable factor
indicates that an increase in its value leads to an increase in the response, while the negative
sign (−) indicates that an increase in its value leads to a reduction of the response [28].
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Figure 1. Pareto’s chart for the fractional factorial experimental design.

PFRF content (variable #1) was by far the most important variable for pectinase
secretion in this experiment, with a p-value of 17.48. The pH value of the media (#2)
was not significant indicating that, within the tested range, it did not alter the response.
Results confirmed that the temperature (#3) was a significant variable, indicating increases
in temperature resulted in lower enzymatic activities, in the tested interval (21–35 ◦C).
Agitation (#4) was also significant and indicated that lower speeds were more efficient.
Among the four significant variables, the supplementation with peptone (#5) presented the
lowest value, which was unexpected and lead to an increase in the peptone concentration
in further experiments, in order to verify its influence on pectinase activity.

3.2. Central Composite Rotational Design 1 (CCRD-1)

The highest value of total pectinolytic activity achieved among the 17 assays performed
was 6.1 U mL−1, applying 28 ◦C, 28 g 100 g−1 of PFRF and 1 g 100 g−1 of peptone, followed
by 5.6 U mL−1 at 24.7 ◦C, 41 g 100 g−1 of PFRF and 1.6 g 100 g−1 of peptone; a significant
increase compared to the highest result obtained in the previous experiment, of 2.3 U mL−1.
All results may be observed in Supplementary Tables S1–S3. In Figure 2A,B the influence of
the independent variables and the interaction among them on the enzymatic activity may
be observed.

The secretion of pectinases by S. cerevisiae was affected linearly (but not quadratic) by
the PFRF of the medium and in a quadratic manner by the culture temperature (Figure 2B).
These results suggest that a higher content of flour would lead to increased pectinolytic
activity. A third experimental design (CCRD-2) aiming to optimize the most influential vari-
ables and to verify a possible increase in the secretion of the total pectinolytic activity was
elaborated, where the variable “peptone content” was eliminated and higher temperature
range and flour content were tested.
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3.3. Central Composite Rotational Design 2 (CCRD-2)

The variance analysis (ANOVA) of the response surface model determined the cal-
culated F value (11.54), a value 2.5 times higher than the tabulated F, which conferred to
the model a high significance. The quality of the regression model adjustment was tested
evaluating the determination coefficient based on r2. The CCRD-2 model presented an
elevated regression coefficient that explained 87% of the response variability. The adjusted
determination coefficient (Adj r2 = 0.74) was also high, showing a good adjustment between
the observed and expected responses (Supplementary Table S4). The higher value of total
pectinolytic activity achieved was 6.1, followed by 5.3 U mL−1, with temperatures of 24
and 32 ◦C, PFRF content of 60 and 52 g 100 g−1, respectively. There was no significant
increase in the total pectinolytic activity when compared to the previous experiment; how-
ever, similar activity values were obtained with the flour ratio increase in the absence
of peptone, confirming that supplementation was indeed unnecessary. A second-order
polynomial equation (Equation (2)) was applied to correlate the independent variables
“PFRF (f, in g 100 g−1)” and “culture temperature (t, in ◦C)” with the dependent variable
“total pectinolytic activity (U mL−1)”. The resulting surfaces may be observed in Figure 2C.

Total pectinolytic activity
(

U × mL−1
)
= −7.054 − 0.04f − 0.0006f2 + 0.77t − 0.02t2 + 0.007ft (2)

3.4. Effect of pH and Temperature on the Enzymatic Crude Extract Activity and Stability

The effect of the reaction medium’s pH and temperature on the total pectinolytic
activity of the crude enzymatic extract may be observed in Figure 3. The optimal pH
(Figure 3A) for pectinolytic activity was observed at pH 3; however, there were no signifi-
cant differences in the pH values between 2 to 5. The enzymatic extract produced in the
optimized medium was kept in several pH values for 1 or 12 h (Figure 3C,D, respectively).
In both cases, the enzymatic extract kept its residual activity above 70% of the total original
pectinolytic activity in the wide pH range tested, indicating excellent stability.
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Figure 3. Influence of (A) pH and (B) temperature in the activity and in the stability after (C) 1 h and
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letters indicate significant differences between treatments (p < 0.05).

The optimal temperature of the enzymatic extract was obtained at 70 ◦C (Figure 3B);
however, there were no significant differences in the ranges of 30–40 ◦C and 60–80 ◦C. This
study showed that the pectinolytic crude extract kept more than 80% of its original activity
in the whole range tested (except at 60 ◦C), after 60 min of thermal treatment (Figure 3E).

3.5. Pectinolytic Enzymes Activity

The presence of different pectinolytic enzymes in the crude enzymatic extract secreted
in the optimal conditions of fermentation was tested. The PG activity determined in this
study was 3.5 ± 0.5 U mL−1; the PME activity was of 0.08 ± 3 × 10−3 U mL−1; the PL
activity was of 3.1 ± 0.4 U mL−1 and the PTL activity was of 0.8 ± 3 × 10−2 U mL−1.

3.6. Proteomic Characterization

The GO analysis of the 48 identified proteins (the list of identified proteins is presented
in the Supplementary Table S5) secreted by the S. cerevisiae strain in this study is presented
in Figure 4. The proteins were classified into cellular component, molecular function and
biological process using the Blast2Go software. A total of 492 annotations is depicted,
indicating that the same protein may have been assorted into many different classes. Most
hits were found for biological process (69%) followed by cellular component. Regarding
molecular function, 30% of the annotations were associated to catalytic activity, the class
expected to be associated with the pectinolytic enzymes studied.

Analysis using the pectinase database resulted in a total of 11 proteins (presented
in Supplementary Table S6) of which five were classified as ‘uncharacterized’, probably
because they could not be matched to any of the sequences in the databank. Of the nine
identified proteins, five were not pectin-related and of the four remaining, two were pectin–
lyases, one was a pectate–lyase and one was a glucosidase, as detailed in Figure 5. Just
one PG sequence is annotated from the S. cerevisiae genome and is found in the S. cerevisiae
proteome, as downloaded from Uniprot. None of the identified proteins found in the
present study showed homology to this described sequence.
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4. Discussion
4.1. Sequential Strategy of Experimental Designs for the Production of Pectinases by SSF

Industry acceptance and application of enzymatic processes depends upon the cost
on a large-scale enzyme production. This work investigated the possibility of obtaining
pectinolytic enzymes from a selected S. cerevisiae strain using an agro-industrial residue
substrate as a possible strategy to reduce process cost.

4.2. Fractional Factorial Experimental Design

The variables that affect the enzymatic synthesis and secretion must be observed for
each fermentation process, as the optimal conditions vary among the microorganisms’
strains and the target enzymes [29].

The PFRF content, in addition to providing nutrients to the cells, was also decisive in
the resulting type of fermentation. Assays with 1 and 6% PFRF consisted of submerged
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fermentation, while assays with 11% PFRF functioned as SSF. The latter proved to be more
efficient for the pectinolytic activity secretion by the S. cerevisiae strain in this study.

The pH value of the growth medium is generally an important variable to be consid-
ered when cultivating microorganisms, as each strain has an optimal pH for better growth.
However, microorganisms have an efficient intracellular buffering capacity, thus the pH
of the medium affects mostly the secreted enzymes [30]. According to Biz et al. [31] and
Poondla et al. [27] the production of pectinases by yeasts may be maximized when the pH
is kept between 4 to 6, therefore this variable was fixed at pH 5 for the subsequent experi-
mental designs. This decision was also supported by Martos et al. [32] and Jayani et al. [33],
which found optimal PG activity and stability at pH 4 and 5 for the enzymes secreted by
Wickerhamomy cesanomalus and S. cerevisiae, respectively.

An increase in the cultivation temperature may accelerate chemical and enzymatic
reactions in the cells and speed up the cellular multiplication. However, this increase
may not exceed the maximum temperature tolerated by the microorganisms. Zakhart-
sev et al. [34] determined the S. cerevisiae optimal temperature range of fermentation as
around 31 ◦C, with an increase in growth from 26 to 31 ◦C and decrease from 33 to 40 ◦C.
Poondla et al. [23] showed maximum pectinases activity in fermentation at 30 ◦C and in-
creased activity with temperatures increasing between 4 and 30 ◦C but showed a reduction
of activity at temperatures higher than 35 to 45 ◦C. Preliminary results in this test seem to in-
dicate a greater retention of enzymatic activity at lower temperatures, which may be related
to the low thermal resistance of the enzymes secreted by the strain under study. Thus, the
following experimental design tested a temperature range including lower temperatures,
up to 12 ◦C.

The low value for the peptone concentration significance was, to some extent, unex-
pected as the reports found in the literature strongly suggested nitrogen supplementation
as an important variable for large scale enzyme production: Arévalo-Villena et al. [35];
Kaur et al. [36] and Maidana et al. [6] concluded that the addition of yeast extract, peptone,
ammonia or urea to agro-industrial residue media significantly increased the levels of
secreted enzymatic activity by yeasts. To better evaluate the effect of peptone supplementa-
tion of the culture medium, for the subsequent experimental design, the maximum peptone
content tested was doubled.

Agitation is considered an important resort in fermentation, as it leads to the homo-
geneity of the culture medium and incorporation of air [37]. In this study Consequently,
static incubation was adopted for the further assays.

4.3. Central Composite Rotational Design 1 (CCRD-1)

The peptone content, within the tested range, presented no alteration in the response
regardless of the concentration (Figure 2A). Possibly, the use of a higher PFRF content en-
sured the required amounts of nitrogen for the enzyme secretion and cellular development,
making the supplementation with peptone unnecessary. Considering the expected cost
difference between peptone and PFRF, a residue from the juice industry, it was preferable
to eliminate the use of the former and increase the content of the latter.

4.4. Central Composite Rotational Design 2 (CCRD-2)

The enzymatic activity reached in this study could be obtained in a shorter incubation
time than reported by studies available with other strains and other sources of agro-
industrial residue. The enzymatic activity obtained in a medium containing orange peel
and peanut oil in 48 h was 6.3 U mL−1 [28]. Further, Poondla et al. [23] achieved the activity
of 5.9 U mL−1 after 48 h using exclusively beef broth as a nutrient source. Jaramillo et al. [38]
determined the activity of a pectinase produced by Aspergillus niger to be 0.2 U mL−1 when
fermented at 28 ◦C, using 1% of yellow passion fruit peel as carbon source. When compared
to an assay with similar flour content (4%), the S. cerevisiae strain used in the present study
produced both 0.9 U mL−1 in CCRD-1 (assay 9) and 2 (assay 5).
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There were no significant differences in the total pectinolytic activity when PFRF was
applied in proportions ranging from 50 to 60 g 100 g−1, with incubation temperatures
between 22 and 36 ◦C, a wide range in which the enzymatic activity was maintained
(Figure 2C). Thus, in order to obtain a higher total pectinolytic activity for the lowest
production cost, the application of this S. cerevisiae strain may be recommended in a culture
medium with 50 g 100 g−1 of PFRF with water (instead of buffer-controlled pH) and no
supplementation. The fermentation may be carried out at room temperature, as long as in
the range of 22–36 ◦C. Independent experiments were performed in triplicate, applying
the optimized conditions, in order to validate the model adequacy. The maximum enzyme
activity observed was 7.1 ± 0.6 U mL−1. The activity observed with the optimized medium
showed a 300% increase compared to the higher activity observed in the first experiment
(2.3 U mL−1).

In the pursuit of low-cost formulations, PFRF was determined as a good resource
to be used for pectinase production, acting as a source of carbon and energy to support
microbial growth [38], as well as a source of pectin. According to Mohandas et al. [39] and
Maidana et al. [6], pectinase activity tends to be significantly higher when the microorgan-
ism grows in pectin added medium, in comparison to simple sugars. The passion fruit
peel shows a pectin content of around 400 mg g−1 of dry matter [15], a high content in
comparison to other food residues as reported by Müller-Maatsch et al. [40]. Besides the
pectin content, the passion fruit peel flour can reach amounts of ash, proteins, fat, and other
carbohydrates of 7.5, 4.8, 0.9, and 23.4% w/w (dry basis) respectively, according to Duarte
et al. [13]. In light of the results obtained for both variables “PFRF” and “agitation”, and
considering the advantages involved in the application of more concentrated (solid) culture
media, the subsequent designs were tested to a flour content up to 50%, resulting in solid
culture media.

4.5. Effect of pH and Temperature on the Enzymatic Crude Extract Activity and Stability

The medium pH is an important reaction variable, as it can lead to conformational
modifications of the enzyme active site, usually causing a change in activity by altering
the affinity to the substrate [41,42]. Overall, the activity showed small variations in the
tested interval, which suggests that the enzymatic extract may be composed of different
isoenzymes, that may present distinct optimal pH values, ensuring a good total pectinolytic
activity in a wide pH range. Pectinases produced by fungi generally show optimal pH in the
acid range (pH 4–5), slightly varying according to the microorganism [23,43]. Considering
that most fruits in the juice industry show pH values lower than 4, the production of
pectinolytic enzymes with optimum activity at pH 3 may offer an interesting alternative for
application in this industrial sector. The pH affects the stability of the enzymes because the
lateral chains of several amino acids act as weak acids or bases. Therefore, when subjected
to extreme pH values, both acid and alkaline, enzymes may undergo denaturation, even
irreversibly. The crude extract in this study kept its activity above 70% between pH values
from 2 to 8. This behavior may also result from the presence of multiple isoenzymes, each
of them with optimal stability in one pH range and contributing to the maintenance of the
overall pectinolytic activity. Similarly, Bennamoun et al. [43] reported 90% stability for an
exo-polygalacturonase, secreted by a Aureobasidium pullulans strain, in a wide pH range
(4–10) for up to 3 h.

The results of the influence of the temperature on the total pectinolytic activity
(Figure 3A) also suggests the presence of isoforms, with optimal temperatures at 30–40 ◦C
and 70 ◦C. The literature presents optimal temperatures for yeast pectinases in the range of
30–60 ◦C, depending on the producing microorganism [23,43]. The present study showed
optimal activity in higher temperatures when compared to other studies, a valuable charac-
teristic, as biotechnological processes performed in high temperatures offer a significantly
lower risk of microbial contamination. The increase in temperature favors the reaction
speed, since it offers more kinetic energy and, consequently, increases the number of
collisions between molecules (enzyme and substrate) [44,45]. However, typically, the
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temperature increase above specified values for each enzyme, increases their molecular agi-
tation, breaking the intermolecular bonds responsible for the proteins’ superior structures
causing denaturation and an abrupt interruption of the activity. Evidence of pectin active
isoforms produced by yeast strains have been provided by Barnby et al. [46] studying a
strain of Kluyveromyces marxianus.

The literature presents examples of pectin active enzymes with high optimal tem-
peratures and also high stability. The optimum temperature of an exo-polygalacturonase
secreted by A. pullulans was found to be 60 ◦C, which similarly presented more than 70%
stability within the range of 60–90 ◦C for 1 h [43]. In comparison to a pectinase secreted
by Geotrichum candidum, which presented around 60% residual activity in the range of
30–40 ◦C, the pectinase in this study showed higher thermal resistance and the possibility
to be employed in high temperature processes (up to 80 ◦C) for at least one hour.

4.6. Pectinolytic Enzymes Activity

Among the different pectinases, PG is the most common enzyme industrially applied
and mainly produced by filamentous fungi, which demand higher fermentation periods
in comparison to yeasts like S. cerevisiae. [47]. SSF is usually employed for filamentous
fungi the PG activity of which is generally several times higher than that from yeasts. The
fermentation of orange peel by an Aspergillus sujae strain, for 8 days, lead to 145 U mL−1

PG activity, and the fermentation of apple pomace by a Penicillium expansum strain, for four
days, achieved 1103 U mL−1 PG activity [26,48]. Even yeasts, after longer fermentations,
were able to generate higher PG activities when compared to the present study. Orange
peel fermentation by a Zygoascus hellenicus strain, for 48 h, generated 29 U mL−1 PG activity
whereas tomato pomace fermentation by an Aureobasidium pullulans strain, for 72 h, lead
to 26 U mL−1 PG activity [43,49]. Together with the higher PG activity by filamentous
fungi, a higher fermentation time is required, and despite the lower activity from yeasts,
the decreased process time might prove overall appealing.

According to Poondla et al. [23], the PME production by yeasts is normally reduced
when compared to PG. Low PME activity is interesting for minimizing the release of
methanol in the reaction medium, and even in the absence of PME, the highly methoxylated
pectin may be lyzed by PL [1].

After an extensive literature search regarding pectinase secretion by S. cerevisiae, two
studies alone pointed out the presence of PL and none made any reference to the secretion
of PTL. Gainvors et al. [50] (1994) identified PG and PME activity besides PL and the
findings by Poondla et al. [23] (2015) also included PME and PL activity, this latter in values
similar to those found in this study (4.1 U mL−1), but lower than the activity (46 U mL−1)
secreted by the filamentous fungi strain of Aspergillus brasiliensis, after 124 h fermentation
of orange peel [51] (Pili et al., 2018).

The production of PTL by yeast strains is rarely mentioned in the literature. In fact,
extensive research found only a reference to a strain of Debaryomyces nepalensis a halotolerant
food-spoiling yeast species [52].

4.7. Proteomic Characterization

The present study applied the most common way of identifying proteins from peptide
mass spectra: the database search method. In this method, proteins with known amino
acid sequences are digested ‘in silico’ and the peptides generated are transformed into
hypothetical mass spectra. When a mass spectrum of a real peptide is similar to a spectrum
belonging to a database, the peptide is identified. The search for similar mass spectra is done
by algorithms, which use scoring methods to guarantee the reliability of the identification.
A successful identification, therefore, depends on the use of databases that contain the
protein sequences (and their peptides) of the proteins that are in the sample [20]. Little is
known about the existence of PTLs produced by yeasts, as well as few databases containing
sequences of these enzymes are available, which makes it extremely difficult to identify
the pectinases present in the culture medium produced in this study. This does not mean



Molecules 2022, 27, 4981 13 of 15

that enzymes cannot be produced. Paulo et al. [29] demonstrated that different carbon
sources may generate different responses in S. cerevisiae metabolism. In their study, the
proteins related to metabolic function and transmembrane transport underwent the most
considerable changes in response to carbon source variation. Thus, the pectin-rich medium
optimized in this study may have induced a restricted enzyme production, focusing the
secretion on pectin active enzymes.

Another significant finding was that despite of PG being the highest pectinolytic
activity experimentally found, the three identified enzymes matched to the pectinase
database were lyases, one of them a PTL. These results might be related to the low efficiency
of the methods for lyase activity detection applied, that relied on UV absorption at 235 nm
of the double bonds of the reaction products. Even though the structures of the PTL were
not elucidated in this study, LC-MS/MS results corroborate the experimentally tested
pectinase activity, until now not reported for S. cerevisiae.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/molecules27154981/s1, Figure S1: Pareto chart for the influence of the tested variables in
the secretion of total pectinolytic activity (U mL−1) by S. cerevisiae using the first central composite
rotational design (CCRD-1); Figure S2: Pareto chart for the influence of the tested variables in the
secretion of total pectinolytic activity (UmL−1 by S. cerevisiae using the second central composite
rotational design (CCRD-2); Table S1: ANOVA for the influence of the tested variables in the secretion
of total pectinolytic activity (U mL−1) by S. cerevisiae using fractional factorial design; Table S2:
ANOVA for the influence of the tested variables in the secretion of total pectinolytic activity (U mL−1)
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