Du and Gao BMC Cancer (2020) 20:887

https://doi.org/10.1186/512885-020-07391-2 B M C C ancer

RESEARCH ARTICLE Open Access

Development and validation of a novel ®
pseudogene pair-based prognostic

signature for prediction of overall survival
in patients with hepatocellular carcinoma

Yajuan Du''® and Ying Gao®

Check for
updates

Abstract

Background: There is growing evidence that pseudogenes may serve as prognostic biomarkers in several cancers.
The present study was designed to develop and validate an accurate and robust pseudogene pairs-based signature
for the prognosis of hepatocellular carcinoma (HCC).

Methods: RNA-sequencing data from 374 HCC patients with clinical follow-up information were obtained from the
Cancer Genome Atlas (TCGA) database and used in this study. Survival-related pseudogene pairs were identified, and a
signature model was constructed by Cox regression analysis (univariate and least absolute shrinkage and selection
operator). Al individuals were classified into high- and low-risk groups based on the optimal cutoff. Subgroups analysis
of the novel signature was conducted and validated in an independent cohort. Pearson correlation analyses were
carried out between the included pseudogenes and the protein-coding genes based on their expression levels.
Enrichment analysis was performed to predict the possible role of the pseudogenes identified in the signature.

Results: A 19-pseudogene pair signature, which included 21 pseudogenes, was established. Patients in high-risk group
demonstrated an increased the risk of adverse prognosis in the TCGA cohort and the external cohort (all P < 0.001). The
novel pseudogene signature was independent of other conventional clinical variables used for survival prediction in
HCC patients in the two cohorts revealed by the multivariate Cox regression analysis (all P < 0.001). Subgroup analysis
further demonstrated the diagnostic value of the signature across different stages, grades, sexes, and age groups. The
C-index of the prognostic signature was 0.761, which was not only higher than that of several previous risk models but
was also much higher than that of a single age, sex, grade, and stage risk model. Furthermore, functional analysis
revealed that the potential biological mechanisms mediated by these pseudogenes are primarily involved in cytokine
receptor activity, T cell receptor signaling, chemokine signaling, NF-kB signaling, PD-L1 expression, and the PD-1
checkpoint pathway in cancer.

Conclusion: The novel proposed and validated pseudogene pair-based signature may serve as a valuable
independent prognostic predictor for predicting survival of patients with HCC.
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Background

Hepatocellular carcinoma (HCC) is the most prevalent
subtype of hepatic malignancies worldwide, accounting
for 90% of primary liver cancers [1]. HCC is particularly
prevalent in developing countries, particularly in East Asia
and sub-Saharan Africa when compared with developed
countries [2, 3]. Previous epidemiological studies have
reported there to be approximately 250,000 new subjects
and approximately 500,000 to 600,000 deaths due to HCC
annually [1]. Despite the rapid advances in imaging tech-
niques, surgical resection, and comprehensive therapy to
treat HCC in recent years, the 5-year survival rate of HCC
patients remains poor [4]. Therefore, it is necessary to un-
cover novel prognostic signatures that may identify groups
of patients with a high risk of poor survival.

Pseudogenes are non-coding genes similar to their
corresponding homologous protein-coding genes and
long been considered ‘gene fossils’ or funk genes’
because they do not encode functional proteins due to
different kinds of mutations in the coding sequences [5].
In recent years, accumulating evidence has overwhelm-
ingly revealed that individual pseudogenes involve in
multiple human diseases including malignancy [6]. Mul-
tiple tumor-related pseudogenes have been confirmed as
predictors for both diagnosis and prognosis. For example,
the pseudogene DUXAP10 was found to be upregulated
in several kinds of malignancies and could serve as a novel
biomarker with high diagnostic and prognostic value for
many cancers [7]. In HCC, high expression of the pseudo-
gene ANXA2P2 has been found to be related to a worse
prognosis. ANXA2P2 could be a novel predictive factor
for evaluating the risk of recurrence or metastasis in HCC
patients [8]. However, the molecular characteristics of
pseudogene interactions and the prognostic value of pseu-
dogenes in HCC have not been comprehensively explored.

Numerous studies have established mRNA expression
profile-based signatures for outcome prediction in HCC
patients [9-14]. However, these models have been failed
to utilize clinically due to the diversity of data types,
batch effects, and subsequent normalization of expres-
sion data, which poses a daunting obstacles for data
processing given the possible biological heterogeneity
among various data series and technical differences
across different platforms [15]. Recently, a novel algo-
rithm according to the relative orders of gene expression
levels was established to remove the disadvantages of
mRNA/miRNA expression normalization and scaling
and has demonstrated robust results in previous stud-
ies [16, 17].

In this study, we identified 19 pseudogene-pairs based
on univariate and LASSO regression analyses, and estab-
lished a risk score model to predict the outcome of
patients with HCC. Time-dependent receiver operating
characteristic (ROC) curves were used to investigate the

Page 2 of 12

model’s performance in predicting the 1-, 3-, and 5-year
overall survival (OS) of patients with HCC in two
cohorts. Further, subgroup analysis was implemented to
explore the prognostic performance of the signature in
different stages, grades, sexes, and age groups. The C-
index of the prognostic signature was compared with
several established risk models. Pearson correlation ana-
lyses were done between the included pseudogenes and
protein-coding genes based on their expression levels.
Subsequently, we explored the biological functions and
possible signaling pathways associated with the identified
pseudogenes in the risk signature.

Methods

Data sources and pseudogene acquisition

The most current 13,600 pseudogenes were searched from
the HUGO Gene Nomenclature Committee (HGNC,
https://www.genenames.org/download/statistics-and-files/
). RNA-sequencing (RNA-seq) data from 374 HCC pa-
tients and 50 normal controls with corresponding clinical
follow-up information (370 with complete follow-up clin-
ical data) was screened out from the Cancer Genome
Atlas (TCGA) database. Pseudogene expression levels
were determined using the GENCODE project (http://
www.gencodegenes.org) annotation by repurposing the
probes in the RNA-seq expression profiles. Additionally,
mRNA expression matrix and the clinical follow-up infor-
mation for 240 patients with primary HCC (231 with
complete follow-up information) and 202 normal controls
were downloaded from the International Cancer Genome
Consortium database (ICGC, https://dcc.icgc.org/, LIRI-
JP) to validate the model externally. The probe IDs were
changed to their gene symbols based on their annotation
files without further standardization. For more than one
probes corresponding to the same gene symbol, the probe
average was calculated as the final expression value of
gene. Patient ID numbers were matched with their gene
expression profiles and follow-up data. The mRNA ex-
pression matrix of the shared pseudogenes was extracted
from these two publicly available datasets.

Establishment of pseudogene pair-based prognostic
signature

We first filtered out pseudogenes with imbalanced distri-
bution or fairly little mutations [determined by median
absolute deviation (MAD) < 0.5] across all samples in both
cohorts [16]. Each pseudogene pair was analyzed by a
pairwise comparison of pseudogene expression relative
levels in a specific patient to obtain the score for per
pseudogene pair. When the expression level of the first
pseudogene more than the second pseudogene in a given
pseudogene pair, the output value of the pseudogene pair
was 1 and O for the different order, according to the pro-
posed algorithm [16, 17]. Finally, 222 shared pseudogene
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pairs across two datasets were included. To explore the
potential pseudogene pairs affecting the prognosis of HCC
patients, univariate Cox regression analysis was used to
identify the correlation between pseudogene pair expres-
sion and OS, with P<0.05 being deemed statistically
significant. Candidate factors were further screened by
LASSO regression to yield the optimal informative but
parsimonious model with 1000 iterations. Subsequently, a
prognostic signature risk score was constructed according
to the expression level of prognostic pseudogene pairs,
weighted by the regression coefficient originated in the
LASSO algorithm. Using the cutoff of the risk score gen-
erated by time-dependent ROC at 1 year for OS, all indi-
viduals were categorized into high- and low-risk groups.

Validation of the prognostic performance of the
pseudogene pair model

Kaplan-Meier analysis along with a log-rank test was
applied to compare the survival differences of the two risk
groups. Time-dependent ROC curve analysis for OS was
carried out to determine the predictive power of the model.
Univariate Cox regression was performed to determine po-
tential prognostic variables, and multivariate Cox analysis
was perform to verify the effect of the risk score model on
prognosis and other clinical factors. Hazard ratios (HRs)
and their 95% confidence intervals (CIs) were estimated.

Comparison with other clinicopathological features and
the novel prognostic model

To compare the effectiveness of the novel prognostic
model with available clinicopathological factors and the
recently built prognostic models, a comparison was imple-
mented using the rcorrp.cens package in Hmisc in R and
evaluated by C-index with 1000 bootstrap resamples.

Identification and enrichment analysis of pseudogene-
related protein-coding genes

The Pearson correlation coefficients (|Pearson correlation
coefficient| > 0.6 and P-value <0.001) between the final
identified pseudogenes and protein-coding genes were mea-
sured to detect their co-expression associations [18]. Gene
Ontology (GO) functional enrichment analysis as well as
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way enrichment analyses were also conducted utilizing the
clusterProfiler package to investigate the biological func-
tion and pathways involving numerous genes [19].

Statistical analysis

Survival curves were generated using the Kaplan—Meier
method along with the log-rank test. Receiver operating
characteristic (ROC) curves were generated using the R
package “survivalROC”. The area under the curve (AUC)
value obtained from the ROC curve was used to explore
the diagnostic effectiveness of signature risk score in

Page 3 of 12

discriminating HCC tissues from normal tissues in two
cohorts. Multivariate analyses were carried out utilizing
the Cox proportional hazards regression model. A P-value
less than 0.05 was considered significant.

Results

Establishing the pseudogene pair-based signature

The follow-up clinical information of patients in the two
cohorts were shown in Table 1. A total of 222 pseudogene
pairs were identified from 36 shared pseudogenes in
the TCGA cohort after filtering by MAD > 0.5 as men-
tioned above. Univariate Cox regression analysis was
carried out for the 222 pseudogene pairs to reveal 38
pseudogene pairs presenting significant prognostic
potential (P <0.05). Next, we performed LASSO Cox
regression algorithm to reduce the number of pseudo-
gene pairs in the risk model. After 1000 iterations, 19
pseudogene pairs were obtained and used to build a
prognostic risk signature (Fig. 1). The risk signature
consisted of 21 unique pseudogenes (Table 2).

Table 1 Clinical data of patients in the TCGA and the ICGC
validation cohort

Variables Subgroups TCGA (N =370) ICGC(N =231)
Age <60 169 44
>=60 201 187
Sex Male 249 179
Female 121 62
Stage | 171 36
Il 85 104
Il 85 72
% 5 19
NA 24 0
Grade | 55 -
Il 177 -
Il 121 -
% 12 -
NA 5 -
Survival status Dead 130 42
Living 240 189
Vascular invasion Positive 108 -
Negative 206 -
NA 56 -
Family history Positive 112 73
Negative 207 143
NA 51 15
Prior malignancy Positive - 29
Negative - 202
NA - 0
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Fig. 1 Predictor selection by LASSO algorithm. a: Parameter filter by LASSO regress algorithm used five-fold cross-validation by through minimum
criteria; b: Optimal feature selection based on LASSO coefficient profile plot of 19 pseudogene pairs

Table 2 Information on the 19 pseudogene pairs and the coefficient obtained from the least absolute shrinkage and selection
operator (LASSO) regression analysis

Genepairl Full name Genepair2 Full name Coef
ABCC6P2 ATP binding cassette subfamily C member DSTNP2 DSTN pseudogene 2 —0.133577486
6 pseudogene 2
ANXA2P2 annexin A2 pseudogene 2 AZGP1P1 AZGP1 pseudogene 1 0.06815618
ANXA2P2 annexin A2 pseudogene 2 HLA-J major histocompatibility complex, class |, J 0.337854755
AQP7P1 aquaporin 7 pseudogene 1 HLA-J major histocompatibility complex, class |, J 0433464122
AQP7P1 aquaporin 7 pseudogene 1 MT1DP metallothionein 1D, pseudogene 0.220401079
AZGP1P1 AZGP1 pseudogene 1 CYP21A1P cytochrome P450 family 21 subfamily A —0.171662304
member 1, pseudogene
AZGP1P1 AZGP1 pseudogene 1 GGTA1P glycoprotein alpha-galactosyltransferase 1, —0.330772998
pseudogene
C3P1 complement component 3 precursor MT1L metallothionein 1L, pseudogene —0.211202632
pseudogene
CAS5BP1 carbonic anhydrase 5B pseudogene 1 LPAL2 lipoprotein(a) like 2, pseudogene 0.140891921
DSTNP2 DSTN pseudogene 2 PLGLA plasminogen like A 0.139199981
DSTNP2 DSTN pseudogene 2 WASH3P WASP family homolog 3, pseudogene 0.332685477
HLA-J major histocompatibility complex, class |, J MSTO2P misato family member 2, pseudogene —0.356768111
HLA-J major histocompatibility complex, class |, J RPOP RP9 pseudogene —0.035991571
HSPA7 heat shock protein family A (Hsp70) member NAPSB napsin B aspartic peptidase, pseudogene 0.384325838
7 (pseudogene)
LPAL2 lipoprotein(a) like 2, pseudogene PLGLA plasminogen like A 0.092279424
NAPSB napsin B aspartic peptidase, pseudogene NSUN5P1 NSUN5 pseudogene 1 —0.339252375
NUDT16P1 nudix hydrolase 16 pseudogene 1 PLGLA plasminogen like A 0.20989673
PLGLA plasminogen like A RPOP RP9 pseudogene —0.137033874
RPOP RP9 pseudogene WASH3P WASP family homolog 3, pseudogene 0424813675
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Association between signature risk score and clinical
characteristics

To confirm the clinical value of the pseudogene pair-
based signature risk score, the Chi-square test was applied
to assess the association between the risk score and avail-
able clinical parameters. In the TCGA cohort, a higher
risk score was revealed to be associated notably with grade
(OI + IV vs grade I + 11, P = 0.0021; Fig. 2a) and stage (III +
IV vs I +1I, P =0.00043; Fig. 2b). However, no significant
difference was found in age (P =0.0021; Fig. 2c) and gen-
der (P =0.0021; Fig. 2d).

Page 5 of 12

Validation and assessment of the established signature

Next, the risk score of the novel signature for per patient
were calculated in the TCGA cohort. The optimal cutoff
score for classifying patients into high- or low-risk groups
was determined as 0.509 employing time-dependent ROC
curve analysis at 1 year for OS predication (Fig. 3). High-
risk patients exhibited a worse prognosis than low-risk
patients, as revealed by Kaplan-Meier and log-rank tests
(HR: 5.12, 95% CI: 3.54.7.39, P < 0.001, Fig. 4a). Patients in
high-risk group also had worse outcomes than low-risk
patients in the ICGC cohort (HR = 3.2, 95%CI: 1.61-6.37,
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Fig. 3 Time-dependent ROC curve analysis of the risk score. A cutoff point of risk score was identified as 0.509 to divide patients into two distinct
groups in the TCGA cohort

P <0.001, Fig. 4b) using the same cutoff point as in the
TCGA dataset.

To evaluate the prognostic performance of the signa-
ture in different subgroups, we investigated the relation-
ship between clinical pathological factors and the
prognostic signature using Kaplan-Meier and log-rank
tests. As shown in Fig. 4c-n, the Kaplan—Meier curves
illustrated that the signature was a robust prognostic
predictor for patients with HCC grouped by sex (male
or female), age (< 60years or > 60 years), family history
(Yes or No),grade (grade I-II or grade III-IV), vascular
invasion (Yes or No), and stage (stage I-II or stage III-
IV). Multivariate Cox regression analyses were used to
screen out the independent predictor in two cohorts.
After adjusting for other clinical and pathological vari-
ables, the prognostic signature risk score was still an in-
dependent prognostic variable for OS in the TCGA
cohort (HR =3.416, 95%CI: 2.551-4.576; P <0.001) and
was validated in the ICGC cohort (HR =1.902, 95%CI:
1.201-3.014, P = 0.006, Table 3).

Furthermore, the AUC values of the prognostic model
for the 1-, 3-, and 5-year survival rates prediction in the
TCGA cohort were 0.78, 0.81, and 0.74, respectively,
(Fig. 5a). This revealed the predictive performance of the
prognostic signature to be quite promising. The AUC
values for OS in the ICGC cohort at 1year and 3 years
were 0.71 and 0.67, respectively (Fig. 5b). These findings

confirmed that the novel model accurately predicted the
prognosis of patients with HCC.

To explore the diagnostic value of pseudogene pair-
based signature, we generated a ROC curve using the
risk score from 374 HCC patients and 50 healthy con-
trols. The AUC was 0.839 (95%CI=0.801-0.875;
Fig. 6a), which was further confirmed in the ICGC
cohort with an AUC of 0.871 (95%CI = 0.836-0.901;
Fig. 6b). Subgroup analysis demonstrated the diagnos-
tic value of signature risk score in early stage of HCC
were robust with AUC value of 0.778 (95%CI = 0.720—
0.829; Fig. 6¢) for stage I disease in the TCGA cohort.
The diagnostic power was confirmed in the ICGC
cohort with an AUC of 0.872 (95%CI = 0.825-0.910;
Fig. 6d) for stage I disease. These demonstrated that
the pseudogene pair-based signature risk score had an
excellent diagnostic value in discriminating HCC from
normal samples.

Comparison with previous existed prognostic signatures

We compared our novel model with previous established
prognostic signatures and confirmed the predictive
performance and precision of the signature. Most im-
portantly, the novel signature yielded a C-index of 0.761,
which was higher than that of risk models based on sin-
gle variable, which included age, grade, sex, stage as well
as the merged models (all P <0.05, Fig. 7). Furthermore,
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we also compared our model with recent existing signa-
tures used to predict HCC survival. The C-index of our
prognostic signature was larger than that of previous
existed models (all P<0.05). In addition, the C-index of
the signature combined with other variables was 0.774.
Thus, a combination of our prognostic signature and
other variables should provide a more accurate predic-
tion. Therefore, the novel prognostic signature was
robust in predicting the prognosis of HCC patients.

Functional analysis of co-expression genes

To further example the potential biological roles of the 21
unique pseudogenes identified, the protein-coding genes
positively or negatively correlated with them (|Pearson
correlation coefficient| >0.6 and P-value <0.001) were
considered pseudogene-related protein-coding genes. A
total of 842 genes were considered eligible for pathway
enrichment. We conducted GO and KEGG enrichment
analyses to uncover specific functional categories of the
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Table 3 Univariate and multivariate analyses identified independent prognostic factors for overall survival of HCC in the TCGA and

the ICGC cohorts

Univariate analysis

Multivariate analysis

HR 95%(Cl P-value HR 95%Cl P-value
TCGA cohort
Age 1.01 0.996-1.025 0.174 1.01 0.996-1.024 0.168
Sex 0.776 0531-1.132 0.188 0912 0.614-1.353 0.646
Grade 1.133 0.881-1.456 033 0927 0.706-1219 0.588
Stage 1.68 1.369-2.062 < 0.0001 133 1.070-1.654 0.01
riskScore 3.583 2.726-4.709 <0.0001 3416 2.551-4.576 <0.0001
ICGC cohort
Sex 0515 0.270-0.982 0.044 042 0.215-0.819 0.011
Age 0.998 0.966-1.032 0917 0.989 0.955-1.025 0.558
Stage 2238 1.532-3.269 <0.0001 216 1.459-3.198 0.0001
Prior malignancy 1.658 0.692-3.975 0.257 2.287 0.912-5.734 0.078
Cancer history 0.794 0.404-1.563 0.505 0.706 0.351-1421 0.329
riskScore 2337 1.490-3.664 0.0002 1.902 1201-3.014 0.006

co-expressed genes. They were primarily involved in
cytokine receptor activity, cytokine binding, chemokine
receptor activity, C-C chemokine receptor activity, and
chemokine binding (Table 4). KEGG pathway enrichment
revealed that these genes were primarily involved in T cell
receptor signaling, chemokine signaling, B cell receptor
signaling, PD-L1 expression, NF-kB signaling, and the PD-
1 checkpoint pathway in cancer (Table 4).

Discussion

HCC remains a major and growing global public health
challenge. However, the molecular pathogenesis of HCC
is not fully understood. Given the extensive heterogeneity

of HCC, there is a need for more accurate individualized
prognostic signatures. Recently, increasing evidence has
demonstrated that abnormal expression of pseudogenes is
involved in multiple diseases, including malignancy [6].
For example, in HCC, upregulation of the pseudogene
RP11-564D11.3 has been found to be associated with ad-
verse survival [20]. Numerous researches have built gene
expression profile-based signatures for survival prediction
in patients with HCC [9-14]. However, previous reports
aiming to build a prognostic model have focused on
mRNAs, IncRNAs, and miRNAs, neglecting pseudogenes
as potential biomarkers in HCC. Therefore, the develop-
ment of a robust pseudogene pair signature contributes to
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clinical decision-making for individualized treatment of
HCC patients.

In this study, we established a novel 19-pseudogene
pair signature that could successfully classify patients
into two groups with different OS. We found that pa-
tients in high-risk group had a worse survival rate than
patients in the low-risk group in both cohorts. Subgroup
analysis by age, family history, sex, grade, vascular inva-
sion, and stage yielded the same conclusion. We found
the signature to be a stable prognostic predictor for pa-
tients with HCC. Multivariate analyses demonstrated
that the risk score may be a clinically independent prog-
nostic predictor for HCC. The AUC values of the prog-
nostic model for OS prediction also present excellent
predictive performance in both cohorts. The signature
was reproducible and robust in the independent valid-
ation cohort, demonstrating its value and effectiveness.
These conclusions confirmed that the novel model could
offer an accurate survival prediction for patients with
HCC. Moreover, the C-index of our signature was larger
than that of established signatures. We employed a more
comprehensive and novel approach to develop a robust
prognostic signature for HCC and successfully validated

it in the ICGC cohort. Therefore, this novel prognostic
model is accurate, robust, and interpretable.

Although numerous prognostic models have been
established for the prediction of HCC survival [9-14, 21,
22], these prognostic models have seldom been widely
utilized clinically due to their need for proper data
standardization across various expression profiles for
further analysis [16, 17]. In this study, based on the rela-
tive orders of the mRNA expression, the signature was
generated only by weight-pairwise comparison within a
given sample without requiring for data normalization
and can remove the batch effects between different plat-
forms. Furthermore, the cutoff value derived from the
risk score formula used in this study could be employed
across multiple datasets, showing a great advantage
when compared with previous models, and may be easily
translated into clinical application. This novel algorithm
has been validated to be accurate and robust in previous
cancer-related reports [16, 17, 23, 24].

The identified pseudogene-related protein-coding genes
were primarily involved in cytokine and chemokine recep-
tor activity, and cancer-related pathways, such as T cell re-
ceptor signaling, NF-«B signaling, PD-L1 expression, and
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Table 4 GO functional and KEGG pathway enrichment analysis of pseudogenes-related protein-coding genes

ID Description P value P adjust
GO:0004896 cytokine receptor activity 1.64E-11 6.31E-09
GO:0001637 G protein-coupled chemoattractant receptor activity 4.05E-08 3.23E-06
GO:0004950 chemokine receptor activity 4.05E-08 3.23E-06
GO:0019955 cytokine binding 421E-08 3.23E-06
GO:0016493 C-C chemokine receptor activity 1.65E-07 9.05E-06
GO:0019957 C-C chemokine binding 2.54E-07 1.30E-05
G0O:0019956 chemokine binding 3.92E-07 1.88E-05
G0O:0023023 MHC protein complex binding 6.72E-07 3.04E-05
GO:0042287 MHC protein binding 1.33E-06 5.67E-05
GO:0032395 MHC class Il receptor activity 2.54E-05 0.001027582
GO:0030246 carbohydrate binding 0.000143695 0.004598232
GO:0001608 G protein-coupled nucleotide receptor activity 0.000175825 0.005193614
GO:0045028 G protein-coupled purinergic nucleotide receptor activity 0.000175825 0.005193614
GO:0030695 GTPase regulator activity 0.000508907 0.012607749
KEGG:hsa04662 B cell receptor signaling pathway 4.67E-12 1.85E-10
KEGG:hsa04062 Chemokine signaling pathway 2.79E-09 4.07E-08
KEGG:hsa04660 T cell receptor signaling pathway 1.36E-07 1.45E-06
KEGG:hsa04650 Natural killer cell mediated cytotoxicity 3.92E-07 4.02E-06
KEGG:hsa04060 Cytokine-cytokine receptor interaction 1.07E-06 1.03E-05
KEGG:hsa04064 NF-kappa B signaling pathway 0.000577911 0.00390442
KEGG:hsa05235 PD-L1 expression and PD-1 checkpoint pathway in cancer 0.001387015 0.008934958

KEGG:hsa05231 Choline metabolism in cancer 0.008939182 0.047618336
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PD-1 checkpoint pathway in cancer. It has also been
reported that IL-8 and IL-6, important chemokines, are
involved in tumor angiogenesis, growth and metastasis, and
can therefore act as vital chemokines for blood vessel
formation in HCC [25-27]. Previous studies have con-
firmed that T cells gather in the blood of HCC patients,
and tumor necrosis factor (TNF), which is involve in the T
cell receptor signaling pathway, was downregulated in
sorafenib-treated HCC patients, demonstrating that the T
cell receptor signaling pathway may also be involved in
HCC [28, 29]. A previous study has provided evidence for
the inhibitory effect of PPARa on HCC via the NF-kB sig-
naling pathway [30]. IGFBP2 can serve as a new therapeutic
target that activates the NF-kB-ZEBI1 signaling axis and
contributes to HCC tumorigenesis [31]. Expression of im-
mune checkpoint molecules, such as PD-1/PD-L1, has been
confirmed in HCC [32]. Furthermore, in September 2017,
the FDA has granted accelerated approval to PD-1 check-
point inhibitors for the treatment of HCC patients [33].
Therefore, the novel established pseudogene pair signature
could be associated with HCC-related biological pathways
and the functional dysregulation could be well associated
with the survival of HCC patients.

The signature based on the relative expression ordering
exhibited no difficulty in clinical transformation and appli-
cation. For future study, if the expression matrix of 21 pseu-
dogenes was obtained, a 19-pseudogene pair signature was
therefore constructed. Furthermore, the signature only in-
volves pairwise comparison within a given sample without
the requiring for data normalization and batch effects from
different laboratories and platforms. Based on the cutoff
value derived from the risk score formula, patients can be
grouped into different groups, and their prognosis can be
predicted. Thus, the prognostic model can act as an indi-
vidualized, single-sample prediction of outcome of HCC
and can be easily translated to clinical application.

This is the first research to establish a pseudogene pair-
based prognostic signature in HCC. However, this study
also has limitations. First, prospective research is suggested
to validate the prognostic function of the pseudogene pair
signature. Moreover, to better understand the functional
role of these pseudogene pairs in HCC, experimental stud-
ies investigating these pseudogenes should be carried out.

Conclusion

We developed and validated an accurate and novel ro-
bust pseudogene pair signature capable of accurately
predicting the prognosis of HCC patients, with higher
risk scores demonstrating adverse prognosis. The signa-
ture is reproducible and robust in an independent exter-
nal cohort and outperforms other established signatures,
demonstrating its value and effectiveness. Additionally,
this signature could act as an encouraging independent
prognostic predictor for HCC.
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