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Abstract

Much of the uncertainty that clouds our understanding of the world springs from the

covert values and intentions held by other people. Thus, it is plausible that specialized

mechanisms that compute learning signals under uncertainty of exclusively social ori-

gin operate in the brain. To test this hypothesis, we scoured academic databases for

neuroimaging studies involving learning under uncertainty, and performed a meta-

analysis of brain activation maps that compared learning in the face of social versus

nonsocial uncertainty. Although most of the brain activations associated with learn-

ing error signals were shared between social and nonsocial conditions, we found

some evidence for functional segregation of error signals of exclusively social origin

during learning in limited regions of ventrolateral prefrontal cortex and insula. This

suggests that most behavioral adaptations to navigate social environments are reused

from frontal and subcortical areas processing generic value representation and learn-

ing, but that a specialized circuitry might have evolved in prefrontal regions to deal

with social context representation and strategic action.

K E YWORD S

functional magnetic resonance imaging, iterated games, reinforcement learning, theory
of mind

1 | INTRODUCTION

Knowing what to do next is easier when we do not need to guess

what other people are thinking. But in our increasingly interconnected

society, there are fewer and fewer actions we can take which do not

involve assessing how the presence of others will affect the outcome

of our actions on the current state of affairs. Predicting the future

requires guessing the present, but a substantial part of the relevant

present is private to each of us (e.g., others' intentions or mood). Thus,

most decisions, such as saying what you think to a colleague or keep-

ing it to yourself, or investing your savings in biotech stocks or real

state, are fraught with uncertainty that is compounded by social fac-

tors. Understanding to what extent learning in social contexts is a spe-

cialized function is important not only because we could expedite

adaptation to different social contexts, but also because this would

shed light on the source of cognitive biases, many of which are

grounded on social preferences. In this study, we inquire into whether

there are learning mechanisms specialized in resolving uncertainty of

exclusively social origin.

Stochastic outcomes of know (risk) and unknown (uncertainty)

probabilities can both be subjectively perceived as risk, and risk is a

major modulating factor in learning (Niv et al., 2012; O'Neill &

Schultz, 2010). Although uncertainty is a pervasive feature of the

world, it is conspicuously higher in social environments of cooperating

individuals, which characterize much of human evolution, than in non-

social natural environments, which are more predictable because

probabilities are comparatively easier to estimate. High uncertainty

has even been posited to be a distinguishing feature between social
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and nonsocial environments (Mitchell, 2009). Thus, it would not be

surprising that specialized mechanisms for learning under social uncer-

tainty or noise were in place in the brain, which could have driven the

encephalization of human ancestors (Schoenemann, 2006; Shultz &

Dunbar, 2010). This is the social brain hypothesis (Ruff & Fehr, 2014),

and it is congruent with reports of social interactions being function-

ally localized in the brain (Carter et al., 2012) and agents (Baez-

Mendoza et al., 2013), in the perception of faces and bodies (Allison

et al., 2000; Peelen & Downing, 2007), and in social cognition

(Amodio & Frith, 2006).

Adaptive behavior rests on appropriately assigning value to states

and actions (Gold & Shadlen, 2007). This requires an elaborate internal

representation of the world, which includes conspecifics. Crucially,

mapping internal states and their values to actions is in general an

intractable task which is greatly exacerbated by the need to predict

the behavior of conspecifics (Frith & Frith, 2012; Yoshida et al., 2008).

Since humans are conspicuously social animals, it is plausible that they

evolved specific mechanisms to approach the problem of efficiently

deriving reliable values from social interactions (Fletcher &

Carruthers, 2012). This study attempts to elucidate to which extent

the functional aspects of value learning in social contexts, specifically

through social interactions, can be demarcated in the brain from value

learning based on simple stimulus–reward contingencies. In other

words, we ask whether learning and reward signals in social contexts

generated by specialized, domain-general, or overlapping circuits

(FeldmanHall & Shenhav, 2019). This question can be operationalized

by investigating, by way of a meta-analysis of fMRI studies, whether

the social aspect of value learning is functionally specialized enough

to warrant functional segregation (Zeki & Shipp, 1988) within the neu-

ral substrates involved in general learning.

In particular, we investigate learning processes which involve

updating state variables, such as values, through information acquired

by way of repeated observation of other's actions, as opposed to

through verbal or any kind of explicit instructions. These are typically

behaviorally relevant variables—internal or derived from any sensory

mode—that can be estimated as a statistic (in practice, the mean) of a

univariate probability distribution. This includes reward/subjective

utility, monetary value, appetitive and/or aversive states (Seymour

et al., 2005), unsigned reward/saliency (Metereau & Dreher, 2013),

probabilities of extrinsically non-rewarded stimuli (Rodriguez

et al., 2006), choice probabilities of other persons (Vanyukov

et al., 2019), observational (as opposed to experiential) learning

(Dunne et al., 2016), classical conditioning of items with emotionally

salient others (Bray & O'Doherty, 2007; Watanabe et al., 2013), trust-

worthiness, and so on. These variables underpin value-based decision

making in a wide range of situations, typically in the context of a time-

evolving stochastic learning process, and in particular in learning pro-

cess where the added uncertainty of social intermediaries hinders pre-

cise estimation of state values. Here, we will focus on the effects of

uncertainty that has a social component on learning (e.g., emotional

faces modulating learning of aversive signals; Robinson et al., 2013).

This occurs, for example, in observational learning, and in any situa-

tion that requires deploying abilities pertaining to theory of mind

(Yoshida et al., 2008), such as learning to predict other's preferences

and behaviors. Knowing whom to trust (King-Casas et al., 2005),

financial markets (Lohrenz et al., 2007; Burke, Tobler, Baddeley,

et al., 2010; Burke, Tobler, Schultz, et al., 2010), beauty contests

(Coricelli & Nagel, 2009), poker, and in general any dynamically evolv-

ing game as long as it involves learning from other's actions or

assessing the “social temperature” of groups of conspecifics, hinge on

such learning processes.

Among theories devoted to explaining how people learn to behave

efficiently and negotiate uncertainty, reinforcement learning (RL) is per-

haps the most prominent and researched. The keystone of the theoreti-

cal framework built around RL is arguably temporal difference

(TD) learning, which is an algorithm that allows agents act based on the

future state values their actions lead to, by bootstrapping itself using cur-

rent estimates. State value updates are accomplished by considering the

difference between the expected reward and the actual received reward,

where expectations account for all possible future states (Kishida &

Montague, 2012): V stþ1ð Þ¼V stþ1ð Þþαϵ,ϵ¼Rt�V stð Þ, where ε is a

(prediction) error signal, ɑ denotes learning rate, Rt is reward received

by the agent as it moves into state S at time t, and V(st) represents

value function over states st at time t. Q-learning extends the TD

learning algorithm from values associated with states V(st) to joint

action-value pairs (s,a) to which a value is assigned through a Q = Q

(s,a) function that is updated upon feedback. Action selection is

accomplished through a policy function that typically assigns higher

choice probability to action-values with high Q, such as the max or

softmax functions. Q-learning is relevant because it subsumes state

and action value learning, thus furnishing a unifying simple and locally

implementable algorithm that treats action-state values as the learned

unit. For our purposes, this enables looking upon actions and states

on equal footing, and modeling the brain decision-making mechanism

as a putative implementation of TD learning. A further generalization

of adaptive learning theories comes forth by considering off-policy

counter-factual signals (fictive errors, e.g., Lohrenz et al., 2007), as

opposed to experience-based update of values. This further comprises

situations where the subjective assessment of the missed reward for

all the actions not taken is used postfact to update learned values,

which it is likely to occur in human learning, as evinced by feelings of

regret. This allows to use prediction error (PE) signals from outcomes

that were not chosen, which in turns makes using RL in observation

learning situations straightforward. A plethora of research has consis-

tently shown that PE signals are associated with projections from

dopaminergic neurons in the midbrain into the striatum (Schultz,

2016; Schultz et al., 1997). This crucial finding affords a means to test

adaptive learning theories, such as RL, by combining fMRI data with

behavioral modeling. Because of this direct and plausible link to brain

activity, its simplicity and versatility, RL—and more generally adaptive

learning—is posited to be one of three main components of social

uncertainty resolution, along with automatic inference (such as

impression formation) and purposeful deployment of executive con-

trol (FeldmanHall & Shenhav, 2019). This, along with the abundance

of fMRI studies modeling learning with RL provides a rich testing gro-

und for our research question.
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Interactive play games (e.g., Hampton et al., 2008; Sanfey

et al., 2003; Yoshida et al., 2008) offer a fruitful setting for comparing

nonsocial with social learning of valuation. This setting provides a sim-

ple way to control the variables that govern the specification of values

and uncertainties, thereby allowing to model learning with algorithms

such as RL. Moreover, it also expedites the complex task of

pinpointing which attributes of learning are most susceptible to biases

or of social nature, through the application of theory of mind (Coricelli

et al., 2009; Hampton et al., 2008; Yoshida et al., 2008). Since the

advent of functional magnetic resonance imaging (fMRI), there has

been a boom of studies devoted to the understanding of the neural

mechanisms of decision-making in social contexts, that combine fMRI

with interactive play games. Thus, judicious selection of these studies

should afford new insights into the degree to which social learning is

specialized, and a better understanding of this process in turn would

allow to better predict how learning is biased by social preferences

and social uncertainty.

To some extent, social learning and general reward-based learning

rest on the same associative processes. General domain, higher-level,

value-based decision-making is subserved by a distributed network

encompassing at least ACC, medial prefrontal cortex (mPFC), and stri-

atum (Hampton & O'Doherty, 2007; Rushworth et al., 2007). How-

ever, similarly to expected values and rewards, PEs can also be

functionally segregated by stimulus type, including by their sociality.

For example, Valentin and O'Doherty (2009) reported evidence for at

least partial functional segregation for some types of appetitive

reward (money and juice) within the striatum. In general, midbrain

neurons projecting through the mesolimbic pathway into the ventral

striatum account for most of the activity associated to PEs, but there

is also meta-analysis evidence that specific reward types can differen-

tially engage other regions such as operculum and insula for social

rewards, amygdala for Pavlovian conditioning, and caudate for instru-

mental learning (Chase et al., 2015). Thus, there is some evidence

pointing to a dissociation of social and nonsocial learning signals by

reward type within the striatum, and by whether PEs are based on

direct (unconditional) reward, or on variables with indirect value—such

as observational learning—within the PFC. But at the same time, the

striatum (Rilling et al., 2004) and other areas that enable value-based

decision making are recruited as well in social decision-making

(Rilling & Sanfey, 2011) and it is still unclear whether dissociations are

induced by the source of uncertainty (social vs. nonsocial) as opposed

to by value type or context.

In this study, we ask whether uncertainty of social origin induces

functional segregation of signed PE signals, in the particular case

where that such uncertainty is the result of learning through media-

tion of others, whether this occurs through direct mediation or obser-

vation. Since our main focus is learning of values, our main

operational variable is the signed PE, whose main neural substrate is

the striatum. In contrast, unsigned PEs are more related to saliency

and social conflict than to learning, and are typically localized in ante-

rior cingulate cortex (ACC) and insula (Baumgartner et al., 2009;

Fukuda et al., 2019; Levorsen et al., 2021). More specifically, we focus

on the role of the uncertainty attending social contexts in learning

from error signals, but not on whether the learned values themselves

are considered social values or not. We can assess how the incorpora-

tion of social uncertainty changes general reward-based value learn-

ing, by analyzing the covariance of brain activity with feedback and

error-signaling events under different sources of uncertainty.

In summary, we focus on a type of learning that lies at the inter-

section of RL, observational learning, theory of mind, and iterated

game play (Figure 1). We searched in academic databases and

selected fMRI studies that comprised such learning tasks; and used

them to perform a meta-analysis on the location of activated foci in

the brain. The goal of fMRI meta-analyses is identifying areas of the

brain that show consistent activation across studies and conditions,

which allows to make inferences about differences in brain activity

between learning conditions under social and nonsocial uncertainty.

In contrast to similar previous fMRI meta-analyses, which focused on

general domain subjective value representation and expected values

(Bartra et al., 2013; Clithero & Rangel, 2013; Gu et al., 2019), rein-

forcement learning signals across different reward types and contexts

(Chase et al., 2015), social conformity signals (Wu et al., 2016), and

the dissociation between PE valence and surprise (Fouragnan

et al., 2018), here we aimed at learning signals, derived from any adap-

tive learning model, about a single signed variable, to study the effect

of social uncertainty on learning.

2 | METHODS

To assess differences between learning under social and nonsocial

contexts, we classified the studies into two categories: “Social” and

“Nonsocial,” where “Social” denotes a task where learning was

accomplished in a social environment characterized by social proxies

F IGURE 1 The meta-analysis focuses on the functional
specialization of learning mechanisms in the brain under uncertainty
of social and nonsocial sources. This lies at the intersection of the
fields of reinforcement learning, observational learning, theory of
mind, and iterated game play
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(other persons or surrogates) or interactions; “Nonsocial” included the

remaining studies, that satisfied the eligibility criteria. We gathered PE

and expected or predicted value maps for both categories (SPE for

social PE; NPE for nonsocial PE), where PE was defined as any learn-

ing signal; however, only PE maps were used in the analyses because

expected value maps were not consistently reported and its number

was insufficient.

2.1 | Data collection and study selection criteria

We searched for studies through the websites PubMed and Web of

Science, which aggregate multiple academic databases, on March

3, 2021. The keywords used to filter results were: (“fmri” AND “learn-
ing” AND “social”). We selected all accessible articles that satisfied

the inclusion criteria. In brief, the selection consisted of two stages:

identification, or abstract-based culling, and screening, where studies

lain aside during identification are perused to checked all inclusion

criteria (Figure 2). We also found studies by tracing citations of dis-

covered articles and references in the bibliography of reviews. If

whole-brain maps were not included in an article that satisfied the

remaining requirements, we selected it in case we could retrieve the

maps by contacting the authors. Although the keywords included the

term “social,” we found enough studies to conduct meta-analyses for

both categories. When the statistical significance level reported in a

study was unclear, we followed the recommendations of Albajes-

Eizagirre et al. (2019, section 4.3). The selected articles satisfied the

following criteria:

• Participants were healthy adult humans within the age range 18–

65 years, in nonclinical studies.

• Whole-brain results were reported. Studies that only reported

region of interest (ROI) or small volume correction (SVC) analyses

were excluded, unless their peak activation statistics exceeded the

threshold used for whole-brain analysis. This is akin to simulating a

more conservative (whole-brain) threshold being applied to subre-

gions (Müller et al., 2018).

• The task was a repeated and continuous learning paradigm where

every trial comprised a stimulus presentation upon which a predic-

tion was made, a choice, and feedback. Learning should not involve

F IGURE 2 Scheme of the process used to identify and cull articles that met the criteria of the two groups used in meta-analyses, in PRISMA
flowchart format (Moher et al., 2009). Some studies count as both social and nonsocial
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TABLE 1 The selected articles, with the type of learning signal maps included in each. When not explicit, cluster-level corrections are based
on SPM's (Friston et al., 1995) Gaussian random field theory implementation (Friston et al., 1994). When an article is found in multiple sources,
bibliography references are listed preferentially instead of search engines. The source can be either a database search engine or a bibliography.

Authors

Number

of
subjects

Number
of foci

Type

of
map Most liberal threshold Source

Notes (description of PEs, PEs
maps used, etc.)

1 Apps et al. (2015) 16 (10

female)

1 SPE Voxel-wise z >3.17, cluster

FDR p <.05

WoS

2 Behrens et al.

(2008)

24 (10) 6 SPE Voxel-wise z >3.5, nvox >50 Campbell-

Meiklejohn

et al. (2017)
10 NPE

3 Boorman et al.

(2011)

19 (10) 8 NPE Voxel-wise p <.001, nvox >10 WoS Here, both experiential and

counterfactual choices

generate PE.

4 Boorman et al.

(2013)

25 (8) 2 SPE Voxel-wise z >3.1, nvox >10 Collette et al.

(2017)7 NPE

5 Bray and

O'Doherty

(2007)

22 (13) 6 SPE Voxel-wise p <.0001, nvox >5 Chase et al.

(2015)

SPE: attractive-unattractive

conditioning; pairing of

items with other persons.

6 Brovelli et al.

(2008)

14 (7) 2 NPE Voxel-wise?, p <.01 FWER,

nvox >5

Chase et al.

(2015)

NPE: visuomotor learning. We

used only the signed

(positively correlated) PE.

7 Campbell-

Meiklejohn

et al. (2010)

28 (13) 5 SPE z >2.3, cluster FWER p <.05

(FSL default)

PubMed SPE: review outcome (agreem

> disag).

NPE: object outcome (pref >

nonpref).

5 NPE

8 Chien et al.

(2016)

32 (16) 2 NPE Voxel-wise p <.001 PubMed SVC foci excluded: none.

(using as threshold the t-

statistic [3.78] of the lowest

significant peak at whole-

brain p <.001).

9 Christopoulos and

King-Casas

(2015)

72 5 SPE p <1e�6, nvox >5 WoS SPE: other-related PE.

NPE: self-related PE.9 NPE p <1e�4, nvox >5

10 Collette et al.

(2017)

50 (25) 7 SPE Voxel-wise p <.001, cluster

FWER p <.05

PubMed SPE: agent-referential PE.

11 Cooper et al.

(2014)

38 (18) 3 SPE Voxel-wise p <.001, cluster

FWER p <.05

WoS SPE: violation of expectations

in dating.

12 Dunne et al.

(2016)

23 (10) 2 SPE Voxel-wise p <.005, cluster

FWER p <.05

WoS SPE: state prediction errors

(StatePE) used in

observational learning.

NPE: reward PE experienced.

5 NPE

13 Evans et al.

(2011)

18 (6) 4 SPE Voxel-wise p <.005, nvox >30,

cluster FWER p <.05

WoS

14 Fareri et al.

(2012)

18 (9) 6 SPE Cluster FWER p <.05 from the

(Monte Carlo) cluster level

statistical threshold

estimator plugin in

BrainVoyager (voxel-wise p

<.001, nvox >7)

Chase et al.

(2015)

15 Garvert et al.

(2015)

29 (14) 1 SPE Voxel-wise p <.01, cluster

FWER p <.05

WoS SPE: PE as surprise.

16 Gershman et al.

(2009)

16 2 NPE Cluster FWER p <.05 Chase et al.

(2015)

17 Glaescher et al.

(2009)

20 (9) 10 NPE Voxel-wise p <.001 PubMed

18 Hampton et al.

(2006)

16 (8) 3 NPE Voxel-wise p <.001 WoS NPE: posterior minus prior

correct probabilities.

(Continues)
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TABLE 1 (Continued)

Authors

Number

of
subjects

Number
of foci

Type

of
map Most liberal threshold Source

Notes (description of PEs, PEs
maps used, etc.)

19 Harris and Fiske

(2010)

15 (4) 4 SPE Voxel-wise p <.001, nvox >10 WoS SPE: pooled warmth and

competence expectancy

violation.

20 Howard-Jones

et al. (2010)

16 (6) 21 SPE Voxel-wise p <.001 Chase et al.

(2015)

SPE: egocentric PE.

20 NPE

21 Jones et al. (2011) 46 (22) 4 SPE Cluster FWER p <.05 from

AFNI permutation tests

(voxel-wise p <.005, nvox

>50)

PubMed

22 Kahnt et al.

(2009)

19 (10) 17 NPE Voxel-wise p <.001, nvox >15 Chase et al.

(2015)

23 Kahnt et al.

(2012)

23 (10) 2 NPE Cluster FWER p <.05 PubMed

24 Klucharev et al.

(2009)

21 (21) 12 SPE Voxel-wise p <.001, cluster

FDR p <.05

Apps et al.

(2015)

SPE: based on the degree of

social conflict.

SVC foci excluded: [10, –21, –
14], [�3, –15, –3], and [3, –
27, –3].

25 Levorsen et al.

(2021)

25 (25) SPE Voxel-wise p <.005, nvox >20 Other SPE: based on the degree of

social conflict.NPE

26 Li et al. (2006) 46 (24) 7 NPE Voxel-wise p <.001, nvox >3 Chase et al.

(2015)

27 Lin et al. (2012) 27 (27) 3 NPE Voxel-wise p <.001, nvox >15 PubMed NPE: in the “social” condition,
sociality is irrelevant to

learning, so it is considered

as NPE.

28 Madlon-Kay et al.

(2013)

23 (17) 6 NPE Voxel-wise p <.005, cluster

FWER p <.05

Chase et al.

(2015)

SVC foci excluded: [�10, 8,–
6], [10, 10,–8].

29 Martinez-Saito

et al. (2019)

27 (18) 10 SPE Voxel-wise p <.001 WoS

30 Metereau and

Dreher (2013)

20 (10) 18 NPE Cluster p <.05 FDR Chase et al.

(2015)

NPE: it reflects a measure of

PE saliency. We used only

the largest group of foci

(Gustatory) among all the

reported (which were

partially derived from the

same data), to avoid

correlations which could

inflate significance.

31 Niv et al. (2012) 16 (4) 5 NPE Cluster p <.05 FWER Chase et al.

(2015)

32 Nook and Zaki

(2015)

21 (18) 4 SPE Cluster FDR <.05 from

neuroelf's AlphaSim

permutation test (p <.005,

nvox >25)

WoS SPE: disagreement >

consensus.

33 O'Doherty et al.

(2003)

13 (9) 20 NPE Voxel-wise p <.001 Chase et al.

(2015)

NPE: map of jointly significant

unconditioned (US) and

conditioned stimuli (CS)

regressors.

34 Payzan-

LeNestour et al.

(2013)

17 (8) 44 NPE Cluster FWER p <.05, from

AFNI's AlphaSim (nvox

>186)

PubMed NPE: both expected and

unexpected PEs, derived

from a Bayesian model.

35 Robinson et al.

(2013)

24 (16) 6 SPE Voxel-wise p <.005 Chase et al.

(2015)

SPE: socially-mediated stress

effect on aversive PE
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more than one variable during the whole task. Thus, participants

are required to monitor, learn, and act on one single variable.

• The study included an adaptive learning model which enacts

behavior, typically a RL algorithm, but not restricted to it. RL

algorithm derivatives adapted to monitoring not only values, but

also choice or behavior probabilities and other experiential or

observational values such as trustworthiness, salience, or risk were

considered as long as the learning algorithm employed a PE-like

TABLE 1 (Continued)

Authors

Number

of
subjects

Number
of foci

Type

of
map Most liberal threshold Source

Notes (description of PEs, PEs
maps used, etc.)

(stress * valence interaction).

36 Rodriguez et al.

(2006)

15 4 NPE Voxel-wise p <.01, cluster

FWER p <.05

Chase et al.

(2015)

NPE: includes both negative

and positive feedback

events.

37 Rodriguez (2009) 14 (8) 5 NPE Voxel-wise p <.005, nvox >5 Chase et al.

(2015)

NPE: includes both

unlearnable and learnable

stimuli.

38 Schönberg et al.

(2007)

29 (15) 15 NPE Voxel-wise p <.001, nvox >5 Chase et al.

(2015)

39 Seger et al. (2010) 10 (5) 16 NPE Cluster FDR p <.05 with Brain

Voyager

Chase et al.

(2015)

40 Seymour et al.

(2005)

19 13 NPE Voxel-wise p <.001, nvox >5 Chase et al.

(2015)

NPE: includes learning about

both appetitive and aversive

rewards.

41 Sul et al. (2015) 26 (26) 3 SPE Voxel-wise p <.001, nvox >15 PubMed Although this study compares

values about self and others,

with no real feedback from

others (only learning of

probabilities), it is deemed

as SPE because these

probabilities bear on the

valuation of others.

1 NPE

42 Suzuki et al.

(2012)

36 8 SPE Cluster FWER p <.05 from

AFNI's AlphaSim (p <.005,

nvox >56)

WoS SPE: pooled simulated-other's

reward and action PEs.

43 Suzuki et al.

(2016)

24 (10) 7 SPE Cluster FWER p <.05 from

AFNI's AlphaSim (p <.005,

nvox >63)

WoS SPE: interpreted as Kullback–
Leibler divergence of the

learning signal.

44 Takemura et al.

(2011)

23 (8) 8 NPE Voxel-wise p <.001, nvox >5 Chase et al.

(2015)

NPE: only the WITH model.

45 Tanaka et al.

(2006)

18 (5) 7 NPE Voxel-wise p <.001, nvox >40 Chase et al.

(2015)

NPE: pooled RANDOM and

REGULAR treatments.

46 van den Bos et al.

(2013)

25 (13) 2 SPE Vowel-wise?, nvox >10,

cluster FWER p <.05

PubMed

47 Vanyukov et al.

(2019)

40 (25) 10 SPE Voxel-wise p <.0001, cluster

correction permutation

method 3dttest++ p <.05

WoS SPE: based on expectations

about others' policy.

48 Watanabe et al.

(2013)

20 (10) 5 SPE Voxel-wise p <.001, nvox >15 Chase et al.

(2015)

SPE: pairing of items with

emotionally salient others.

49 Zaki et al. (2011) 14 (0) 11 SPE Cluster FWER p <.05 from

Monte Carlo simulation (p

<.0005, nvox >25)

WoS SPE: reaction to the faces of

peers with varying social

rating.

50 Zhang & Gläscher

(2020)

39 (20) 3 SPE Cluster FWER p <.05 for both

cluster formation and

correction

WoS SPE: combination of directed

learning and observational

learning error signals.

Abbreviations: ?, datum not reported; FDR, false discovery rate correction; FWER, family-wise error rate correction; nvox, number of voxels in cluster;

SVC, small volume correction; WoS, web of science.
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computed as some monotonic function of the difference between

a prediction and the actual outcome. This is because we focus on

learning-related activations, a not on RL per se. The variables being

predicted could represent behaviorally relevant quantity, such as

values, of stimuli, states, actions, or even statistics (in practice,

mean or variance/risk) of probability distributions, whether these

referred to self or to other's attributes. This is deliberately

encompassing to allow the inclusion of a large enough cohort of

studies. The study should also have used these PE-like variables as

parametric modulators for the relevant task events—typically

feedback—in the design matrix of a general linear model analysis of

BOLD signal. Maps of variables anti-correlated with PEs were

excluded, that is, we used maps correlated with signed PE.

• Additionally, only for the “Social” category (26 studies found), the

learning task should occur only through repeated observation of

other person's actions, and for the “Nonsocial” category (30 stud-

ies), it should exclude such social proxies.

In total, we selected 50 studies, that included 28 experiments

with SPE maps (180 foci, 976 subjects) and 31 experiments with NPE

maps (285 foci, 713 subjects). A comprehensive list is shown on

Table 1.

2.2 | Meta-analysis estimation

2.2.1 | Activation likelihood estimation

We accomplished a meta-analysis of fMRI studies with GingerALE

3.0.2 (Eickhoff et al., 2012), which implements the activation likeli-

hood estimation (ALE) method. ALE is a type of coordinate-based

meta-analysis (CBMA, which uses solely coordinates of cluster peaks

in statistical parametric maps) that is the most widely used approach

for fMRI data meta-analysis (Samartsidis et al., 2017). Although full

statistic image data contains information that could dramatically

improve meta-analysis accuracy over peak foci data (Salimi-Khorshidi

et al., 2009), sharing of full data is rare; conversely, coordinate data is

available in databases such as NeuroSynth (Yarkoni et al., 2011),

which explains the prevalence of CBMA, whose flagship is ALE. ALE

discards information contained in the t-statistics and uses a mixture of

Gaussian distributions discretized over voxels and centered around

the reported foci locations to model the probability that specific

voxels correspond to true activations. The variance of the Gaussian

kernels was heuristically estimated empirically by Eickhoff et al.

(2009) on a single study using 21 subjects. The images containing

smoothed foci are called focus maps. The focus maps are combined

into a single map of ALE statistics, which for every voxel represent

the probability that at least one of the closest reported activations is

truly located at the voxel (Turkeltaub et al., 2012). Statistical signifi-

cance is assessed with a Monte Carlo permutation test under the null

hypothesis of uniformly random spatial distribution between studies

(Eickhoff et al., 2009). In particular, during sampling, the spatial

arrangement of activations within a study is preserved to test for

above-chance clustering between studies. This enables modeling

study identities as random effects and thus generalize results to the

population. Eickhoff et al. (2016) recommend using at least 20 experi-

ments per condition to achieve sufficient power for moderate effects

with ALE.

In single dataset analyses, ALE images (the maps of ALE statistics)

were thresholded with a cluster-forming level of p <.001 uncorrected;

the resulting ALE clusters were culled via cluster-level inference with

a family-wise error rate (FWER) correction of p <.05, which was

achieved by comparing the observed cluster size to a Monte Carlo

maximum cluster size distribution built from 5000 iterations of draw-

ing random peak locations from the gray matter template. Cluster-

level FWER correction is the most appropriate method for statistical

inference to ALE (Eickhoff et al., 2016). Conjunction analysis use the

voxel-wise minimum statistic between two cluster-thresholded ALE

images. Subtraction (contrast) images are the result of subtracting one

input image from the other and were thresholded at p <.001.

Between-group study size difference in subtraction analysis is

accounted for using a permutation test (we ran 10,000) by pooling the

foci datasets and assigning them randomly to a group (Eickhoff et al.,

2012). Anatomical labeling was supported by the Talairach Daemon

(Lancaster et al., 2000).

2.2.2 | Seed d-Mapping with Permutation of
Subject Images

CBMA methods—including ALE—test for spatial convergence of acti-

vation peaks. This roughly means that they detect regions where stud-

ies report more peaks or peaks are found more often than in other

regions. But this contrasts with typical fMRI analyses, where massive

univariate voxelwise tests detect voxels that activate, perhaps as dif-

ferences between groups. ALE convergence of peaks test relies on

spatial assumptions that data are not guaranteed to meet (voxels are

independent and have the same probability to have a false peak, but

in reality gray matter voxels covariate with their neighbors in way that

depends on tissue composition), and has lower statistical power when

there are multiple effects, which may undermine the statistical signifi-

cance of the results (Albajes-Eizagirre & Radua, 2018).

An alternative approach is to use the peak t-statistics to estimate

effect sizes, thus enabling random and fixed effects modeling, which

increases reliability and accuracy (Bossier et al., 2018). By assessing

the influence of the type of group-level model used in studies (fixed

effects, ordinary least squares, mixed effects), the type of CBMA

(ALE, fixed effects, and random effects) and the amount of studies

included in the analysis, Bossier et al. (2018) concluded that combin-

ing mixed effects models in the second stage of the GLM procedure

with random effects meta-analyses was optimal in terms of the type I

versus type II error balance and activation reliability. Among the

CBMAs that discard effect sizes, ALE is a good alternative in terms of

the balance between type I and II errors, but it requires more studies

(35, as opposed to 20 for random-effects CBMAs) to achieve similar

activation reliability (Bossier et al., 2018). The shortfalls of CBMAs,
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which discard most of the full statistical image information, can be

partly alleviated by accounting for both activations and deactivations

so that contradictory findings cancel each other (Radua & Mataix-

Cols, 2009), and through the use of effect sizes, that is, z- or t-

statistics (Radua et al., 2012). These two features, together with

subject-based permutation test to control FWER, feature in the

algorithm Seed-based d-Mapping with Permutation of Subject Images

(SDM-PSI; Albajes-Eizagirre, Solanes, Vieta, & Radua, 2019), which

can thereby implement standard voxel-wise tests. SDM-PSI uses the

AAL atlas for anatomical labeling (Tzourio-Mazoyer et al., 2002).

We employed SDM-PSI to probe the robustness of ALE results

and to capitalize on its built-in algorithms to grade the strength of

TABLE 2 Surviving activation likelihood estimation (ALE) meta-analysis clusters

Analysis type
Cluster anatomic location (%
cluster volume)

Cluster
size (mm3)

Peak

coordinates
(MNI)

Peak z
statistic Contributing studies

SPE group Right cerebrum (63.3)

Putamen (45.5)

Caudate head (37.4)

Lateral globus pallidus (5.9)

Anterior cingulate, BA 25 (2.1)

2664 14, 10, �12 4.83 (Christopoulos & King-Casas, 2015; Evans

et al., 2011; Fareri et al., 2012; Howard-

Jones et al., 2010; Jones et al., 2011;

Levorsen et al., 2021; Martinez-Saito

et al., 2019; van den Bos et al., 2013;

Watanabe et al., 2013; Zhang &

Gläscher, 2020)

Left cerebrum (100)

Caudate head (42.1)

Putamen (23.0)

Lateral globul pallidus (15.9)

Medial globus pallidus (1.6)

1288 �10, 8, 12 4.81 (Bray & O'Doherty, 2007; Campbell-

Meiklejohn et al., 2010; Levorsen

et al., 2021; Zaki et al., 2011; Zhang &

Gläscher, 2020)

NPE group Right cerebrum (100)

Putamen (36.3)

Caudate head (34.7)

Lateral globus pallidus (3.7)

Medial globus pallidus (2.9)

Anterior cingulate, BA 25 (2.9)

Caudate body (2.3)

4496 10, 10, �6 7.55 (Behrens et al., 2008; Boorman et al., 2011;

Boorman et al., 2013; Campbell-

Meiklejohn et al., 2010; Christopoulos &

King-Casas, 2015; Dunne et al., 2016;

Gläscher et al., 2009; Hampton

et al., 2006; Kahnt et al., 2009; Lin

et al., 2012; Li et al., 2006; Metereau &

Dreher, 2013; Seger et al., 2010;

Seymour et al., 2005)

Left cerebrum (100)

Putamen (53)

Lateral globus pallidus (18.2)

Caudate head (15.8)

Medial globus pallidus (6.3)

Entorhinal area, BA 34 (2.2)

5032 �12, 8, �8 6.95 (Boorman et al., 2013; Campbell-

Meiklejohn et al., 2010; Chien

et al., 2016; Christopoulos & King-

Casas, 2015; Gläscher et al., 2009;

Hampton et al., 2006; Howard-Jones

et al., 2010; Kahnt et al., 2009; Kahnt

et al., 2012; Lin et al., 2012; Li

et al., 2006; Metereau & Dreher, 2013;

Niv et al., 2012; O'Doherty et al., 2003;

Seger et al., 2010; Seymour et al., 2005;

Sul et al., 2015; Tanaka et al., 2006)

Conjunction

SPE * NPE

Right cerebrum (100)

Caudate head (41.4)

Putamen (37.8)

Lateral globus pallidus (9.9)

Anterior cingulate, BA 25 (3.6)

1376 12, 10, �12 — (Boorman et al., 2013; Campbell-

Meiklejohn et al., 2010; Evans

et al., 2011; Fareri et al., 2012; Gläscher

et al., 2009; Levorsen et al., 2021;

Martinez-Saito et al., 2019; Seger

et al., 2010; Seymour et al., 2005; Zhang

& Gläscher, 2020)

Left cerebrum (100)

Caudate head (31.9)

Putamen (29.7)

Lateral globus pallidus (22.0)

Medial globus pallidus (2.2)

984 �10, 8, �10 — (Boorman et al., 2013; Campbell-

Meiklejohn et al., 2010; Christopoulos &

King-Casas, 2015; Kahnt et al., 2012;

Levorsen et al., 2021; Lin et al., 2012;

Zhang & Gläscher, 2020)

Subtraction

SPE-NPE

No clusters survived

Subtraction

NPE-SPE

No clusters survived
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evidence via multiple robustness considerations, viz. study heteroge-

neity (I2 statistic), small-study effect (metabias test, which assesses

funnel plot asymmetry), and excess significance (which would indicate

that more studies than expected report significant results). We per-

formed voxel-wise effect size meta-analyses separately for the social

and nonsocial conditions (similarly to ALE single dataset analyses). We

also tested the (linear) effect of the dummy variable social versus non-

social through a SDM-PSI meta-regression, which assessed the covari-

ation of the predictor dummy variable {SPE = 1, NPE = 0} with voxel

activations. The data were preprocessed with SDM-PSI's (version

6.22) default gray matter correlation template (voxel size of 2� 2� 2

mm, isotropic Gaussian smoothing kernel FWHM of 20mm). SDM-

PSI accomplishes FWER correction by running a subject-base permu-

tation test that yields a distribution of the maximum statistic that is

used to threshold the meta-analysis images. All models were esti-

mated with 50 random imputations and statistical thresholding was

performed through 1000 permutations using a voxel-level FWE-

corrected threshold of p <.05.

3 | RESULTS

The ALE meta-analysis found clusters in ACC and striatum for both

social (SPE) and nonsocial prediction error signal (NPE) studies

(Table 2, Figure 3). For SPE, two clusters with 4 and 2 peaks were

found with the maximum located bilaterally in the putamen, and for

NPE two clusters with 1 and 2 peaks each with the maxima in the

right caudate head and the left lateral globus pallidus. SPE caudate

head activations were bilateral but more rostral in the right hemi-

sphere and more caudal in the left, whereas NPE striatal activations

were distributed symmetrically and extensive, including caudate

head, and the lentiform nucleus, which comprises the putamen and

the globus pallidus (Figure 3, Table 2). Thus, striatal regions were

more likely to be activated in NPE than in SPE experiments, but no

regions were more likely to be activated in SPE than in NPE experi-

ments (Table 2). The conjunction analysis yielded 2 clusters with

4 and 2 peaks (Figure 4, Table 2). These clusters indicate the loca-

tion of the strongest correlate for both social and nonsocial learning

signals.

F IGURE 3 ALE image for social (red) and nonsocial (blue) error
signal studies. Activation likelihood estimation maps were thresholded
at p <.05. Images rendered by MRIcroGL (Rorden & Brett, 2000)

F IGURE 4 Conjunction activation likelihood estimation image
between social and nonsocial groups
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The SDM-PSI meta-analyses reported two surviving clusters for

the SPE studies, and one for the NPE studies (Figure 5, Table 3). The

SPE and NPE clusters included, but were not restricted to, the homol-

ogous clusters found via ALE; in particular, extensive bilateral medial

frontal and anterior cingulate regions survived correction for both SPE

and NPE, whereas caudate head and putamen activation was bilateral

for NPE but left-lateralized for SPE; finally, bilateral (but mostly left)

insula activations survived only for SPE (Figure 5, Table 3). The SDM-

PSI meta-regression yielded one surviving cluster, in the right inferior

frontal gyrus, only for the positive tail of the {SPE = 1,NPE = 0}

dummy variable, which marks a region where voxels covariated more

when they belonged to SPE than to NPE studies (Figure 6, Table 3).

Study heterogeneity, as measured via the statistic I2, was 17.62%,

1.66%, and 34.45% for the NPE group, SPE group, and the linear

meta-regression, respectively. The funnel plots were reasonably sym-

metric for all three analyses; the metabias tests, which assess small-

study effects through funnel plot asymmetry, did not support the exis-

tence of small-study effects (NPE: z = .76, df = 29, p = .45; SPE:

z = 1.00, df = 26, p = .32; Meta-regression: z = .30, df = 57, p = .77).

Finally, there was no evidence for excess of significance (NPE:

p = .91; SPE: p = 1.00, Meta-regression: p = 1.00).

4 | DISCUSSION

The ALE meta-analysis suggested that SPE-related activations were a

subset of NPE-related activations in the striatum. However, the SDM-

PSI meta-analysis revealed a more complex picture, where extensive

bilateral medial frontal, anterior cingular cortices, and striatal areas

were shared between SPE and NPE (although striatal activations for

SPE were rather left-lateralized); and bilateral insular regions were

found only for SPE studies. The meta-regression found a single area in

right middle ventrolateral PFC (Brodmann area 45 or BA45), predic-

tive of more activation for SPE than NPE.

ALE did not find evidence in any brain region supporting a func-

tional segregation of PEs with uncertainty originated in social versus

nonsocial sources. The subtraction contrast SPE minus NPE was null,

which suggests that social learning signals are a subset of general

learning signals, and that value-updating neural mechanisms are com-

mon to both social and nonsocial values. Although the nonsocial

experiments selected covered a wider range of stimuli and task con-

texts (this does not affect the conclusion because by definition social

contexts are excluded from the nonsocial condition) there were also

no surviving clusters in the subtraction analysis NPE minus SPE

(Table 2). However, absence of evidence is not evidence of absence.

Not finding evidence for spatial segregation of learning signals via

ALE could be due to the (insufficient) spatial resolution (�3mm) or to

the massive univariate approach typical of fMRI (Levorsen

et al., 2021), if social-specific mechanisms were finely segregated or

distributed multi-modally within regions recruited for both social and

nonsocial tasks. Further, it is difficult to make a selection of learning

signals (determined by the regressor used in the fMRI analysis design

matrix) that is both liberal enough to encompass a sufficient amount

of data, and restrictive enough not to thwart the validity of the

results.

Since these considerations apply to any form of neuroimaging

meta-analysis, it is plausible that the difference between the ALE and

SDM-PSI results lie in their fundamentally different approach to sta-

tistical testing: because ALE only tests convergence of peaks, it is less

sensitive to some effects that could be readily detectable through

effect sizes. Conversely, by making use of the peak t-statistics, SDM-

F IGURE 5 Activation maps for social (red) and nonsocial (blue)
error signal studies (analogous to Figure 3) computed with Seed-
based d-Mapping with Permutation of Subject Images (SDM-PSI).
Cluster-level inference with family-wise error rate of p <.05
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TABLE 3 Surviving Seed-based d-Mapping with Permutation of Subject Images (SDM-PSI) meta-analysis clusters

Analysis type
Cluster
size (mm3)

Peak
coordinates
(MNI)

SDM-z
statistic

Local peaks

Coordinates
(MNI)

SDM-
z Anatomic location

SPE group �4, 54, 4 8.190 Left superior frontal gyrus, medial,

BA 10

�38, 22,

�12

6.712 Left inferior frontal gyrus, orbital

part, BA 47

�4, 10, �4 6.592 Left caudate nucleus, BA 25

5479 �4, 54, 4 8.190 2, 42, 8 6.318 Right anterior cingulate/

paracingulate gyri, BA 32

0, 38, 6 6.003 Left anterior cingulate/

paracingulate gyri, BA 32

4, 38, 12 5.687 Right anterior cingulate/

paracingulate gyri, BA 24

�18, 8, �16 5.387 Left olfactory cortex, BA 48

�36, 16, 0 5.347 Left insula, BA 48

�32, 20, 2 5.033 Left insula, BA 47

�12, 16, �8 4.798 Left striatum

�2, 46, 18 4.702 Left superior frontal gyrus, medial,

BA 32

�2, 24, 54 4.385 Left supplementary motor area, BA

8

2, 34, 24 4.384 Left anterior cingulate/

paracingulate gyri, BA 24

�22, 8, �6 4.117 Left lenticular nucleus, putamen, BA

48

�2, 46, 36 3.996 Left superior frontal gyrus, medial,

BA 9

2, 24, 50 3.861 Left superior frontal gyrus, medial

�2, 46, 32 3.798 Left superior frontal gyrus, medial,

BA 9

4, 28, �10 3.419 Right superior frontal gyrus, medial

orbital, BA 11

0, 26, �8 3.288 Left anterior cingulate/

paracingulate gyri

�2, 26, 40 3.277 Left superior frontal gyrus, medial,

BA 32

8, 32, �14 3.207 Corpus callosum

�6, 26, �8 3.037 Left anterior cingulate/

paracingulate gyri, BA 11

2, 12, 42 2.862 Left median cingulate/paracingulate

gyri

26, 20, �6 5.472 BA 47

38, 20, �8 5.356 Right insula, BA 47

28, 16, �8 5.331 Right lenticular nucleus, putamen,

BA 48

621 26, 20, �6 5.472 28, 14, �4 5.296 Right lenticular nucleus, putamen,

BA 48

32, 0, �2 5.289 Right lenticular nucleus, putamen,

BA 48

44, 22, 2 4.305 Right insula, BA 47
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TABLE 3 (Continued)

Analysis type
Cluster
size (mm3)

Peak
coordinates
(MNI)

SDM-z
statistic

Local peaks

Coordinates
(MNI)

SDM-
z Anatomic location

NPE group 10, 8, �2 7.488 Right anterior thalamic projections

4, 46, 0 6.916 Right superior frontal gyrus, medial,

BA 10

2, 52, 2 6.699 Right superior frontal gyrus, medial,

BA 10

6868 10, 8, �2 7.488 �2, 50, 2 6.647 Left anterior cingulate/

paracingulate gyri, BA 10

�18, 6, �6 6.422 Left striatum

4, 8, �10 6.243 Right olfactory cortex, BA 25

4, 8, �14 5.827 Right striatum

18, 8, �8 5.656 Right striatum

0, 46, 18 5.638 Left superior frontal gyrus, medial,

BA 32

34, �2, 4 5.614 Right lenticular nucleus, putamen,

BA 48

34, �8, 2 5.552 Right lenticular nucleus, putamen,

BA 48

0, 50, 16 5.340 Left superior frontal gyrus, medial

�26, �2,

�18

5.265 Left amygdala, BA 34

�26, �8,

�12

5.110 Anterior commissure

�26, 2, �18 5.085 Left amygdala, BA 34

14, 4, �8 5.061 Right striatum

20, 0, �6 4.914 Right striatum

10, 20, �12 4.784 Corpus callosum

�20, 8, �20 4.779 Left inferior frontal gyrus, orbital

part, BA 48

�32, 0, �12 4.665 BA 48

10, 12, �20 4.585 Right olfactory cortex, BA 25

8, 14, �16 4.556 Right striatum

�8, 56, �14 4.453 Corpus callosum

16, 16, �12 4.361 Right inferior network, uncinate

fasciculus

�2, 44, �10 4.207 Left superior frontal gyrus, medial

orbital, BA 11

36, 0, 14 4.071 Right insula, BA 48

26, �6, �14 3.887 Right inferior network, inferior

longitudinal fasciculus

8, 32, �14 3.693 Corpus callosum

22, �2, �18 3.469 Right amygdala, BA 34

�8, 34, �14 3.278 Left superior frontal gyrus, medial

orbital, BA 11

�26, �8, 0 3.079 Left pons

Meta-regression {SPE = 1,

NPE = 0} (positive)

44, 22, 4 2.916 Right inferior frontal gyrus,

triangular part, BA 45

174 44, 22, 4 2.916 48, 22, 2 2.647 Right inferior frontal gyrus,

triangular part, BA 45

(Continues)
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PSI can implement random effects modeling, which increases reliabil-

ity and accuracy (Bossier et al., 2018). Thus, the significance of ALE

and SDM-PSI results should be considered in light of this subtle but

important difference.

Overall, although most of the brain activations associated with

learning error signals found were shared between social and nonsocial

conditions, there was some evidence for functional segregation of

error signals of exclusively social origin during learning in right BA45

in ventrolateral PFC (vlPFC) and insula. The right BA45 is a contralat-

eral counterpart of Broca's area (left BA44 and BA45), which is active

in semantic tasks. Neuroimaging studies have shown that the right

vlPFC is a critical substrate of control (Levy & Wagner, 2011). Dis-

rupting right vlPFC with repetitive transcranial magnetic stimulation

impairs reasoning performance when logical conclusions are

incongruent with beliefs, by impairing the inhibition of irrelevant

information (Tsujii et al., 2010). The right vlPFC is also thought to be

involved in re-orienting attention to perceptual events that occur out-

side the current focus of attention (Corbetta et al., 2008) and in stop-

ping and overriding motor responses, where BA45 is specifically

associated with decision uncertainty (Levy & Wagner, 2011). Together

with our findings, this hints that BA45 may not only respond to deci-

sion uncertainty, but more so to social than nonsocial decision uncer-

tainty. At any rate, in line with previous research, striatal and medial

frontal activations were conspicuous signatures of context-

independent signed PE signals (Bartra et al., 2013; Chase et al., 2015;

Fouragnan et al., 2018; Levorsen et al., 2021; McClure et al., 2003).

Drawing from our results and extant literature, we propose a parsimo-

nious scheme that builds on the common currency hypothesis (Levy &

Glimcher, 2012) that goes beyond the distinction social/nonsocial to

account for learning, storage, and retrieval of values in the brain.

4.1 | The hourglass schema: a common currency
bottleneck

Value representation occurs primarily within ventral and medial PFC,

where it is segregated to varying extent by categories (Clithero &

Rangel, 2013) that include a distinction between social and nonsocial

(Grabenhorst & Rolls, 2011; Lieberman et al., 2019). Using a meta-

analytic approach, we found that learning-related areas were shared

between social and nonsocial conditions, except perhaps for some

evidence for social-nonsocial segregation in the form of left-

lateralized social error signals in the striatum. This is consistent with

the notion that the striatum is a general-purpose subcortical region

capable of integrating social information into coding of social action

and reward (Baez-Mendoza & Schultz, 2013; Klucharev et al., 2009;

Rilling et al., 2004). In contrast, the preceding and subsequent stages

in the stimulus-decision pipeline—perception and action—are func-

tionally specialized for different stimuli and motor commands. This

suggests a schema where value representation and learning circuits lie

at a bottleneck in the information stream flowing from stimulus to

action, and the degree of localized specialization is proportional to the

distance to the bottleneck (Figure 7, right). The existence of persistent

common-currency value representations in mPFC/OFC (Levy &

TABLE 3 (Continued)

Analysis type
Cluster
size (mm3)

Peak
coordinates
(MNI)

SDM-z
statistic

Local peaks

Coordinates
(MNI)

SDM-
z Anatomic location

54, 24, 8 2.107 Right inferior frontal gyrus,

triangular part, BA 45

2 48, 26, 18 2.278 48, 26, 18 2.278 Right inferior frontal gyrus,

triangular part, BA 45

Meta-regression {SPE = 1,

NPE = 0} (negative)

No clusters survived

F IGURE 6 Activation map for the Seed-based d-Mapping with
Permutation of Subject Images (SDM-PSI) meta-regression with
prediction dummy variable {social = 1, nonsocial = 0}, for the positive
side of the significance test. Cluster-level inference with family-wise
error rate of p <.05
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Glimcher, 2012) is motivated by their postulated privileged location

atop the cortical hierarchy of nested time scales (Hasson et al., 2015;

Kiebel et al., 2008; Murray et al., 2014). This means that values stored

in mPFC/OFC regions are among the longest lasting stored represen-

tations in the brain. The hourglass schema posits that values learned

through repeated interaction with the world are located near or at the

top of the cortical hierarchy, and that value representation and

updating mechanism for categories such as social and nonsocial are

segregated only locally within mPFC/OFC or striatum respectively,

but that a single neural circuit performs the computation of value for

both social and nonsocial events. Thus, mPFC/OFC would be a mod-

ule of common currency values (comprising sets or hypercolumns of

common currency values for different objects), that are routinely

accessed for action selection and perception and updated after feed-

back. This contrasts with the social brain hypothesis, where social

aspects of the environment are processed in a neural circuitry that

evolved specifically to deal with them (Ruff & Fehr, 2014), which

entails that social and nonsocial values are functionally segregated in

the brain (Figure 7, center). On the other hand, the hourglass

schema—with its common currency representation (in mPFC/OFC)

and updating (striatum) at the bottleneck of the stimulus-value-action

pipeline of value-based decision-making—is similar to the extended

common currency schema (Ruff & Fehr, 2014) which assumes that a

single modular neural circuit with common reward-related areas

values both social and nonsocial events (Figure 7, left).

Consistent with the thesis that value-based learning processes

are not functionally segregated by category, Behrens et al. (2008) pro-

posed that social information was acquired using the same processes

as general associative learning: two neighboring divisions of the ACC

were implicated in parallel learning of social and nonsocial information

and in using it to guide behavior, with the ventromedial prefrontal cor-

tex (vmPFC) merging evidence from both divisions to make a decision.

This concurs with the surviving clusters we found in both ALE and

SDM-PSI analyses. They also found that the middle temporal gyrus

(MTG), the right superior temporal sulcus (STS), temporoparietal junc-

tion (TPJ), and dorsomedial prefrontal cortex (dmPFC) were involved

in social valuation. The only surviving clusters in the subtraction or

meta-regression SPE-NPE was a subregion of ventrolateral PFC

(vlPFC), which suggests that social-specialized mechanisms modulat-

ing behavior are not part of the valuation bottleneck in vmPFC/OFC.

Thus, in line with studies suggesting that the learning of social values

reuses the general-domain striatal value-updating mechanisms

(Behrens et al., 2008; Grabenhorst & Rolls, 2011; Zhang &

Gläscher, 2020), we conclude that differences in how brains learn in

social contexts occur before and after the value representation stage,

and that the value-updating hub in the striatum deals in a centralized

manner with learning value, analogously to how the mPFC/OFC com-

prises the neural representation of a common currency for value

(Levy & Glimcher, 2012; Ruff & Fehr, 2014). This leads us to suggest

that functional specialization in learning values occurs outside the

common currency regions OFC and mPFC, via their efferent connec-

tions to other brain areas segregated by social context, that presum-

ably can modulate learning through cortico-striatal loops.

vmPFC/OFC sends projections to reach cingulate cortex and

adjacent prefrontal areas, receives afferents from striatum, and has

bidirectional connections with the temporal lobe (Carlson, 2013;

Price, 2006). Thus, many PFC regions that have been attributed a role

in social cognitive and affective, and mentalizing functions might do

so by tapping into the neighboring vmPFC/OFC hosting value repre-

sentations (see summary points of Rilling & Sanfey, 2011). For exam-

ple, the anterior rostral medial frontal cortex (amPFC) has been

proposed to subserving mentalizing computations about one's own

and other's mental states (Amodio & Frith, 2006). A study restricted

to the mPFC (Lieberman et al., 2019) that, via a multi-domain

approach that enabled making causal inferences, found evidence for

social processes being linked to the vmPFC and dorsomedial prefron-

tal cortex (dmPFC), self-related processes to the amPFC, and complex

contextual processing to vmPFC. Thus, both social and general

domain values, experienced pleasure, and expectations might be rep-

resented under a common value currency in the vmPFC/OFC from

where they are relayed to ACC and posterior frontal areas to guide

action selection (Grabenhorst & Rolls, 2011). In summary, there is

F IGURE 7 Candidate neural architectures subserving social and nonsocial value representation and learning. Extended common currency
schema (left), social brain or social valuation-specific schema (center), and hourglass schema (right). The extended common currency schema and
social valuation-specific schemas are based on Ruff and Fehr's (2014) homologous schemata.
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evidence supporting some degree of local functional segregation of

social and nonsocial value representations, but the value representa-

tion and learning algorithms seem to be shared.

4.2 | Are there social-specialized neural
mechanisms?

The thesis of a centralized scheme for value computation clashes with

studies standing behind social-specialized neural mechanisms (Allison

et al., 2000; Amodio & Frith, 2006; Brass et al., 2007; Frith &

Frith, 2012; Gallagher & Frith, 2003; Krajbich et al., 2009; Levorsen

et al., 2021; Lombardo et al, 2011; Samson et al., 2004; Saxe &

Wexler, 2005; Stone et al., 2002).

The evolutionary precursor of (social) cognition is sensorimotor

interaction of creatures with the environment (Varela et al., 1992): the

actions that creatures are capable of executing condition the form of

its perceptual apparatus, and vice versa. This is particularly conspicu-

ous in reactive environments (e.g., social) where the consequences of

actions are fraught with high uncertainty and potentially fatal. Since

human ancestors maneuvered social environments for millions of

years, motor control, perception, and social interactions are likely to

be at heart inextricably intertwined processes (Wolpert et al., 2003),

which in general cannot be understood separately (e.g., control and

perception of facial and manual expressions; Iacoboni et al., 2005;

Peelen & Downing, 2007; Todorov et al., 2008). Although this does

not imply that the neural processes subserving social interactions are

not specialized, most of the brain regions reported to be activated

during social decision-making are also recruited by nonsocial decision

making; these areas are chiefly PFC, ACC, anterior insula, ventral stria-

tum, and amygdala (Rilling & Sanfey, 2011).

Perhaps the most plausible neural circuits associated with social

decision-making that are candidate to social-specificity are those

involved in theory of mind, especially in the self-other distinction.

Some of the functional specialization of social representations

reported in the literature could spring from self versus other differ-

ences. Baez-Mendoza & Schulz (2013) reviewed the role of striatum

in encoding reward related information both to self and others'

actions. For self actions, striatal activity relates to movements' initia-

tion and execution (self-initiated, ordered, or both; Hollerman

et al., 2000; Schultz & Romo, 1988; Romo et al., 1992), reward receipt

and expectation (Apicella et al., 1992; Hikosaka et al., 1989; Schultz

et al., 1997), and actions that lead to reward (Kimchi et al., 2009;

Kimchi & Laubach, 2009) or not (Hollerman et al., 1998; Kawagoe

et al., 1998), conjunction of reward and actions, and reward-predicting

cues (in caudate, Kawagoe et al., 1998; Lauwereyns et al., 2002). For

others' actions, Klein and Platt (2013) showed reward type selectivity

of striatal neurons and substructures: stronger modulation of caudate

by social, and of putamen by nonsocial rewards. Although vicarious

reward in observational learning (learning from other person acting

and receiving reward) is distinguished from “pure” social-reward

(an actor is rewarded by conspecifics) and from observing-reward

(observing is rewarding itself), all engage striatal neurons (Klein &

Platt, 2013; Moll et al., 2006). During observation of others, learning

action-value comes not from direct reward, but is based on “action
observation prediction error” (dlPFC) and “outcome observation pre-

diction error” (vmPFC positive correlation, ventral striatum negative

correlation; Burke, Tobler, Baddeley, et al., 2010; Burke, Tobler,

Schultz, et al., 2010). In a task where subjects learned to predict

behavior of conspecifics, Suzuki et al. (2012) reported that observa-

tion of others' choices generated simulated-other's action PE encoded

in dmPFC/dlPFC, and a simulated-other's reward PE processed in

vmPFC. To sum up, while there are some hints of specialization

between self- and other-centered representations, the core substrate

is mostly shared.

Foremost regions ascribed to the neural substrates of theory of

mind are mPFC, superior temporal sulci, and temporal poles as “theory
of mind hubs” (Gallagher & Frith, 2003), precuneus and TPJ for

mentalizing (especially right TPJ, Frith & Frith, 2012; Saxe &

Wexler, 2005), dmPFC for others' beliefs (Jamali et al., 2021), and STS

for biological motion (Allison et al., 2000; Brass et al., 2007). The

strongest evidence for social specialization comes from neurology and

psychiatry, where it is possible to make causal inferences about the

role of particular brain regions. Social anxiety, autism, and bipolar dis-

orders are linked to abnormalities in social stimulus-evoked activa-

tions in striatum (Sripada et al., 2013), ACC (Chiu et al., 2008), and

insula (King-Casas et al., 2008), respectively. Research on autism sug-

gests that mentalizing is subserved by specialized neural mechanisms

localized in right TPJ, that can be selectively impaired (Lombardo

et al., 2011). The social origin of this abnormality is supported by

patients with autism being insensitive to social reputation (Izuma

et al., 2011). Stroke-related lesions can strongly affect social aspects

of behavior: extensive damage to OFC, temporal poles, and amygdala,

selectively impairs social reasoning after controlling for formally simi-

lar nonsocial problems (Stone et al., 2002); damage to vmPFC is asso-

ciated with lack of concern for others and insensitivity to guilt

(Krajbich et al., 2009) and with modulating behavior by accounting for

social aspects in the ultimatum game (Moretti et al., 2009); and left

TPJ is necessary for representing others' beliefs (Samson et al., 2004).

It transpires that the loss of some brain regions entails the loss of

some social skills, but not of their nonsocial analogues. Importantly,

social factors seem to modulate how social stimuli are represented

(frequently through TPJ and other temporal areas)—thereby poten-

tially modulating learning-related striatal activations (Sripada

et al., 2013)—and action selection in social contexts (through mPFC

and ACC), but the subcortical structures elicited by error signals are

not specific to social information.

4.3 | A common currency of value exchanged
between specialized representational and strategic
action modules

The emerging hazy picture of social decision making comprises a valu-

ation stage that is shared with nonsocial decision making, and a con-

stellation of associative and executive modules that are at least in part
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specific to some social stimuli and contexts. The most conspicuously

specialized modules are those involved in theory of mind and self-

other distinction, and are localized in the temporal lobe. However,

even the existence of regions that are causal effectors of theory of

mind does not imply functional specialization in theory of mind (or in

general in social tasks). This is similar to the distinction between uni-

formity and association test maps on the Neurosynth database

(Yarkoni et al., 2011; the association test map with the keyword

“social” on Neurosynth yields the brain regions temporal pole,

precuneus, dmPFC, vmPFC/OFC, ACC, TPJ, amygdala, insula, in

agreement with the studies reviewed here). Although some regions

are considered to be specifically associated with social domains, this

could be explained by social environments being typically more com-

plex (e.g., due to being noisier) than their nonsocial counterparts:

many neuroimaging studies have found that social interactions with

human players produce stronger activations than similar interactions

with computer players in several “social” brain areas (Lee, 2008).

Thus, “social” areas are more likely to subserve high-level general

domain computational modules, that are conspicuously recruited in

social situations, which are highly demanding of recursive and strate-

gic reasoning, usually through noisy inferences about other's inten-

tions (Iacoboni et al., 2005). In summary, although social decision-

making recruits many areas (Rilling & Sanfey, 2011), those areas are

unlikely to be specific to social decision-making. This is plainly articu-

lated by Stone and Gerrans (2006): “Lower-level domain-specific

mechanisms … interacting with higher-level domain-general mecha-

nisms for metarepresentation, recursion, and executive function can

account for observed patterns of deficits in both autism and neurolog-

ical patients.” Therefore, we suggest that while adaptive perception

and behavior are context, stimulus, and goal dependent—and thus

modulated by social factors—the most persistent and affective values

that drive behavior have a common substrate in OFC/vmPFC that

serves as a hub for value retrieval and updating, mainly through its

connections with temporal, adjacent prefrontal, and subcortical

regions. For example, the right TPJ often encodes socially relevant

states involving theory of mind (Frith & Frith, 2012; Saxe &

Wexler, 2005) that together with contextual information from ACC

and experiential values in vmPFC enable the integration and genera-

tion of learning signals (Zhang & Gläscher, 2020); further, in social

interactions involving gauging the influence of others' rewards, social

value could be converted to the common currency value (Fukuda

et al., 2019) such that others' values encoded in right TPJ and left

dlPFC are combined with insula activity to yield final decision value in

mPFC; finally, our results also suggest that vlPFC (BA45) responds to

decision uncertainty, but more so in social than in nonsocial learning

contexts.

5 | CONCLUSION

We suggest that mechanisms involved in learning itself are not spe-

cific to social preferences or social uncertainty, and neural modules

specialized in the representation of the multiple facets of complex

social environments are distributed mainly in temporal and medial pre-

frontal areas. Notably, these modules are not exclusive to social con-

cepts, and some are more strongly and frequently activated by social

than nonsocial situations, such as those involved in theory of mind.

This entails that higher-order association areas such as TPJ and rostral

temporal cortex, and strategic action selection areas such as mPFC

and vlPFC are the most plausible candidates for regions functionally

specialized in the representation and deployment of social prefer-

ences (Amodio & Frith, 2006; Behrens et al., 2008; Coricelli &

Nagel, 2009; Levy & Wagner, 2011; Saxe & Wexler, 2005; Zhang &

Gläscher, 2020). This is supported by evidence that social preferences

and states are represented in multiple distributed brain areas in the

form of self-referential, attitudinal, affective, and other uncertain and

internally generated social variables (Mitchell, 2009). Further, this also

suggests that the loci devoted to learning from error signals are likely

to constitute a flexible and general-purpose learning system (for a

common currency of value) whose hub sits in the dopaminergic

mesocortical pathway. Although learning and action selection in social

contexts are typically complex and higher-level cognitive process

invariably requiring explicit cognitive control, their underlying primary

infrastructure is supported by general-purpose mechanisms in the

basal ganglia (Hélie et al., 2015). Thus, although explicit metacognition

presumably evolved to enhance social skills in a relatively short time

span (Fletcher & Carruthers, 2012; Frith, 2012), these adaptations are

ostensively concerned with value representation, as opposed to with

PE signaling, and thus are restricted to association and strategic areas

in the neocortex.

There are other conceivable explanations for our not finding more

evidence of dissociation between learning under conditions of social

and nonsocial uncertainty. First, we focused specifically on error signal

events that occur exclusively during feedback; this precluded the

detection of many putative learning mechanisms occurring after feed-

back. Second, our focus on uncertainty of social origin and on learning

mechanisms severely limited the number of eligible studies, compared

with similarly-themed meta-analyses. For example, Chase et al. (2015)

conducted a meta-analysis of all tasks encompassing RL modeling,

thus bringing to bear a broader selection of fMRI studies. However,

their definition of PE was narrower, since we regarded as PE any

learned variable resting on interactions with a conspecific, regardless

of whether subjects were modeled as RL algorithms. Also, their defini-

tion of SPE was predicated on the content of reward itself (social or

nonsocial), whereas ours was predicated on the source of noise. This

is presumably the cause underlying the disparity between results;

such as the absence of frontal operculum and insula regions in the

subgroup analyses. Third, since BOLD signals reflect current input

similarly to local field potentials (Logothetis, 2008), it is possible that

there exist more areas functionally segregated by sociality from

which efferent signals contribute to the learning signals found in the

striatum. However, the literature suggests that contributions from

regions affording contextual or value signals are likely to be from

regions not directly involved in learning, but in temporally persistent

representations, that can modulate learning, like TPJ (Zhang &

Gläscher, 2020).
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In conclusion, most of the neural circuitry in value learning and

representation regions was not segregated into distinct modules

processing uncertainty (noise) of social versus nonsocial origin; how-

ever, we found some evidence supporting functional specialization in

insula for social error signals and in vlPFC for being differentially more

activated in social than in nonsocial contexts. This suggests that most

behavioral adaptations to navigate social environments are reused

from frontal and subcortical areas along the mesolimbic pathway

processing generic value representation and learning, but that special-

ized structures might have evolved in the prefrontal cortex to deal

with social context representation and strategic action. This has impli-

cations for social, developmental, and evolutionary neuroscience,

because it suggests that the mesolimbic pathway could have been

reused and deployed, with little modification, to serve the mounting

computational needs of human ancestors' brains in an increasingly

complex social environment.
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