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Abstract

CGRP, adrenomedullin (ADM), and adrenomedullin 2 (ADM2) family peptides are important

neuropeptides and hormones for the regulation of neurotransmission, vasotone, cardiovas-

cular morphogenesis, vascular integrity, and feto–placental development. These peptides

signal through CLR/RAMP1, 2 and 3 receptor complexes. CLR/RAMP1, or CGRP receptor,

antagonists have been developed for the treatment of migraine headache and osteoarthritis

pain; whereas CLR/RAMP2, or ADM receptor, antagonists are being developed for the

treatment of tumor growth/metastasis. Based on the finding that an acylated chimeric ADM/

ADM2 analog potently stimulates CLR/RAMP1 and 2 signaling, we hypothesized that the

binding domain of this analog could have potent inhibitory activity on CLR/RAMP receptors.

Consistent with this hypothesis, we showed that acylated truncated ADM/ADM2 analogs of

27–31 residues exhibit potent antagonistic activity toward CLR/RAMP1 and 2. On the other

hand, nonacylated analogs have minimal activity. Further truncation at the junctional region

of these chimeric analogs led to the generation of CLR/RAMP1-selective antagonists. A 17-

amino-acid analog (Antagonist 2–4) showed 100-fold selectivity for CLR/RAMP1 and was

>100-fold more potent than the classic CGRP receptor antagonist CGRP8-37. In addition,

we showed (1) a lysine residue in the Antagonist 2–4 is important for enhancing the antago-

nistic activity, (2) an analog consisted of an ADM sequence motif and a 12-amino-acid bind-

ing domain of CGRP exhibits potent CLR/RAMP1-inhibitory activity, and (3) a chimeric

analog consisted of a somatostatin analog and an ADM antagonist exhibits dual activities on

somatostatin and CLR/RAMP receptors. Because the blockage of CLR/RAMP signaling

prevents migraine pain and suppresses tumor growth/metastasis, further studies of these

analogs, which presumably have better access to the tumor microenvironment and nerve

endings at the trigeminal ganglion and synovial joints as compared to antibody-based thera-

pies, may lead to the development of better anti-CGRP therapy and alternative antiangio-

genesis therapy. Likewise, the use of bifunctional somatostatin-ADM antagonist analogs

could be a promising strategy for the treatment of high-grade neuroendocrine tumors by tar-

geting an antiangiogenesis agent to the neuroendocrine tumor microenvironment.
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Introduction

CLR/RAMP1, 2 and 3 complexes are cognate receptors for four peptides hormones, including

α- and β-calcitonin gene-related peptides (α- and β-CGRPs), adrenomedullin (ADM), and

adrenomedullin 2 (ADM2, or intermedin [IMD]) [1–5]. The CLR/RAMP receptor complexes

contain two transmembrane components, the calcitonin receptor-like receptor (CLR) and one

of the three receptor activity-modifying proteins (RAMP1, 2, and 3) [3–7]. Whereas CGRPs

mainly act through the CLR/RAMP1 receptor, ADM has high affinity for CLR/RAMP2 and 3

receptors [6, 8]. On the other hand, ADM2 is a weak ligand and exhibits no distinct preference

for the three CLR/RAMP receptors. Earlier studies have shown that ADM plays critical roles

in the regulation of cardiovascular development, vasotone, endothelial barrier integrity, and

tumor angiogenesis [3, 9–29]. Likewise, ADM2 is important for the regulation of vascular

lumen enlargement, and exerts vaso- and cardio-protective effects in animals with hyperten-

sion, heart failure, ischemia reperfusion injury, obesity, or insulin resistance [30–33]. By con-

trast, CGRPs are important for the regulation of nociception, hyperalgesia, and allodynia [34–

37].

Excessive release of CGRP is associated with the development of migraine headache, osteo-

arthritis pain, complex regional pain syndrome, and diabetic neuropathy [38, 39]; whereas

ADM signaling is associated with tumor growth/metastasis. As such, CLR/RAMP receptor

antagonists have been developed for the treatment of pain and tumor growth. Four distinct

approaches have been used to block CLR/RAMP signaling: (1) peptide antagonists (e.g.,

CGRP8-37 and ADM22-52) [40–44], (2) small molecule antagonists (e.g., telcagepant for

CLR/RAMP1) [25, 45, 46], (3) anti-CGRP or anti-ADM antibodies (e.g., galcanezumab and

fremanezumab) [29, 47–50], and (4) anti-CLR or anti-RAMP antibodies (e.g., erenumab) [29,

48–51]. Although several small molecule CGRP antagonists (e.g., telcagepant) are effective in

reducing migraine headache, most of them suffered concerns of liver toxicity [52]. By contrast,

anti-CGRP and anti-RAMP1 antibodies have been approved as anti-migraine therapies in

2018 [36, 39, 51–56]. On the other hand, because blockage of ADM signaling suppresses

tumor xenograft growth and metastasis in animals [26, 29, 43, 47, 49, 57], ADM antagonists

are being developed as anti-tumor/angiogenesis therapy [26, 29, 43, 47, 49, 57, 58].

Although anti-CGRP antibody therapies showed efficacy in patients, they are inadequate

for the control of severe migraine in many patients and are ineffective for reducing osteoar-

thritis pain [59–61]. Therefore, there is still a substantial unmet medical need of therapeutics

that can better control CLR/RAMP-mediated pain response and tumor growth/angiogenesis.

Because peptide antagonists have a volume of distribution ~3 times that of a typical antibody,

they have better access to target receptors at the nerve endings and the tumor microenviron-

ment. Therefore, peptide antagonists may represent alternative candidates for the development

of anti-CGRP and anti-ADM therapies.

Recently, we have discovered that an acylated chimeric ADM/ADM2 analog exhibits potent

agonistic activity for CLR/RAMP1 and 2. Based on this finding, we hypothesized that the bind-

ing domain of this chimeric analog could be a useful building block to develop novel CLR/

RAMP receptor antagonists. In addition, because N-terminal acylation, benzoylation, or

dibenzoylation of CGRP8-37 improves the affinity toward CGRP receptor [62], we further

hypothesized that acylation modification may improve the antagonistic activity of chimeric

analogs. Accordingly, we analyzed a series of acylated truncated ADM/ADM2 analogs. Consis-

tent with our hypothesis, several of these chimeric analogs exhibit potent pan-specific or CLR/

RAMP1-selectvie antagonistic activities. In addition, analysis of a chimeric analog consisted of

a somatostatin analog and an ADM antagonist motif showed the analog exhibits potent

somatostatin receptor-activation and CLR/RAMP receptor-inhibitory activities. As such, this

CLR/RAMP receptor antagonists
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new class of antagonistic analogs could be useful for the development of alternative anti-CGRP

and novel targeted antiangiogenesis therapeutics.

Materials and methods

Materials

ADM, CGRP, CGRP8-37, ADM22–52 and chimeric analogs were synthesized using solid-

phase peptide synthesis methodologies and obtained from Genscript Inc., Lifetein, or Karebay

Inc. The synthesized product was purified by analytical RP-HPLC to>95% purity. The iden-

tity of the purified products was confirmed by MS spectrometry.

Design of CLR/RAMP1 and 2 signaling assays

The bioactivity of synthetic analogs was studied using cells that stably express CLR/RAMP1

(1321N1 cells) or CLR/RAMP2 (CHO-K1 cells) receptors using CLR/RAMP1 cAMP and

CLR/RAMP2 arrestin assays from DiscoveRx (Fremont, Ca). In receptor-activation assays, the

dose-dependent stimulatory response was studied in duplicate, at 10 different concentrations.

Half maximal effective concentration (EC50) and half maximal inhibitory concentration (IC50)

were performed using 10-point dose response curves with a starting concentration of 1.0 or

10 μM and serially diluted 3-fold, in DMSO. Human β-CGRP was used as a positive control in

the CLR/RAMP1 assay, and ADM was used as a positive control in the CLR/RAMP2 assay.

Assay of CLR/RAMP1 signaling

For the analysis of signaling in CLR/RAMP1-expressing cells, cAMP Hunter cell lines were

expanded from freezer stocks [63], and cells were seeded in white walled, 384-well microplates

and incubated at 37C for the appropriate time. The activity was determined using the Disco-

veRx HitHunter cAMP XS+ assay. Media was aspirated from cells and replaced with 15 μl 2:1

HBSS/10mM Hepes:cAMP XS+ Ab reagent. Intermediate dilution of sample stocks was per-

formed to generate 4X sample in assay buffer, and 5 μl of 4X sample was added to cells and

incubated at 37C or room temperature for the appropriate time. Vehicle concentration was

1%.

For the determination of antagonistic activity, cells were pre-incubated with sample fol-

lowed by agonist challenge at the EC80 concentration. Known antagonists, including

BIBN4096BS, CGRP8-37, and ADM22-52 were used as controls. Media was aspirated from

cells and replaced with 10 μl 1:1 HBSS/Hepes:cAMP XS+ Ab reagent, and 5 μl of 4X com-

pound was added to the cells and incubated at 37C or room temperature for 30 minutes. Then,

5 μl of 4X EC80 agonist was added to cells and incubated at 37C or room temperature for the

appropriate time.

After compound incubation, assay signal was generated through incubation with 20 μl

cAMP XS+ ED/CL lysis cocktail for 1 hr followed by incubation with 20 μl cAMP XS+ EA

reagent for 3 hr at room temperature. Microplates were read with a PerkinElmer instrument

for chemiluminescent signal detection. The compound activity was analyzed using a CBIS data

analysis suite (ChemInnovation, CA). For agonist mode assays, percentage activity was calcu-

lated using the following formula: % Activity = 100% x (mean RLU of test sample—mean RLU

of vehicle control)/(mean MAX control ligand—mean RLU of vehicle control). For antagonis-

tic activity assays, percentage inhibition was calculated using the following formula: % Inhibi-

tion = 100% x (1 - (mean RLU of test sample—mean RLU of vehicle control)/(mean RLU of

EC80 control—mean RLU of vehicle control)).

CLR/RAMP receptor antagonists
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Assay of CLR/RAMP2 receptor signaling

The CLR/RAMP2 signaling was assayed using the CLR/RAMP2 PathHunter β-Arrestin

assay [64]. In this assay, the GPCR was fused in frame with a small enzyme donor fragment

ProLink (PK) and co-expressed in cells stably expressing a fusion protein of β-arrestin and

an N-terminal deletion mutant of β-galactosidase (i.e., enzyme acceptor or EA). Activation

of the CLR/RAMP2 stimulates binding of β-arrestin to the PK-tagged receptor and leads to

an increase in enzyme activity that can be measured using chemiluminescent PathHunter

Detection Reagents. PathHunter cell lines were seeded in white walled, 384-well microplates

and incubated at 37C prior to testing. For agonist determination, intermediate dilution of

sample stocks was performed to generate 5X sample in assay buffer, and 5 μl of 5X sample

was added to cells and incubated at 37C for 90 minutes. Vehicle concentration was 1%. For

antagonistic activity determination, cells were pre-incubated with antagonist followed by

agonist challenge at the EC80 concentration. Assay signal was generated through a single

addition of 12.5 or 15 μl (50% v/v) of PathHunter Detection reagent cocktail, followed by 1

hr incubation at room temperature.

Assay of somatostatin receptor 2 (SSTR2) signaling

The effect of somatostatin-related peptides on somatostatin receptor 2 (SSTR2) signaling was

assayed using the cAMP Hunter CHO-K1 SSTR2 Assay (DiscoveRx Inc.). Cells overexpressing

SSTR2 were cultured and assayed using the agonistic mode as described for the study of CLR/

RAMP1 receptor signaling. The functional status of the receptor was monitored by measuring

the cellular cAMP levels using a gain-of-signal competitive immunoassay based on a β-galacto-

sidase enzyme fragment complementation method.

Results

Design of CLR/RAMP receptor agonists and antagonists

In an effort to characterize the interaction of ADM2 with CLR/RAMP receptors, we found

that an acylated chimeric ADM/ADM2 analog (Agonist 1, Fig 1) potently stimulates CLR/

RAMP1 and 2 signaling (Table 1). The receptor-activation activity of this analog was dis-

tinctly different from those of wild-type CGRP, ADM, and ADM2, which are not acylated

(Table 1; Fig 2). The EC50 of wild-type ADM (i.e., ADM1-52 or ADM14-52) for CLR/

RAMP2 is ~9–12 nM; whereas the EC50 for ADM2 was 70 nM (Fig 2A). ADM and ADM2

Fig 1. Sequence alignment of CLR/RAMP receptor agonists. The sequence alignment includes CGRP (blue letters), adrenomedullin 14–52 (ADM14-52; red

letters), adrenomedullin 2 (ADM2; black letters), as well as Agonists 1, 2 and 3. The N-terminal cysteines that form a disulfide ring are indicated by a yellow

background. The region that is critical for the derivation of truncated ADM/ADM2 antagonists is indicated by a green background. The origin of individual

residues in chimeric analogs is indicated by the color of residues. The N-terminal modifications, including palmitoylation (Pal) and lysine-conjugated

palmitoylation (Pal-K or K(pal)), are indicated by brown letters.

https://doi.org/10.1371/journal.pone.0216996.g001
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had low potencies on the activation of CLR/RAMP1 with EC50 values >100 nM. On the

other hand, CGRP had an EC50 of 1.1–3.4 nM for CLR/RAMP1. By contrast, the EC50 values

for activating CLR/RAMP1 and 2 by the chimeric Agonist 1 was ~0.5 and 1 nM, respectively

(Fig 2B). By contrast, the EC50 of a corresponding analog without an acylation modification

(Agonist 2) was 31 and 18 nM for CLR/RAMP1 and 2, respectively. Acylation modification

of a wild-type ADM also increased the potency of the ADM analog (Agonist 3), but to a lim-

ited extent.

Because the activity of CGRP/ADM/ADM2 family peptides can be partly attributed to

the degree of interaction between the C-terminal binding domain and the receptor extracel-

lular domain (ECD) [65], we hypothesized that the binding domain of Agonist 1 could pos-

sess unique antagonistic activity toward CLR/RAMP receptors. In addition, because

conjugation of a hydrophobic moiety at the N-terminus of CGRP8-37 improves receptor-

interacting affinity, we appended a palmitic acid at the N-terminus of various chimeric ana-

logs (Fig 3).

Truncated chimeric ADM/ADM2 analogs potently inhibit CLR/RAMP1

and/or 2 signaling

CGRP8-37 and ADM22-52 are classic antagonists that exhibit strict preference for CLR/

RAMP1 and 2, respectively (Fig 2). Analysis of receptor signaling at the antagonistic mode

showed that ADM22-52 inhibits CGRP-mediated CLR/RAMP1 and ADM-stimulated CLR/

RAMP2 signaling with IC50 values of 6600 and 256 nM, respectively (Table 2, Fig 4A). On the

other hand, CGRP8-37 had IC50 values of 133 and >10000 nM, for CLR/RAMP1 and 2,

respectively.

Analysis of an acylated 31-amino–acid ADM/ADM2 chimera (Antagonist 1–1, Table 2)

and analogs with additional deletion at the junctional region of Antagonist 1–1 (i.e., Antago-

nists 1–2 [28 residues] and 1–3 [27 residues]) showed these chimeras exhibit potent antagonis-

tic activity for both CLR/RAMP1 and 2 (Fig 4B). The IC50 values of these chimeras for CLR/

RAMP1 were 10-fold lower than that of CGRP8-37. Likewise, the IC50 values for CLR/RAMP2

were 5- to 50-fold lower than that of ADM22-52. By contrast, a nonacylated analog of Antago-

nist 1–1 (Antagonist 1–4), a CGRP/ADM chimera (Antagonist 1–5), and an ADM/ADM2/

Table 1. Bioactivity of synthetic CLR/RAMP1 and 2 receptor agonists.

Identity CLR/RAMP1 CLR/RAMP2

EC50 (nM) Max Activity EC50 (nM) Max Activity

% of control % of control

Wild-type ADM, ADM2, and CGRP

ADM14-52 540 69 9 102

ADM1-52 564 63 12 91

ADM2 116 72 70 67

CGRP 1.1–3.4 103

Modified agonistic peptides

Agonist 1 0.5 48 1 119

Agonist 2 31 95 18 115

Agonist 3 24 53 3 78

The agonistic activity is described as EC50 and the maximum activity in % of a positive control. The positive controls for CLR/RAMP1 and 2 signaling are CGRP and

ADM, respectively.

https://doi.org/10.1371/journal.pone.0216996.t001

CLR/RAMP receptor antagonists
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ADM chimera (Antagonist 1–6) showed lower bioactivity when compared with acylated

ADM/ADM2 chimeras.

An ADM-derived motif is important for enhancing the antagonistic

activity of chimeric analogs

To determine whether the enhanced activity of chimeric antagonists is affected by additional

residue deletion, we studied analogs that contain further truncation at the junctional region of

chimeric analogs (i.e., Antagonists 2–1 to 2–4 [17–22 residues]; Fig 3). These additional trun-

cations had minimal effects on the antagonistic activity toward CLR/RAMP1 but reduced the

antagonistic activity toward CLR/RAMP2 when compared to Antagonists 1–2 and 1–3

(Table 3, Fig 5). As such, these short analogs represent CLR/RAMP1-selective antagonists.

Of interest, sequence comparison showed the N-terminal ADM sequence of the 17-amino-

acid Antagonist 2–4 is only one amino acid different from the corresponding region of ADM2

(VQKL in Antagonist 2–4 vs. VQNL in ADM2; highlighted with a green background in Fig 1),

Fig 2. Dose-response curves of chimeric agonists. The stimulatory effects of positive controls (i.e., ADM14-52, ADM1-52, ADM2, and CGRP-β)(A) and

Agonists 1, 2 and 3 (B) on CLR/RAMP1 (upper panel) and 2 (lower panel) signaling are presented as dose-response curves. CGRP-β is a strict CLR/RAMP1

receptor agonist; only the effect on CLR/RAMP1 signaling is presented.

https://doi.org/10.1371/journal.pone.0216996.g002

CLR/RAMP receptor antagonists
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suggesting this residue may play a role in shaping the bioactivity of Antagonist 2–4. Consistent

with this hypothesis, substitution of the lysine residue in Antagonist 2–4 with an asparagine

residue led to a 1000-fold reduction of the CLR/RAMP1-inhibitory activity (i.e., Antagonist

2–5).

Fig 3. Sequence alignment of chimeric antagonists. The sequence alignment includes CGRP8-37 (blue letters), ADM22-52 (red letters), Antagonists 1–1 to

1–6, Antagonists 2–1 to 2–5, and Antagonist 3–1. The origin of individual residues in chimeric analogs is indicated by the color of residues. The N-terminal

modifications, including palmitoylation (Pal) and lysine-conjugated palmitoylation (Pal-K), are indicated by brown letters. Sequence gaps are indicated by dash

lines.

https://doi.org/10.1371/journal.pone.0216996.g003

Table 2. Antagonistic activity of chimeric CLR/RAMP receptor antagonists.

Identity CLR/RAMP1 CLR/RAMP2

IC50 (nM) Max Activity IC50 (nM) Max Activity

% of control % of control

BIBN4096 0.05 105 >100 0

Wild-type peptides

ADM22-52 6600 57 256 105

CGRP8-37 133 95 >10,000 15

Pan-specific chimeric antagonists

Antagonist 1–1 9.9 101 47 100

Antagonist 1–2 3.2 94 4.9 104

Antagonist 1–3 7 93 7.1 100

Low-potency chimeric antagonists

Antagonist 1–4 1123 106 289 101

Antagonist 1–5 1878 99 117 100

Antagonist 1–6 152 101 7.3 101

The antagonistic activity on CGRP-mediated CLR/RAMP1 and ADM-mediated CLR/RAMP2 signaling is described as IC50 and the maximum activity in % of a positive

control. The potency of a small molecule CGRP antagonist, BIBN4096, is provided for comparison.

https://doi.org/10.1371/journal.pone.0216996.t002

CLR/RAMP receptor antagonists
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In addition, studies of an ADM/CGRP chimera that contains an N-terminal ADM motif

and a C-terminal 12-amino-acid fragment of CGRP (i.e., CGRP26-37; Antagonist 3–1,

Table 3), which was known to have minimal bioactivity, showed this chimera has an IC50 at

the subnanomolar range for CLR/RAMP1, and an IC50 that is>200 nM for CLR/RAMP2.

Chimeric unimolecular somatostatin-ADM antagonist analog exhibits dual

activities on somatostatin and CLR/RAMP receptors

Because a targeted molecule could provide more specific therapeutic activity, ADM antago-

nists that contain a somatostatin receptor-interacting motif could sequester the antagonist to

the neuroendocrine tumor (NET) microenvironment and be useful for the treatment of high-

grade NETs which express high levels of somatostatin receptors. Analysis of a chimeric analog

that contains the somatostatin analog octreotide ((D-Phe)CF(D-Trp)KTCT) and a 28-amino-

acid ADM antagonist sequence (K(Pal)VQKLAHQIYQFTDKDVAPRSKISPQGY) showed it

possesses potent somatostatin receptor 2 (SSTR2)-activation activity and inhibitory activities

on CLR/RAMP1 and 2 signaling (Table 4, Fig 6). The EC50 for activating SSTR2 is similar to

Fig 4. Dose-response curves of chimeric antagonists. The inhibitory effects of positive controls (i.e., CGRP8-37, ADM22-52, and BIBN4096) (A) and

Antagonists 1–1 to 1–6 (B) on CLR/RAMP1 (upper panel) and 2 (lower panel) signaling are presented as dose-response curves in the presence of an EC80 dose

of CGRP or ADM, respectively.

https://doi.org/10.1371/journal.pone.0216996.g004

CLR/RAMP receptor antagonists

PLOS ONE | https://doi.org/10.1371/journal.pone.0216996 May 31, 2019 8 / 20

https://doi.org/10.1371/journal.pone.0216996.g004
https://doi.org/10.1371/journal.pone.0216996


that of somatostatin 1–28, and the inhibitory effects on CLR/RAMP1 and 2 signaling are at the

same order as the pan-specific antagonistic analogs in Table 2.

Discussion

Based on the analysis of CLR/RAMP1 and 2 signaling, we showed that (1) acylated ADM/

ADM2 chimeras exhibit antagonistic activities one to two orders stronger than those of

CGRP8-37 and/or ADM22-52, and (2) chimeric octreotide-ADM antagonist analog exhibits

Table 3. Antagonistic activity of miniaturized CLR/RAMP receptor antagonists.

Identity CLR/RAMP1 CLR/RAMP2

IC50 (nM) Max Activity IC50 (nM) Max Activity

% of control % of control

BIBN4096 0.05 105 >100 0

Wild-type peptides

ADM22-52 6600 57 256 105

CGRP8-37 133 95 >10,000 15

Chimeric ADM/ADM2 analogs

Antagonist 2–1 7.3 95 61 100

Antagonist 2–2 4.7 94 50 101

Antagonist 2–3 6.7 95 64 103

Antagonist 2–4 3.8 98 462 101

Antagonist 2–5 3837 43 >10,000 14

Chimeric ADM/CGRP analog

Antagonist 3–1 <0.5 100 214 80

The antagonistic activity on CGRP-mediated CLR/RAMP1 and ADM-mediated CLR/RAMP2 signaling is described as IC50 and the maximum activity in % of a positive

control. The potency of a small molecule CGRP antagonist, BIBN4096, is provided for comparison.

https://doi.org/10.1371/journal.pone.0216996.t003

Fig 5. Dose-response curves of miniaturized antagonists. The inhibitory effects of Antagonists 2–1 to 2–5, and 3-1on CLR/RAMP1 (upper panel) and 2 (lower panel)

signaling are presented as dose-response curves in the presence of an EC80 dose of CGRP or ADM, respectively.

https://doi.org/10.1371/journal.pone.0216996.g005

CLR/RAMP receptor antagonists
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dual regulatory activities toward somatostatin and CLR/RAMP receptors. In addition, the data

indicated that (1) N-terminal acylation and a lysine residue within the ADM motif of chimeric

analogs are important for enhancing the antagonistic activity and (2) the sequence motif

encompassing residues 22–40 of ADM is important for the interaction between chimeric

ADM/ADM2 antagonists and CLR/RAMP2. Further characterization of these peptidomi-

metics may lead to the development of therapeutics that can better inhibit pathological CGRP

and/or ADM signaling in patients.

Similar to calcitonin and amylin, CGRP/ADM/ADM2 family peptides have an N-terminal

disulfide-bond ring followed by a helix region and an unstructured C-terminal region. These

ligands presumably interact with the receptors via a two-domain model in which the C-termi-

nal region binds the receptor ectodomain, while the N-terminal region activates the receptor

[66]. Earlier studies have categorized the 37-amino-acid CGRP into four distinct domains: (1)

a seven-residue ring structure, (2) an α-helix composed of residues 8–18, (3) a β-bend around

residues 19–27, and (4) the C-terminal binding terminus [67–70]. Whereas Thr30, Val32,

Gly33, and Phe37 in the CGRP C-terminus are key residues for CLR/RAMP1 interaction, resi-

dues 19–26 help maintain the structure at the C-terminus [69–75]. The deletion of N-terminal

ring domain renders the truncated CGRP8-37 peptide a competitive antagonist with a 10-fold

less affinity compared to CGRP [43, 76, 77]. Additional truncation of the CGRP8-37 sequence

leads to further reduction of the bioactivity [68, 78]. Similarly, the main binding epitope of

ADM is located at the C-terminal 8 amino acids, and the Ile47, Gly51, and Tyr52 residues are

critical for CLR/RAMP2 binding [65, 79, 80]. In addition, recent structure analyses indicated

that CGRP and ADM bind a common site on CLR, and an allosteric modulation of CLR and

RAMP contacts cooperates to determine CGRP and ADM selectivity [81–83]. Structural anal-

ysis also indicates that ADM2 could act via a mechanism similar to that of ADM or CGRP [66,

84]. Specifically, CGRP was shown to form extensive interactions with CLR/RAMP1 with

61.5% of the peptide surface buried (Fig 7). The N-terminus of CGRP (Ala1-Val23) tightly

interacts with the receptor core, whereas the C-terminal region (Phe27-Phe37) interacts with

the CLR ECD and RAMP1. On the other hand, the structure at the linker region (Lys24-

Asn26) between the N- and C-terminal receptor-interacting domains was poorly resolved, per-

haps due to a high mobility of this region (Fig 7, the missing linker region is represented by a

gap between Val23 and Phe27) [82]. It has been suggested that this linker region could be

important for enabling the N-terminus to be buried within CLR and the C-terminus to interact

with CLR ECD and RAMP1. Because the junctional regions in chimeric ADM/ADM2 antago-

nists correspond precisely to the linker region in CGRP, the “linker region” within select chi-

meric antagonists may allow the analog to better interact with CLR and RAMP1 and exert

potent antagonistic activities.

Earlier studies have shown that (1) benzoylated derivatives of CGRP8-37 have substantially

increased binding affinities for the CGRP receptor [62], and (2) lipidated CGRP8-37 and

CGRP7-37 analogs have higher bioactivity [85]. These modifications may facilitate the interac-

tion with CLR/RAMP receptors given a key feature of the peptide-binding sites in CLR/

Table 4. The receptor-regulatory activity of a chimeric octreotide-ADM antagonist analog.

Identity CLR/RAMP1 CLR/RAMP2 SSTR2

IC50 (nM) Max Activity IC50 (nM) Max Activity EC50 (nM) Max Activity

CGRP8-37 133 95 >10,000 15

ADM22-52 6600 57 256 105

Somatostatin 1–28 6.8 102

Octreotide-ADM antagonist analog 2 102 <0.5 87 17 117

https://doi.org/10.1371/journal.pone.0216996.t004

CLR/RAMP receptor antagonists

PLOS ONE | https://doi.org/10.1371/journal.pone.0216996 May 31, 2019 10 / 20

https://doi.org/10.1371/journal.pone.0216996.t004
https://doi.org/10.1371/journal.pone.0216996


RAMP1 is a hydrophobic patch extending from the base of CLR loop 4 to loop 3 [62, 82].

Alternatively, the hydrophobic modification may provide a better mimic of the membrane

environment that a ligand encounters in association with a 7-transmembrane receptor [34, 86,

87]. Therefore, the enhanced bioactivity of chimeric antagonists could be partly attributed to

these forces or conformational changes introduced by the N-terminal acylation together with

the chimeric sequence.

Fig 6. Dose-response curves of a bifunctional octreotide-ADM antagonist analog. The stimulatory effects of somatostatin1-28 and the bifunctional analog

on somatostatin receptor 2 (SSTR2) signaling (left panel), and the inhibitory effects of the bifunctional analog on CLR/RAMP1 and 2 signaling (right panel) are

presented as dose-response curves.

https://doi.org/10.1371/journal.pone.0216996.g006
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CGRP is primarily released from C and Aδ sensory nerves, which are important for the

modulation of inflammatory response, blood pressure, and auditory nerve development [34].

Excess CGRP release during neurogenic inflammation could lead to migraine headache, osteo-

arthritis pain, and other diseases [34, 35]. So far, four distinct approaches, including (1) pep-

tide antagonists (e.g., CGRP8-37) [41–44], (2) small molecule antagonists (e.g., telcagepant

and olcegepant) [45, 46], (3) anti-CGRP antibody [50], and (4) anti-RAMP1 antibody [50, 51]

have been used to block CLR/RAMP1 signaling. Although several small molecule CGRP

antagonists are effective in the treatment of migraine headache, they can lead to liver toxicity

[52, 88–90]. On the other hand, several anti-CGRP/RAMP1 antibody-based therapies have

been approved for the treatment of chronic migraine recently [39, 53, 54, 91–97]. However, a

large fraction of migraine patients failed to respond to the anti-CGRP antibody therapies [36,

39, 51, 52, 55, 56]. Because antibody has a low volume of distribution, and the anti-CGRP anti-

bodies mainly act by reducing the circulating level of CGRP or CGRP signaling in cells that are

in close proximity of the vascular system [36, 96, 98, 99], there remains a large unmet medical

Fig 7. Visualization of the linker region in the CGRP peptide, which corresponds to the “junctional” region of chimeric antagonists. The interaction of

chimeric antagonists with CLR/RAMP receptors could be similar to that between CGRP and the CGRP receptor complex as demonstrated by the RCSB protein

data bank [PDB] structure 6E3Y [82]. The structure presented includes the CGRP (red), RAMP1 (pink) and CLR (yellow) components. The structure at the

linker region of CGRP (Lys24- Asn26) was not resolved and is presented as a gap between the N- and C-terminal regions. The positions of Val23 and Phe27,

which are next to the breakpoint as well as the C-terminal Phe37 of CGRP are indicated by arrows. The residues corresponding to Val23, Phe27, and Phe37 of

CGRP in ADM and Antagonist 2–4 are presented next to the CGRP residues. Residues that were derived from ADM and ADM2 are indicated by red and black

letters, respectively.

https://doi.org/10.1371/journal.pone.0216996.g007
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need of therapies for patients with severe migraine. Therefore, potent peptide antagonists,

which have better access to nerve endings and a high safety margin, may represent alternative

therapeutics for better control of CGRP signaling in patients [39, 100–102].

In addition, the peptide antagonist could be useful for the treatment of osteoarthritis pain.

It has been shown that CGRP and its receptor increase in synovial cells, infrapatellar fat pad,

and dorsal root ganglion neurons innervating knee joints in osteoarthritis patients [103–106].

In animal models, CGRP increases acute neurogenic inflammation and joint pain [107, 108];

whereas CGRP antagonists reduces osteoarthritis pain [61, 107, 109]. However, an anti-CGRP

antibody (i.e., galcanezumab) failed to reduce osteoarthritis pain in patients [59, 60]. The lack

of efficacy could be due to the inability of antibodies to reduce CGRP in the synovial joint to a

therapeutic level. Therefore, peptide antagonists, which have better access to nerve endings in

the joints, may provide an alternative path for the development of anti-osteoarthritis pain ther-

apy. Furthermore, because ADM signaling has been implicated in the regulation of inflamma-

tory heat hyperalgesia and spinal glial activation [110–113], the pan-specific antagonists

described here may be useful for spontaneous blockage of CGRP- and ADM-mediated pain

responses.

ADM plays an important role in the regulation of angiogenesis and exhibits anti-inflamma-

tory effects. Earlier studies have shown ADM22-52, small molecule antagonist, anti-ADM

antibody, and anti-CLR/RAMP antibodies block the growth and/or metastasis of tumor xeno-

grafts in animal models [25, 26, 29, 43, 47, 49, 57, 114]. Because known peptide antagonists

have low potency and short half-life, and because the antibody-based strategy has a low volume

of distribution, the pan-specific antagonists may represent promising candidates for the treat-

ment of tumor angiogenesis/metastasis and for improving tumor immune-surveillance.

Among the antagonistic analogs, the bifunctional unimolecular octreotide-ADM antagonist

analog could be particularly useful for the treatment of high-grade NETs. The bifunctional

analog could use the NET cell’s unique characteristics (i.e., the expression of somatostatin

receptors) to target the ADM antagonist to the NET microenvironment and increase tumor

accumulation. As such, the bifunctional analog could have more potent anti-tumor growth/

metastasis activities compared to current somatostatin analog-based therapies. It is also impor-

tant to note that the bifunctional analog could represent a prime candidate for the develop-

ment of a tyrosine kinase receptor-independent antiangiogenesis therapy for other cancers.

For example, the bifunctional analog could be particularly useful for the treatment of castra-

tion-resistant prostate cancer. Emerging evidences have shown that (1) neuroendocrine differ-

entiation (NED) secondary to androgen deprivation therapy (ADT) occurs frequently in

metastatic castrate-resistant prostate cancer [115], and (2) somatostatin analogs increase the

therapeutic window of ADT in patients with castration-resistant prostate cancer [116, 117].
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