
Numerical Integration of the Master Equation in Some
Models of Stochastic Epidemiology
Garrett Jenkinson, John Goutsias*

Whitaker Biomedical Engineering Institute, The Johns Hopkins University, Baltimore, Maryland, United States of America

Abstract

The processes by which disease spreads in a population of individuals are inherently stochastic. The master equation has
proven to be a useful tool for modeling such processes. Unfortunately, solving the master equation analytically is possible only
in limited cases (e.g., when the model is linear), and thus numerical procedures or approximation methods must be employed.
Available approximation methods, such as the system size expansion method of van Kampen, may fail to provide reliable
solutions, whereas current numerical approaches can induce appreciable computational cost. In this paper, we propose a new
numerical technique for solving the master equation. Our method is based on a more informative stochastic process than the
population process commonly used in the literature. By exploiting the structure of the master equation governing this process,
we develop a novel technique for calculating the exact solution of the master equation – up to a desired precision – in certain
models of stochastic epidemiology. We demonstrate the potential of our method by solving the master equation associated
with the stochastic SIR epidemic model. MATLAB software that implements the methods discussed in this paper is freely
available as Supporting Information S1.
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Introduction

Stochasticity can play an important role when studying a disease

that spreads through a population of individuals [1–3]. A common

approach to modeling this problem is by means of a Markov process,

whose probability distribution satisfies a deterministic differential

equation known as the master equation. Solving the master equation

analytically however is not in general possible and Monte Carlo

sampling, based on the Gillespie algorithm [4], is often used to

accomplish this goal. Unfortunately, accurate evaluation of the

probability distribution of a Markov process requires a prohibitively

large number of Monte Carlo samples for most systems of interest.

As a consequence, Monte Carlo sampling is mostly used to estimate

statistical summaries of the underlying stochastic population dy-

namics, such as means and variances.

To evaluate the solution of the master equation, a number of

approximation techniques have been proposed in the literature,

such as the system-size expansion method of van Kampen [1,5,6].

While approximations may work well in certain circumstances, they

often fail when the underlying assumptions are not satisfied. The

system-size expansion method for example can only produce a

normal approximation to the solution of the master equation.

Therefore, if the probability distribution of the population process is

bimodal, then this method will produce erroneous results.

Some effort has recently shifted away from Monte Carlo sampling

and approximation techniques and has focused on exploiting the

linear structure of the master equation associated with the population

process. This results in a numerical solution to the master equa-

tion through matrix exponentiation; e.g., see [2,7–10]. A popular

technique along these lines employs a Krylov subspace approxima-

tion (KSA) method [7,8] that dramatically reduces the size of matrix

exponentiation and results in an attractive iterative algorithm for

solving the master equation. However, the KSA technique is based

on several approximations, whose cumulative effect may appreciably

affect the method’s accuracy, numerical stability, and computational

efficiency.

There are two main issues that can affect performance of the KSA

method. One is choosing the dimension of the approximating Krylov

subspace used. If the dimension is chosen too small, the method may

produce an inaccurate solution to the master equation, whereas, a

value that is too large can result in an appreciable decrease of

computational efficiency. Unfortunately, there is no rigorous way to

optimally determine an appropriate value for this parameter, which

is chosen manually, even in advanced implementations such as

Expokit [7]. Another issue is the fact that, at each step, the KSA

method may not necessarily produce a probability vector (i.e., a

vector composed of nonnegative elements that sum to one). This

problem can be addressed by using a sufficiently small step-size, but

this may seriously affect the method’s computational efficiency. In

practice, the KSA method is equipped with a heuristic step that

zeros-out all negative values and re-normalizes the positive values so

that they sum to one. This step however introduces its own errors,

which may affect the quality of the approximation in a manner that

is not easy to predict.

Instead of using the population process, we can describe the sto-

chastic spread of a disease by a more informative stochastic process

known as the degree-of-advancement (DA). Exploiting the structure

of the master equation governing this process results in a novel
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numerical algorithm for calculating the exact solution of the master

equation, up to a desired precision, which we refer to as the implicit

Euler (IE) method. This technique enjoys several advantages over the

KSA method: its global error is of first-order with respect to the step-

size, it is numerically stable regardless of the step-size used, and

always produces a solution whose elements are nonnegative and sum

to one. As we will discuss in this paper, the IE method shows great

promise for solving certain problems in stochastic epidemiology in

which the sample space associated with the DA process is reasonably

sized. It is not however meant to replace the KSA method, which is

still the best numerical method available for solving the master

equation in problems where implementation of the IE method is not

computationally attractive or possible. To illustrate the potential of

the proposed IE method, we calculate the solution of the master

equation associated with the stochastic SIR epidemic model and use

this solution to study some important properties of this model.

Methods

Disease dynamics
The classical SIR epidemic model (without births, deaths, or

imports of disease) is one of the simplest models in epidemiology

[11]. Here, each individual in a population is either susceptible to

a disease, infected, or recovered. If we denote by S, I, and R the

susceptible, infected and recovered individuals, respectively, and

by S(t), I(t) and R(t) their corresponding (and possibly random)

population numbers, we can characterize the state of the SIR

model at time t by using the 3|1 vector ½S(t) I(t) R(t)�T , where

T denotes vector transpose. The state depends on time due to the

(possibly random) occurrences of the following two reactions:

SzI?2I and I?R, ð1Þ

which model infection of a susceptible individual (first reaction) as

well as recovery of an infected individual (second reaction).

We can model a complex epidemiological system in more

general terms by using the following reactions:

X
n[N

nnmXn?
X
n[N

n’nmXn, m[M, ð2Þ

where N : ~f1,2, . . . ,Ng and M : ~f1,2, . . . ,Mg. This model

congregates individuals into N different groups, X1,X2, . . . ,XN ,

which interact through M coupled reactions. Parameters nnm§0

and n’nm§0 are the stoichiometry coefficients of the mth reaction.

These parameters tell us how individuals interact with each other

as well as their status after occurrence of a particular reaction. For

example, in the aforementioned SIR model, we may set X1~S,

X2~I , X3~R, resulting in n11~n21~n22~n’32~1,n’21~2, with

the remaining coefficients being zero.

The usual way to characterize an epidemiological system is by

means of the N|1 random vector X(t) with elements Xn(t),n[N ,

where Xn(t) denotes the population of the nth group of individuals

present in the system at time t§0. By convention, we set X(0)~x(0),
for some known value x(0) (i.e., we assume that we know the initial

population numbers at time t~0). We refer to the multivariate

stochastic process fX(t),tw0g as the population process.

Let Zm(t) be the (possibly random) number of times that the mth

reaction occurs during the time interval ½0,t) and Z(t) be the M|1
random vector with elements Zm(t),m[M. Then, fZm(t),tw0g is a

counting process, known as the degree of advancement (DA) of the mth

reaction [5]. We set Zm(0)~0 and refer to the multivariate

stochastic process fZ(t),t§0g as the DA process. Note that

X(t)~x(0)z Z(t), for t § 0, ð3Þ

where is the N|M net stoichiometry matrix of the system with

elements snm : ~n’nm{nnm. Therefore, and for a given initial po-

pulation vector x(0), equation (3) allows us to uniquely determine

the population process X(t) from the DA process Z(t). However, we

cannot in general determine the DA process from the population

process. This can only be done when the nullity of is zero, in

which case Z(t)~( T ){1 T ½X(t){x(0)�. As a consequence, the

DA process is more informative than the population process.

The master equation
To model an epidemiological system governed by the reactions in

(2), we must specify, for each m[M, the probability that one

reaction m will occur within an infinitesimally small time interval

½t,tzdt). For most systems of interest, this probability is given by

pm(x)dtzo(dt), where o(dt) is a term that goes to zero faster than

dt and pm(x) is a (usually nonlinear) function of individual po-

pulations at time t, known as the propensity function of the mth reaction

[12]. It turns out that the DA process fZm(t),t§0g is a Markovian

counting process with intensity pm(X(t)). As a result, it can be

shown that the probability mass function pZ (z; t) of the DA process

satisfies the following master equation [13,14]:

Lpz(z; t)

Lt
~
X
m[M
fam(z{em)pZ(z{em; t){am(z)pZ(z; t)g, ð4Þ

for tw0, initialized by pz(z; 0)~d(z), with d(z) being the Kronecker

delta function, where

am(z) : ~
pm(x(0)z z), if z § 0

0, otherwise,

�
ð5Þ

and em is the mth column of the M|M identity matrix. In the

theory of Markov processes, the master equation is a special case of

the more general forward Kolmogorov equation [5].

We can use the solution pz(z; t) of the previous master equation to

calculate the probability mass function pX(x; t) of the population

process. Since we are dealing with discrete random variables, this

calculation is straightforward:

pX(x; t)~
X

z[B(x)

pz(z; t), ð6Þ

where B(x) : ~fzDx~x(0)z zg. Therefore, by solving the master

equation (4) [i.e., by calculating the probability mass function

pz(z; t), for tw0], we can completely specify the dynamic properties

of a Markovian model. However, and for most cases of interest, this

is a notoriously difficult task, both analytically and computationally.

In the following, we propose a promising numerical method to

address this problem and illustrate its potential using a simple ex-

ample based on the stochastic SIR epidemic model.

Exploiting structure
Most available algorithms for solving the master equation focus

on the population process instead of the DA process. It turns out

that, by using the DA process, we may reap some benefits that can

lead to a simple numerical solver for the general master equation (4).

In the following, we assume that statistical analysis of an epi-

demiological model of interest is limited within a finite time interval

T : ~½0,tmax�, where tmax is the maximum time for which the DA
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process is almost surely contained within an M-dimensional discrete

and finite sample space Z; i.e.,

X
z[Z

pz(z; t)~1, for every t [ T :

We index the elements in Z by zk, k~1,2, . . . ,K , where K is the

cardinality of Z (i.e., the total number of elements in Z). We can then

define the K|1 vector w(t) with elements wk(t)~pz(zk; t), for

k~1,2, . . . ,K . Clearly, w(t) specifies the probability mass function

pz(z; t). It can be seen from (4) that w(t) can be calculated by solving

the following system of K linear ordinary differential equations (ODEs):

dw(t)

dt
~ w(t), t[T , ð7Þ

where is a K|K matrix that can be directly constructed from the

master equation. In the theory of Markov processes, is known as the

generator matrix. Note that the kth column of contains zeros in most

places except for the kth element that takes value {
P

m[M am(zk)

ƒ0 and M off-diagonal elements that take values am(zk)§0, m[M.

Therefore, the elements of each column of add to zero. Note also

that equation (7) is initialized by a vector w(0) whose first element

equals 1 (assuming that z1~0), whereas, the remaining elements are

all zero.

The main advantage of using the DA process Z(t) is that, under

an appropriate ordering of the elements in Z, the generator matrix

will be lower triangular. We will shortly demonstrate that this can

result in substantial simplification of the numerical algorithm used

to solve (7).

To obtain a matrix that is lower triangular, we must order the

points zk in the sample space Z lexicographically, such that zk[zkz1,

for k~1,2, . . . ,K{1, where [ denotes that one variable is

lexicographically smaller than another [e.g., (z1,z2)[(z’1,z’2) if and

only if z1vz’1 or z1~z’1 and z2vz’2]. Because a reaction can only

increase (by one) the value of a single element of z, it is not possible for

probability mass to be transferred from zk’ to zk when zk[zk’. Such

monotonic transfer of probability does not generally occur when the

population process X(t) is used. Therefore, when the points zk,

k~1,2, . . . ,K , in Z are ordered lexicographically, the (k,k’)
element of matrix will be zero when k’wk and, therefore,

will be lower triangular. An example is provided in Supporting

Information S2.

Numerical solver
We now proceed by exploiting the three key structural cha-

racteristics of matrix : its stability, triangularity, and sparsity. We

have noted that the diagonal elements of are non-positive.

However, since is triangular, its diagonal elements will be the

eigenvalues of . Thus, the linear constant coefficient system of

ODEs given by (7) is stable, ensuring the efficacy of implicit ODE

solvers [15]. As a consequence, we can use the implicit Euler

method to estimate w(t) at discrete time points tj : ~jt, j~1,2, . . .,
for a given time step t. Then, given an estimate ŵw(tj{1) of w(tj{1),
we can obtain an estimate ŵw(tj) of w(tj) by solving the following

system of linear equations:

I{tAð Þŵw(tj)~ŵw(tj{1), ð8Þ

where is the K|K identity matrix. By initializing this com-

putation with ŵw(0)~w(0), we can therefore recursively calculate the

values of the probability mass function pz(z; t) of the DA process at

the discrete time points tj , j~1,2, . . .. In Supporting Information

S2, we show that solving the previous system is always possible, for

any tw0, due to the invertibility of matrix {t . We also show

that this procedure always returns a probability vector for any step-

size t§0. Moreover, we demonstrate that the resulting method is a

first-order solver, since the global error DDw(tj){ŵw(tj)DD1 is ofO(t) (i.e.,

the global error is proportional to the step-size t). Finally, since the

implicit Euler step is always stable for any choice of t [15], the errors

from previous iterations will not be amplified in later stages, re-

gardless of the step-size used. Therefore, a desired error can be

achieved by simply reducing the value of the step-size t. We refer to

the resulting technique for solving the master equation based on (8)

as the implicit Euler (IE) method.

In general, solving (8) would requireO(K3) computations, where

K is the cardinality of the sample spaceZ, which will be prohibitive.

However, since is a triangular matrix, we can use forward

substitution whose cost is usually of O(K2). But since is a sparse

matrix, with each column having only Mz1 non-zero elements,

forward substitution can be done at a cost ofO(MK) [16], where M
is the number of reactions. In addition, calculating the probability

mass function at time tj requires storage of O(MK) nonzero

numbers. In particular, we need to store MK nonzero elements of

matrix {t as well as 2(K{1) elements of vectors ŵw(tj) and

ŵw(tj{1 ) [note that the elements of each column of matrix {t and

the elements of each of the two vectors ŵw(tj) and ŵw(tj{1 ) sum to

one]. Since K&M, the computational and memory requirements

of the IE method will be O(K), which grow linearly in terms of K .

Matrix exponentiation
Instead of the previous approach, we may attempt to solve the

master equation governing the population process X(t) by a matrix

exponentiation method [2,9]. Let X be an N-dimensional discrete

and finite sample space such that

X
x[X

pX(x; t)~1, for every t [T :

If we index the elements in X by xl , l~1,2, . . . ,L, where L is the

cardinality of X , then we can define the L|1 vector h(t) with

elements hl(t)~pX(xl ; t), for l~1,2, . . . ,L. In this case, the

probability mass function h(t) can be calculated by solving the

following system of L linear ODEs:

dh(t)

dt
~ h(t), t[T , ð9Þ

where is a sparse L|L matrix whose structure can be inferred

directly from the master equation [9]. Note that (9) is initialized by a

vector h(0) whose first element equals 1 [assuming that x1~x(0)],
whereas, the remaining elements are all zero.

We can obtain estimates ĥh(tj) of h(tj), for j~1,2, . . ., by using

the following recursion:

ĥh(tj)~exp(t )ĥh(tj{1), ð10Þ

initialized with ĥh(0)~h(0). The main issue with this equation

however is the need to evaluate the matrix exponential exp(t ).
Although many techniques are currently available to do this job,

they are not very satisfactory due to issues related to stability,

accuracy, and computational efficiency [17].

The best method currently available to compute (10) is based on

a Krylov subspace approximation (KSA) method [7,8,18]. In its simplest

form, the method approximates h(tzt)~exp(t )h(t), for a small

tw0, by ĥh(tzt)~DDh(t)DD2 (t) expft (t)ge1, where (t) is an

Integration of Master Equation in Epidemiology
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L|L0 matrix whose columns form an orthonormal basis for the

L0-dimensional Krylov subspace K(t) : ~spanfh(t),t h(t), . . . ,
(t )L0{1h(t)g, (t) is an L0|L0 matrix computed during the

well-known Arnoldi procedure used to calculate (t), and e1 is the

first column of the L0|L0 identity matrix. Then, the value of h(tj)
is recursively approximated by

ĥh(tj)~DDĥh(tj{1)DD2 (tj{1) expft (tj{1)ge1,

for j~1,2, . . ., with ĥh(0)~h(0). The KSA method reduces the

problem of calculating the exponential of the large and sparse

L|L matrix to the problem of calculating the exponential of

the much smaller and dense L0|L0 matrix (note that L0%L,

with L0~30–50 being sufficient for most applications). Compu-

tation of the reduced size problem can be done by standard me-

thods, such as Chebyshev or Padé approximation [7,8,17].

As we mentioned in the Introduction, there are several disadvan-

tages of using the KSA method: possible error accumulation that may

lead to instabilities, inability to produce, at each step, a probability

vector without heuristically modifying the calculated values, and a

need to specify an appropriate dimensionality for the Krylov subspace

without appreciably affecting computational efficiency while achieving

acceptable numerical accuracy. These issues are nicely circumvented

by the IE method, but with a price: the proposed method can be

applied to a smaller set of problems than the KSA method.

Practical considerations
In general, the computational and memory requirements of

matrix exponentiation grow quadratically in terms of the cardinality

L of the sample space X , and can quickly become prohibitive for

large values of L. The KSA method however can greatly reduce

this expense toO(L0(MzL0)L) computations and O((MzL0)L)
memory locations, where L0 is the dimension of the approximat-

ing Krylov subspace used and M is the number of reactions; see

our discussion in Supporting Information S2. Thus, the relative

efficiency of the IE method, which requires O(MK) computation

and storage cost, to the KSA approach will depend on the relative

values of the cardinalities K and L of the sample spaces Z and X ,

respectively.

As we mentioned before, if the nullity of the net stoichiometry

matrix is zero, then there is a one-to-one correspondence between

x~x(0)z z and z. As a consequence of (6), the cardinalities of X
and Z will be the same, in which case K~L. Under these

circumstances, the IE method will outperform the KSA method.

This is a consequence of the fact that MK~MLvL0(MzL0)L
and MK~MLv(MzL0)L in this case. We can easily verify that,

for the simple SI model (SzI?2I), the SIR epidemic model

characterized by (1), and the SEIR model (SzI?EzI, E?I,

I?R, where E denotes a group of individuals exposed to disease but

not yet infectious), the nullity of is indeed zero and, therefore, the

IE method will be superior to the KSA method.

In general, the IE method will be computationally superior to the

KSA method, provided that the cardinality of the sample space Z is

not appreciably larger than L0(MzL0)=M times the cardinality of

the sample space X [or not much larger than (MzL0)=M times

the cardinality of the sample space X , if we also consider memory

requirements]. Of course, in situations where the nullity of is large,

the sample spaceZ can become appreciably larger thanX , in which

case the KSA method will be more preferable. Note that there are

cases in which Z and X can become infinite (e.g., suppose an influx

of people at some constant rate 1?Xn, in which case both sample

spaces will be unbounded). In these situations, the use of a finite state

projection approach [9] is required to reduce the sample spaces, and

the relative efficiency of the two methods will depend on the sizes of

the resulting subspaces.

For a given step-size t, the IE method described so far generates a

sequence of probability vectors ŵw(tj), j~1,2, . . .. Assuming that the

true solution w(tj{1) is known at time tj{1, we can show [see

equation (S.11) in Supporting Information S2] that the local error

Ew(tj){ŵw(tj Dtj{1)E1 is of O(t2), where ŵw(tj Dtj{1) is the approxima-

tion of w(tj) obtained by the IE method for a given value of w(tj{1).
We can further improve this result by employing a powerful

computational tool known as Richardson extrapolation [19].

We have shown in the Supporting Information S2 that, if

ŵw t(tj Dtj{1) and ŵw t=2(tj Dtj{1) are the approximations of w(tj)
obtained from w(tj{1) by the IE method with step-sizes t and

t=2, respectively, then ŵw�(tj Dtj{1) : ~2ŵw t=2(tj Dtj{1){ŵw t(tj Dtj{1)
also approximates w(tj), but with a local error of O(t3). We

therefore expect that ŵw�(tj Dtj{1) is a better approximation to w(tj)
than ŵwt(tj Dtj{1) [or even ŵwt=2(tj Dtj{1); see Supporting Information

S2] for a sufficiently small step-size t. This suggests that we can use

a valuable modification of the IE method to obtain a better

approximation to the solution of the master equation than the

original technique. This modification combines two runs of the IE

method, with time steps t and t=2, and produces a solution ŵw�(tj),
given by

ŵw�(tj)~
2ŵw t=2(tj){ŵw t(tj), if ½2ŵwt=2(tj) {ŵwt(tj)�min

§0

ŵw t=2(tj), otherwise,

(
ð11Þ

where ½x�min denotes the minimum value of the elements of

vector x. In this case, ŵw�(tj) is given by the ‘improved’ vector

2ŵwt=2(tj){ŵwt(tj) only when all elements of that vector are non-

negative. Otherwise, ŵw�(tj) is given by the vector ŵwt=2(tj) calculated

by the IE method with the smaller step-size t=2. This assures that

ŵw�(tj) is always a probability vector. We will be referring to the

resulting technique as the Richardson-based implicit Euler (RIE)

method. We illustrate one step of this method in Figure 1.

Many ODE solvers, including the KSA method, adjust the step-

size at each iteration to assure that the local error ERR is less than a

pre-specified error tolerance TOL while minimizing the computa-

tional effort required to accomplish this goal. We can also modify the

RIE method to accommodate variable step-sizes. By following our

analysis in the Supporting Information S2, we can approximately

calculate the local error ERRj at step j by [see equation (S.16)]

ERRj~1:1|Eŵwt=2(tj){ŵwt(tj)E1,

where we use a factor of 1:1 to compensate for the possibility that the

true (but unknown) local error is larger (by 10%) than the actual

error calculated by Eŵw t=2(tj){ŵw t(tj)E1. If ERRjvTOL, then we

consider the step successful and increase the step-size from t to t�,
where [see equation (S.17) in Supporting Information S2]

t�~t

ffiffiffiffiffiffiffiffiffiffiffiffi
TOL

ERRj

s
~0:95 t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TOL

Eŵw t=2(tj){ŵw t(tj)E1

s
: ð12Þ

However, if ERRjwTOL, then the step is unsuccessful. In this case,

we decrease the step-size from t to t� by using (12) and redo the RIE

step.

We finally note that some readers might be concerned with

precision loss in the forward substitution step of the IE and RIE

methods. To address this issue, we could employ the standard
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numerical technique of iterative improvement [15] with moderate

additional computational cost. However, we show in the Supporting

Information S2 that the matrix {t being inverted is never

singular. Moreover, this matrix is far from being singular (i.e., its

eigenvalues are not numerically close to zero) as t?0. We therefore

suggest that a preferable method of combating precision loss is to

reduce t, since the step-size tightly regulates the global error as well

(see Supporting Information S2). Although in the subsequent

example we did not perform iterative improvement, the results

indicate that any precision loss is negligible, despite the large

dynamic range of probability values involved in the solution.

Results

To demonstrate the efficacy of our method, we tackle the

problem of modeling a well-documented 1978 influenza epidemic

in an English boarding school [20]. A deterministic SIR model was

originally developed to analyze these data [21]. Subsequently, the

model was extended to the stochastic case and approximately

solved using van Kampen’s system-size expansion method [1]. In

the following, we use the IE method to compute the exact solution

of the underlying master equation up to a desired precision.

There are three classes of individuals, S, I and R, representing

Q~763 susceptible, infected and recovered pupils. Spreading of the

epidemic is governed by the reactions in (1) with propensity functions

p1(S(t),I(t),R(t))~k1S(t)I(t) and p2(S(t),I(t),R(t))~k2I(t),

where k1~0:00218/day and k2~0:44036/day are the rate con-

stants of infection and recovery, respectively [1]. The initial con-

ditions are given by

S(0)~762, I(0)~1, R(0)~0,

reflecting the fact that only one pupil is infected at the start of the

epidemic. We take the sample spaceZ to be the rectangular region in

the z plane that begins at (0,0) and extends to include the maximal

point (762,763). This is due to the fact that the first reaction can

occur at most 762 times, after which all pupils will have been infected,

whereas, the second reaction can occur at most 763 times, after which

all pupils will have recovered from the infection. As a consequence,

the sample space Z contains K~763|764~582,932 points.

Numerically solving the master equation over a period of 25
days by means of the KSA method using Expokit [7] took

72 minutes of CPU time on a 2.20 GHz Intel Mobile Core 2 Duo

T7500 processor running Matlab 7.7. The resulting solution

produces an L2 error DDh(25){ĥh(25)DD2~1:48|10{3, where h is a

solution of the master equation obtained by a stringent run of

Expokit, which we consider to be the ‘true’ solution. The required

TOL value (used to determine a desired error tolerance for the

KSA method and for the RIE method with variable step-size) was

set to 1|10{3. We obtained the Expokit solution by using a

Krylov subspace approximation with dimension L0~65. This

value was determined by starting with the default value of L0~30
and successively increasing it by 5 until the resulting Expokit error

estimate was less than TOL~1|10{3. The reported L2 errors

were calculated using a solution obtained by a computationally

more expensive Expokit run with L0~70 and TOL~1|10{4,

which we consider it to be the ‘true’ solution. This is based on the

premise that Expokit will produce the true solution for sufficiently

large L0 and small TOL.

To be compatible with Expokit, we report here the L2 error.

Note however that the error analysis of our method, provided in

the Supporting Information S2, is based on the L1 error. On the

other hand, using equation (8) with t~0:01 days, the IE method

took a mere 53 seconds of CPU time, achieving a smaller (by a

factor of 2.8) final L2 error of 5:35|10{4. We can achieve a

further reduction of the L2 error by using the RIE method with

fixed step-size. This is clear from the results summarized in

Table 1. This performance can be achieved however at the

expense of increasing the CPU time required to calculate the

solution. Note that we may be able to decrease the CPU time by

using the RIE method with variable step-size (see Table 1). This

method however results in a noticeable decrease of accuracy (at

least for the example considered here), with an L2 error that is 2.8

Figure 1. One step of the RIE method. The upper branch implements the standard IE method with step-size t, whereas, the lower branch
implements the IE method with step-size t=2. ‘‘OR’’ implements equation (11).
doi:10.1371/journal.pone.0036160.g001

Table 1. The L2 error and the CPU time associated with the
four numerical methods discussed in this paper.

Numerical Method L2 Error CPU Time

KSA 1:48|10{3 4328 seconds

IE 5:35|10{4 52 seconds

RIE (fixed step-size) 1:11|10{4 189 seconds

RIE (variable step-size) 4:06|10{3 124 seconds

doi:10.1371/journal.pone.0036160.t001
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times larger than the one obtained with the KSA method.

Since R(t)~Q{S(t){I(t), it suffices to focus on the joint

probability mass function Pr½S(t),I(t)� of susceptible and infected

pupils. It turns out however that the epidemic-free state occurs

with high probability Pr½S(t),I(t)~0�, a situation that visually

obscures the values of Pr½S(t),I(t)�. For this reason, instead of

Pr½S(t),I(t)�, we depict in Figure 2 a snapshot of the calculated

joint conditional probability mass function Pr½S(t),I(t)DI(t)w0� of

the susceptible and infected pupils at the end of the 6th day, given

that at least one pupil is infected. The Supporting Information S3

contains a .gif movie that depicts the dynamic evolutions of

Pr½S(t),I(t)DI(t)w0� and Pr½R(t)DI(t)w0� during the 25 day

period. We have obtained these and all subsequent results by

exclusively using the basic IE method.

In Figure 3, we depict the dynamic profiles of the mean numbers

of susceptible, infected and recovered pupils (solid green lines) as

well as the dynamic profiles of the +1 standard deviations (dashed

red lines), computed directly from the joint probability mass

function Pr½S(t),I(t),R(t)�. We also depict the observed data (blue

circles) obtained from the literature [20]. These results are identical

to the results obtained by Monte Carlo estimation based on 1,000
trajectories sampled from the master equation using the Gillespie

algorithm (only data related to the infected pupils are shown), and

assures that the IE method produces the correct results. Unfortu-

nately, we cannot employ the Gillespie algorithm to accurately

estimate the joint probability mass function Pr½S(t),I(t),R(t)� in a

reasonable time, due to the prohibitively large number of samples

required by this method.

The bimodal nature of the probability mass function depicted in

Figure 2 clearly demonstrates that the system-size expansion

method used previously in [1] is not appropriate for this model,

since the method leads to a unimodal Gaussian approximation. As

a matter of fact, the results depicted in Figure 3 are different than

the mean and standard deviation profiles depicted in Figures 3–4

of [1]. Because of the Gaussian nature of the system-size expansion

method, the results reported in [1] over-estimate the means and

under-estimate the standard deviations, since this technique is

blind to the bimodal nature of the probability distribution. As a

matter of fact, using the means and standard deviations to

characterize the stochastic properties of individual classes in the

SIR model is not appropriate. This is also evident by the fact that

the +1 standard deviations can take negative values as well as

values greater than 763. In Figure 3, we have truncated these

misleading values.

We can use the calculated joint probability mass functions

Pr½S(t),I(t),R(t)� to study a number of dynamic properties of the

SIR model in a stochastic setting. In Figure 4(a), for example, we

depict the evolution of the expected number of recovered pupils

(solid green line), as well as the +1 standard deviations (dashed

red lines), given that at least one pupil is always infected. During

the first few days, few infections occur, and the expected number

of recovered pupils will almost be zero. Subsequently, this number

increases monotonically to 763, following a near sigmoidal curve.

Figure 2. A snapshot of the calculated probability mass function. Joint conditional probability mass function Pr½S(t),I(t)DI(t)w0� of
susceptible and infected pupils at the end of the 6th day of the influenza epidemic.
doi:10.1371/journal.pone.0036160.g002
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The +1 standard deviation curves and the evolution of the Fano

factor (variance/mean) depicted in Figure 4(b) indicate that there

is appreciable fluctuation in the number of recovered pupils during

days 3–10, after which most pupils recover from the infection.

According to the results depicted in Figure 4(b), the maximum

fluctuation in the number of recovered pupils occurs during the

6th day.

In Figure 4(c), we depict the dynamic evolution of the calculated

probability of extinction Pr½I(t)~0�, tw0, during a period of 50
days. This evolution is characterized by four phases. During phase

I (days 1–4), the probability of extinction increases rapidly from

0% to about 26%, due to the small number of infectious pupils.

During phase II (days 5–17), the probability remains relatively

constant to about 26%. During this period of time, the epidemic

takes its natural course, increasingly infecting susceptible individ-

uals, who eventually recover from the disease. As a consequence,

we do not expect the probability of extinction to increase during

this phase. On the other hand, during phase III (days 18–40), the

number of infected pupils monotonically decreases to zero. It is

therefore expected that, during this phase, the probability of

extinction will monotonically increase to its maximum value of

one. Finally, during phase IV (days 40–50), there is no infectious

pupils present. As a result, the influenza virus cannot be

transmitted to the remaining susceptible pupils and the epidemic

ceases to exist.

When studying an epidemic model with extinction, a task of

practical interest is to calculate the number of individuals that

escape infection. This is usually done by evaluating the expected

number e of individuals that escape infection (or the average

number of susceptible individuals that remain after extinction) as

the mean value of the stationary probability mass function

Pr½S(?),I(?)~0� [2]. In Figure 4(d), we depict the joint

probability Pr½S(50),I(50)~0� at time t~50 days, which we

assume to be a very close approximation to the stationary

probability mass function Pr½S(?),I(?)~0�. By using this

probability, we compute e^547. Note however that, due to the

bimodal nature of Pr½S(50),I(50)~0�, calculating e is misleading.

On the other hand, by using the result depicted in Figure 4(d), we

can confirm that there is a 73:35% chance that 40 pupils or less,

and a 26:53% chance that 753 pupils or more, escape infection.

Clearly, these ‘confidence intervals’ provide a more accurate

statistical assessment of the number of individuals that escape

infection than e. Interestingly, there is only 0:12% chance that the

number of pupils escaping infection is within the range ½41,752�,
which includes the value of e.

Figure 3. Dynamic mean and standard deviation profiles. The mean profiles (solid green lines) and the +1 standard deviation profiles
(dashed red lines) of: (a) susceptible, (b) infected, and (c) recovered pupils. Monte Carlo estimates of the mean and standard deviation profiles of the
infected pupils are depicted in (d). Blue circles in (b) mark available data [20].
doi:10.1371/journal.pone.0036160.g003
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Discussion

Modeling the stochastic dynamics of a disease that spreads through

a small and well-mixed population of individuals is an increasingly

important subject of modern epidemiology. Unfortunately, even for

the simplest model, calculating the underlying probability distribution

is a daunting task.

In an effort to address this problem, we have introduced in this

paper a new approach to numerically compute the probability mass

function of a Markovian population process governed by the master

equation. Implementation of this approach is feasible when the

number of possible states is not prohibitively large. In this case, the

proposed method can lead to exact statistical analysis – up to a desired

precision – of certain stochastic epidemiological models of interest,

such as the SIR epidemic model.

The method introduced in this paper is linear – both in terms of

memory and computational requirements – with respect to the

cardinality K of the sample space Z of the degrees of advancement

of the underlying reactions. As a consequence, the method is feasible

any time Z is relatively small. In general, however, the cardinality of

Z may grow arbitrarily large, making implementation of the method

impossible without an appropriate FSP approximation [9]. Thus,

the proposed technique is only applicable to models that constrain

the number of reaction events, such as the SIR epidemic model

considered in this paper, or models for which the number of reaction

events is sufficiently small during a time period of interest (i.e.,

models without ‘fast’ reactions). Moreover, due to the well-known

problem of the ‘curse of dimensionality,’ K grows exponentially with

respect to the number of reactions M. Hence, models with many

reactions cannot be solved by the proposed method.

An effort is currently underway to reduce the size of the sample

space Z, without compromising accuracy. A plausible way to

accomplish this goal is to reduce the number of reactions involved by

removing ‘fast’ reactions using a multi-scale approximation te-

chnique, such as one of the techniques introduced for biochemical

reaction systems [13,14,22], and to adaptively updateZ at each time

point t by confining it to the smallest possible subspace Z(t) of Z.

Because of the lower-triangular and sparse nature of matrix in (8),

it is also plausible that we employ optimized algorithms developed

for solving sparse triangular systems of linear equations on parallel

and distributed memory computer architectures [23], indicating that

future efforts towards solving the master equation could potentially

focus on using high-performance computing systems.

Finally, it was brought to our attention by one of the reviewers

that, in an earlier work, K. N. Crank proposed a method to map a

general Markovian population process on a countable sample

space to an augmented Markovian process with triangular

generator matrix [24] by appropriately ordering that space.

Crank’s technique can be easily combined with our implicit Euler

Figure 4. Dynamic properties of the SIR model. (a) Evolution of the expected number of recovered pupils (solid green line) and the +1
standard deviations (dashed red lines), given that at least one pupil is always infected. (b) The Fano factor (variance/mean) associated with the results
in (a) as a function of time. (c) Dynamic evolution of the probability of extinction Pr½I(t)~0�, tw0. (d) The (approximately stationary) probability mass
function Pr½S(50),I(50)~0� at t~50 days.
doi:10.1371/journal.pone.0036160.g004
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method to construct an alternative algorithm for numerically

solving the master equation with focus on the population process

instead of the DA process. However, we cannot find any ad-

vantage of using Crank’s approach over ours. We believe that an

approach for numerically solving the master equation based on the

DA process is more preferable than an approach based on the

population process. The former can provide the probability

distributions of both the DA and population processes, whereas,

the latter can only produce the probability distribution of the

population process. Moreover, the IE method based on the DA

process is easier to implement, due primarily to a faster and more

natural implementation of the lexicographic ordering used by this

approach as opposed to the more complex ordering of the

population sample space proposed by Crank. For more details on

this issue, see our discussion in Supporting Information S2.

Supporting Information

Supporting Information S1 This file contains the MATLAB

code used to generate the results presented in the paper.
(ZIP)

Supporting Information S2 This file contains additional

information and proofs that elucidate various mathematical and

numerical aspects of the work presented in the paper. It also

provides a brief discussion of an alternative method for solving the

master equation using the implicit Euler method, based on

ordering the population sample space instead of the DA sample

space.

(PDF)

Supporting Information S3 This file contains a video of the

dynamic evolution of the joint conditional probability mass

function of susceptible and infected pupils in an influenza

epidemic predicted by the SIR model.

(GIF)
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