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The article by Nygaard and others (2016) proposes that applying batch correction approaches to microarray
data from studies with unbalanced designs may inadvertently exaggerate the differences observed. In
seeking to illustrate their point, Nygaard and others (2016) utilized a dataset (GSE61901) from a study
we published (Towfic and others, 2014) and showed that one analysis pipeline utilizing the traditional
approach to batch correction (ComBat) yielded over 1000 differentially expressed probesets, while an
alternative approach proposed by Nygaard and others (2016; utilizing batch as a fixed effect and averaging
technical replicates).

recovered 11 differentially expressed probesets.

While we agree with Nygaard and others (2016) premise that the utilization of ANOVA or empirical-
Bayes derived approaches to correct for batch effects may in certain cases overestimate significance, the
approach they propose is surprisingly sensitive to differences in how data are preprocessed, specifically the
handling of technical replicates. We therefore sought to identify alternate methods that address the points
raised by Nygaard and others (2016). These efforts yielded three alternative approaches for analyzing
microarray data from studies with similar designs to ours, each of which adjusts for technical variation
while avoiding the risks that Nygaard and others (2016) described:

(i) Utilize the technical replicates as a random-effect variable in LIMMA.
(i) Utilize the technical replicate as a random variable in a repeated-measures ANOVA.
(iii) Utilize a linear mixed-effects model to account for the technical replicate as a random effect while
accounting for treatment as a fixed effect.

Each of the aforementioned methodologies is readily accessible through R’s base or Bioconductor
packages.

Nygaard and others (2016) referenced a study (GSE61901) we conducted (Towfic and others, 2014),
in which we found significant and biologically relevant differences between the gene expression profiles
induced by glatiramer acetate (GA, Copaxone), and the gene expression profiles induced by a generic GA
(Glatimer®, Natco Pharma, Ltd., Hyderabad, India) using Illumina® Mouse-WG6 microarray chips. Each
WG6 chip contains six microarrays, and each of the microarrays containing two physical strips that are to
be treated as technical replicates (Shi and others, 2009). Because the distribution of the samples on each
chip was heavily unbalanced (see supplementary Table 1 available at Biostatistics online), the dataset was
initially analysed with ComBat including the treatments as covariates as required by the SVA package
(Leek and others, 2012) and noted by Nygaard and others (2016). The dataset was further analysed using
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Table 1. Number of differentially expressed probesets after FDR <0.05 cutoffusing (1) averaging technical
replicates without using ComBat (2) ComBat + statistical analysis (common pipeline) (3) accounting for
technical replicates using mixed effects models (advanced pipeline). As can be seen from the table, the
common pipeline of quantile normalization + ComBat and the advanced pipeline of utilizing mixed effect
models clearly detect more significant changes after FDR adjustment compared to models suffering from
low power due to (1) averaging of technical arrays (2) Not utilizing a batch model that preserves power
prior to analysis

Quantile normalization Quantile  normalization Quantile normalization,
(averaging technical repli- (averaging technical no averaging of technical
cates), utilize CHIP as replicates), apply Com- replicates, utilize CHIP as
blocking variable Bat including treatments blocking variable
as covariates

LIMMA 11 (Nygaard and others, 974 1474
2016)

Two-way ANOVA 1 742 —

Linear mixed effects model — — 1968

Repeated measures ANOVA  — — 1749

various methods including two-way ANOVA and LIMMA yielding hundreds of differentially expressed
probesets between GA and generic.

In contrast, Nygaard and others (2016) performed an analysis in which all the technical replicates
were averaged. After averaging all technical replicates, Nygaard and others (2016) utilized the chip
ID as a blocking variable in the analysis model, finding 11 probesets that pass FDR cutoff of 0.05.
Another approach is to utilize the duplicateCorrelation feature recommended by LIMMA’s authors for
handling technical replicates from Illumina WG-6 BeadChips (Shi and others, 2009). While averaging
technical replicates has been suggested in the literature in cases where a t-test or two-way ANOVA
will be utilized for downstream analysis (Cui and Churchill, 2003), the utilization of models that can
account for both technical as well as biological variation is an alternative approach to maximize power
of the statistical test (Chen and others, 2004; Cui and Churchill, 2003; Smyth and others, 2005). When
GSE61901 is utilized and duplicateCorrelation is applied to account for the technical replicates, we find
that the approach proposed by Nygaard and others (2016) of blocking for batch effect in LIMMA identifies
1474 differentially expressed probesets. Thus, the results of Nygaard and others (2016) proposed batch
correction method differ dramatically depending upon how a dataset is preprocessed.

Upon further investigation, a variety of different preprocessing and batch correction methods all yield
far more differentially expressed genes than the method proposed by Nygaard and others (2016). Table
1 reports the results of various analyses we have conducted using a variety of techniques including
LIMMA (Shi and others, 2009, duplicateCorrelation method: Smyth, 2013; Smyth and others, 2005)
and mixed-effects ANOVA that are specifically designed to analyze unbalanced designs without reducing
power (Bernal-Rusiel and others, 2013; Littell and others, 2002; Smyth, 2014). Code for these analyses
is publicly available at https://github.com/immuneering/biostat_reply. Such methods take into account
correlations between repeated measurements from the same subject/biological sample. These findings
strongly suggest that the differences between GA and generic are robust to changes in batch correction
and analysis methodologies, and support the key conclusions of Towfic and others (2014).

In summary, we present three different methods for analyzing microarray data that utilize technical
replicates while correcting for batch effects. These methods yield consistent results, and therefore represent
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robust alternatives to traditional batch correction methods in datasets subject to the concerns articulated
by Nygaard and others (2016).

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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