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Wearable technologies for measuring digital and chemical physiology are pervading
the consumer market and hold potential to reliably classify states of relevance to
human performance including stress, sleep deprivation, and physical exertion. The
ability to efficiently and accurately classify physiological states based on wearable
devices is improving. However, the inherent variability of human behavior within and
across individuals makes it challenging to predict how identified states influence
human performance outcomes of relevance to military operations and other high-
stakes domains. We describe a computational modeling approach to address this
challenge, seeking to translate user states obtained from a variety of sources including
wearable devices into relevant and actionable insights across the cognitive and physical
domains. Three status predictors were considered: stress level, sleep status, and
extent of physical exertion; these independent variables were used to predict three
human performance outcomes: reaction time, executive function, and perceptuo-motor
control. The approach provides a complete, conditional probabilistic model of the
performance variables given the status predictors. Construction of the model leverages
diverse raw data sources to estimate marginal probability density functions for each
of six independent and dependent variables of interest using parametric modeling and
maximum likelihood estimation. The joint distributions among variables were optimized
using an adaptive LASSO approach based on the strength and directionality of
conditional relationships (effect sizes) derived from meta-analyses of extant research.
The model optimization process converged on solutions that maintain the integrity of
the original marginal distributions and the directionality and robustness of conditional
relationships. The modeling framework described provides a flexible and extensible
solution for human performance prediction, affording efficient expansion with additional
independent and dependent variables of interest, ingestion of new raw data, and
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extension to two- and three-way interactions among independent variables. Continuing
work includes model expansion to multiple independent and dependent variables, real-
time model stimulation by wearable devices, individualized and small-group prediction,
and laboratory and field validation.

Keywords: machine learning, adaptive LASSO, human performance, stress, sleep, exercise, modeling

INTRODUCTION

Advances in wearable sensing afford real-time non-invasive
monitoring of digital and chemical physiology, behavior, and
biomechanics in ambulatory individuals (Windmiller and Wang,
2013; Lou et al., 2018, 2020). Wearable consumer and medical
devices can collect real-time data from diverse locations on the
body (e.g., wrist, finger, chest, head, and oral cavity) and process
and classify data to predict user status (Nag et al., 2017; Tseng
et al., 2018; Terse-Thakoor et al., 2020). Classification can occur
across one or more dimensions including stress, fatigue, sleep
status, thermal load, hydration, blood glucose and oxygenation,
and physical exertion (Yoo and Lee, 2010; Coppedè et al., 2014;
Mokaya et al., 2016; Kutilek et al., 2017; Dunican et al., 2018; Ahn
et al., 2019). In military or other high-stakes contexts, real-time
readings of these outputs can provide trainers and leaders with
information regarding the current physiological and behavioral
status of individuals and teams (Kutilek et al., 2017; Friedl, 2018;
Scheit, 2021).

Awareness of individual or group status in a given domain
(e.g., heart rate) is not always sufficient for informing predictions
of human performance outcomes, making it challenging to bridge
the gap between state classification, what the status predicts for
cognitive and physical performance, and what can be done to
mitigate any predicted performance degradation (Danah and
Crawford, 2012; Nafus, 2014; National Research Council, 2015;
Howell et al., 2018; Parsons et al., 2019). For example, while
actigraphy-based classification of sleep states might suggest low
sleep quality or quantity, leaders may not understand how
such states influence performance outcomes and therefore how
to manage or mitigate the situation. Indeed, the relationship
between sleep loss and performance outcomes is highly complex
(Killgore, 2010). Similarly, saliva-based biomarkers of cortisol
response via real-time tooth-borne sensing might suggest a high
stress state (Singh et al., 2014; Tseng et al., 2018; Upasham et al.,
2018), but the precise relationship between increased stress and
performance outcomes remains elusive (Sandi, 2013).

The apparent disconnect between sensor outputs, status,
and performance outcomes exists for at least three reasons.
First, human cognitive and physical performance shows high
variability within and across individuals, making performance
challenging to reliably capture, model and predict, ultimately
limiting the reliability of model outcomes (Smith et al., 2014).
Second, computational modeling in this domain tends to
be restricted to relatively few predictors and outcomes of
interest and is computed using data from one or only a
small handful of studies, ultimately limiting the applicability of
model outcomes (Scheinost et al., 2019). Third, most research
examining links between user states and cognitive and physical

behavior is conducted in laboratory settings and may bear
little resemblance to the tasks, environments, and behaviors
characterizing relatively real-world settings, ultimately limiting
the generalizability of model outcomes (Swets and Bjork, 1990;
Terrin et al., 2003; Vergouwe et al., 2010).

To motivate our computational modeling approach to the
challenge of human performance prediction, we first describe
research on our three predictors of interest: stress, sleep, and
physical exertion. Next, we describe research on our three
outcomes of interest: reaction time, executive function, and
perceptuo-motor control. We then describe our computational
modeling approach, its outcomes, and its strengths and
weaknesses. Finally, we discuss how our model framework can be
extended to more complex prediction challenges, integrated with
real-time state classification tools, and validated in laboratory and
field research settings.

PREDICTORS OF INTEREST: STRESS,
SLEEP, AND PHYSICAL EXERTION

We chose three predictors of interest based on emerging wearable
technologies and their ability to classify stress states, sleep
status, and extent of physical exertion. For example, tooth-borne
biosensors can monitor saliva in the oral cavity to measure alpha
amylase and estimate stress states (Robles et al., 2011; Tseng et al.,
2018), wrist-worn accelerometers can monitor actigraphy and
estimate sleep/wake cycles, including sleep loss and deprivation
(Dunican et al., 2018), and arm- or leg-worn mechanomyography
and electromyography sensors can be used to characterize the
intensity and duration of physical exertion (Esposito et al., 1998;
Woodward et al., 2019). Given the increasing availability of these
sensors, these three specific predictors are likely to be used in
real-world situations.

Stress is a normal response to physiologically and emotionally
challenging experiences, triggered by situations that are
inherently novel, uncontrollable, socially threatening, or
uncertain (Gagnon and Wagner, 2016). The brain is a critical
component of a stress response in two ways; first, because it is
the source of the stress response itself (i.e., the organ responsible
for determining whether an experience is threatening), and
second, because it is also responsible for activating physiological
and behavioral responses to stress (McEwen, 2007). At a basic
physiological level, stress activates the autonomic nervous
system and hypothalamic-pituitary-adrenal (HPA) axis, and
carries diverse neurotransmitter, hormonal, genomic, and
immune implications (Axelrod and Reisine, 1984; Padgett
and Glaser, 2003; Charmandari et al., 2005; McEwen,
2007; Gagnon and Wagner, 2016; Buchheim et al., 2019;
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Angelova et al., 2021). When an individual is exposed to a
stressor, two stress systems are activated: a rapid catecholamine
response, and a slower HPA axis and genomic response. The
rapid catecholamine response is associated with increased
epinephrine and norepinephrine release (Schwabe et al., 2012),
and the slower HPA response is associated with increased
glucocorticoid release that induces both non-genomic and
genomic effects on the central nervous system (Sapolsky
et al., 2000). The effects of these stress responses are most
pronounced on brain regions with high catecholamine and
glucocorticoid receptor densities, including the amygdala,
striatum, hippocampus, and prefrontal cortex (Arnsten, 1998,
2009; Roozendaal et al., 2009; Kim et al., 2015). Given the diverse
perceptual, cognitive, and affective functions of these brain
areas, stress correspondingly carries diverse implications for
sustaining mental performance. For example, research shows
that stress can positively influence performance on relatively
simple or well-rehearsed tasks (Broadbent, 1971; Arnsten, 2009)
that do not demand prefrontal cortical engagement, but can
negatively influence performance on relatively difficult tasks
involving high levels of executive function (Arnsten, 1998, 2009;
Cerqueira et al., 2007), which can be especially pronounced,
for example during unpredictable and ambiguous military
operations (Gaillard et al., 2006).

Sleep plays a critical role in sustaining life and health,
with acutely or chronically disrupted sleep associated with
diverse effects on brain function and systemic physiology,
including hormonal, cardiovascular, immune, and metabolic
effects (Medic et al., 2017). Unfortunately, most American
adults report trouble falling asleep, poor quality sleep, or
difficulty staying asleep (Knutson et al., 2017). Military work
schedules exacerbate this issue, with chronic demands for
continuous operations minimizing the quantity and quality of
sleep (Mysliwiec et al., 2013). These include 24-hour work
cycles, time zone changes, inconsistent lighting exposure, and
night shifts, which can cause recurrent partial sleep deprivation
and/or acute total sleep deprivation (Spiegel et al., 2016). Due
to these challenging demands, one study demonstrated that
72% of service members reported six or fewer hours of nightly
sleep, 43% reported five or fewer hours, and 18% reported
four or fewer hours (Luxton et al., 2011). These statistics
can be compounded by clinical disorders such as insomnia,
post-traumatic stress disorder, and mild traumatic brain injury
(mTBI), and carry important implications for cognitive and
physical performance (Good et al., 2020). Restricted sleep
quantity and quality influence blood glucose and glucose
tolerance, limit immune function, increase blood levels of
catecholamines and cortisol, and attenuate brain functional
connectivity in regions known to modulate attention (Dinges
et al., 1995; Spiegel et al., 1999; Chee and Tan, 2010; Lim
et al., 2010; Besedovsky et al., 2012). While some debate exists
regarding the robustness and reliability of sleep restriction or
deprivation effects on various aspects of cognitive performance,
it is generally accepted that it negatively influences vigilance and
sustained attention (i.e., the ability to attend and respond to
stimuli; Lim and Dinges, 2008), and induces high performance
variability (Doran et al., 2001).

Physical exertion describes sustained physical activity at a
moderate to high intensity level. According to the American
College of Sports Medicine (ACSM) and Centers for Disease
Control and Prevention (CDC), physical activity can be generally
classified by the rate of energy expenditure: low, moderate,
and vigorous (Ainsworth et al., 1993, 2000, 2011). One method
for measuring rate of energy expenditure over time is through
metabolic equivalents (METs), which are calculated as working
metabolic rate relative to resting metabolic rate (Byrne et al.,
2005). As METs increase over extended durations, an increasingly
diverse set of metabolic, hormonal, and neurotransmitter effects
occurs, ultimately resulting in fatigue and exhaustion. The
cognitive responses that occur during or following an acute
bout of physical exertion have been attributed to a wide
range of physiological responses including cardiac output,
reticular activation, catecholamine and glucocorticoid levels,
cerebral blood oxygenation, and brain-derived neurotrophic
factor (Chang et al., 2012). While many studies have been
reviewed and subjected to meta-analysis to describe cognitive
effects after exercise (Etnier et al., 1997; Sibley and Etnier,
2003; Lambourne and Tomporowski, 2010), relatively few have
considered these effects during exercise (Chang et al., 2012).
During moderate or high levels of physical exertion, studies
suggest that cognitive performance is weakly but negatively
affected, particularly for perceptual and processing speed tasks
(Lambourne and Tomporowski, 2010). A more recent and
comprehensive review and meta-analysis suggested a much
more complex relationship between exertion and cognitive
performance, with certain tasks being negatively and others
positively related to exertion, further influenced by exercise
intensity (Chang et al., 2012).

OUTCOMES OF INTEREST: REACTION
TIME, EXECUTIVE FUNCTION, AND
PERCEPTUO-MOTOR CONTROL

Cognitive processes are generally divided into two levels: low-
level and higher-order (Miller and Cohen, 2001; Miller and
Wallis, 2009). First, relatively low-level processes involve basic
sensory, motor, and memory demands, and relatively routine
habits and skills. Second, relatively higher-order processes
involve more specialized executive functions that enable the
control of attention, maintenance of task- and goal-related
information, inhibition, and flexible and creative thought. We
selected three outcomes of interest that represent both low-level
and higher-order processes relevant to sustained performance
on real-world tasks: reaction time, executive function, and
perceptuo-motor control.

Reaction time is the latency from the presentation of a
stimulus to one or more sensory modalities (e.g., visual,
auditory), and a behavioral response (e.g., button press; Welford,
1980; Luce, 1986). Most perceptual and cognitive science
experiments measuring reaction times use one of three tasks:
simple reaction time, choice reaction time, and serial reaction
time tasks (Kosinski, 2010). Simple reaction time tasks involve the
presentation of a single stimulus with a single possible response;
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for example, repeatedly presenting a dot on a computer screen
and asking participants to respond as quickly as possible to
each dot presentation. Choice reaction time tasks involve the
presentation of more than one stimulus, and response types are
mapped to each stimulus; for example, presenting a dot or square
on a screen and asking a participant to respond by pressing the
number 1 or 3 key on a keyboard, respectively, in response to
the presentation of each stimulus. Finally, serial reaction time
tasks represent a modification of the choice reaction time task,
including predictable sequences of each stimulus type. We chose
to restrict our analysis to simple reaction time as an outcome
of interest for three primary reasons. First, simple reaction time
resides at a most basic level of cognitive processes, whereas
choice and serial reaction time tasks can elicit higher-order
processing (i.e., executive function) as evidenced by activation
of inhibitory processes and anterior cingulate and prefrontal
cortical circuits (Naito et al., 2000; Mulert et al., 2003; Burle
et al., 2004). Second, maintaining vigilant attention and quickly
reacting to emerging events is critical for sustained performance
in a number of high-stakes tasks including those characteristic
of military and first-responder operations (Truszczynski et al.,
2014; Vrijkotte et al., 2016; Sheffield et al., 2017; Dominski
et al., 2018; Brunyé et al., 2020). Finally, reaction time is
well-characterized and widely available for efficient download
and integration into our modeling approach, and has proven
sensitive to variations in acute stress (Lieberman et al., 2002;
Olver et al., 2015), sleep loss (Forest and Godbout, 2000; Bartel
et al., 2004; Deslandes et al., 2006), and physical exertion
(Chang et al., 2012).

Executive function (also referred to as cognitive control)
involves developing, flexibly executing, and updating goals and
strategies to coordinate performance on relatively complex
tasks (Logan, 1985; Miyake et al., 2000). As a higher-order
brain function, performing executive functions such as updating
goals and inhibiting behavior tends to recruit a very diverse
set of cortical and subcortical brain regions including the
anterior cingulate, prefrontal cortex, and parietal lobes (Miller
and Cohen, 2001; Curtis and D’Esposito, 2003; Seeley et al.,
2007; Elton and Gao, 2014). Example executive function
tasks typically used in laboratory settings include working
memory tasks, the Stroop task, flanker tasks, go/no-go and
stop-signal tasks, and problem solving tasks (Donders, 1969;
Eriksen and Eriksen, 1974; Rabbitt, 2004; MacLeod, 2005;
Lipszyc and Schachar, 2010). We chose to restrict our analysis
to executive function tasks eliciting inhibitory control, for
two primary reasons. First, inhibitory control is a crucial
executive function that has been extensively linked to brain
networks and highly relevant performance outcomes such as
making shoot/don’t-shoot decisions in law enforcement and
military contexts (Biggs et al., 2015; Scribner, 2016; Biggs,
2021). Second, inhibitory control processes are effectively
isolated from simple reaction time both behaviorally and
neuroanatomically, with largely independent functional brain
networks responsible for their performance (Seeley et al.,
2007; Elton and Gao, 2014). Finally, inhibitory control has
proven sensitive to acute stress (Shields et al., 2016), sleep
loss (Drummond et al., 2006; Killgore et al., 2009), and

physical exertion (Dietrich, 2006; Dietrich and Audiffren, 2011;
Eddy et al., 2015).

Perceptuo-motor control involves the dynamic interaction
between sensory and perceptual systems with motor outputs
and feedback and is a critical element of adaptive goal-
oriented behavior at the level of single effectors (finger, tongue),
limbs (arm, leg), and whole-body coordinated movement
(Trommershäuser et al., 2003; Verhagen et al., 2008). Examples
include dynamically adapting the aim of a weapon relative
to a moving target, the swing of a tennis racquet relative
to an oncoming ball, or strategically positioning of your feet
on a balance beam. Many experiments examining perceptuo-
motor control tend to use relatively simple trajectories of
single limbs, such as reaching movements, and the control
processes involved are thought to maximize goal completion
while minimizing biomechanical costs (Sabes and Jordan,
1997; Trommershäuser et al., 2003). From a physiological
perspective, controlling body movements involves a dynamic
interaction among multiple subcorical and cortical brain regions
involved in motor planning and execution (premotor and
motor regions), visual perception (somatosensory and occipital
regions), and error correction (inferior frontal and cerebellar
regions; Gazzola and Keysers, 2009; Tanaka et al., 2009).
We chose to include perceptuo-motor control as an outcome
variable of interest for two primary reasons. First, perceptuo-
motor control underlies myriad tasks in high-stakes contexts
including weapons use, driving and aviation, surgical procedures,
and firefighting (Pick and Palmer, 1986; Holden et al., 1999;
Palmer et al., 2013; Louw et al., 2017). Second, the successful
performance of complex perceptuo-motor tasks has proven
sensitive to variations in acute stress (Arora et al., 2010b;
Bajunaid et al., 2017), sleep loss (Jackson et al., 2013; Connaboy
et al., 2020), and physical exertion (Tharion et al., 1997;
Grebot et al., 2003).

MODELING APPROACH

We developed a model for the conditional probability density
function (PDF) of each outcome, here denoted yi, i ∈ {1, 2, 3} ,
given the three predictors, xj for j ∈ {1, 2, 3};1 which, by the
definition of conditional probability, is computed as

p
(
yi|x1, x2, x3

)
=

p(yi, x1, x2, x3)

p(x1, x2, x3)

=
p(yi, x1, x2, x3)∫
p(yi, x1, x2, x3)dyi

(1)

where p
(
yi, x1, x2, x3

)
is the joint distribution of the i-th outcome

and the three predictors, p (x1, x2, x3) is the joint distribution of
the three predictors alone.

We note that the conditional distribution provides a complete
probabilistic model for the outcome given the three predictors.
From this model any statistical quantity of interest can be

1 For the remainder of this manuscript, we let y1 = reaction time, y2 =
executive function , y3 = perceptuo−motor control , x1 = stress , x2 = sleep ,
and x3 = physical exertion.
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computed including but not limited to mean and standard
deviation, mode (the most likely outcome to be sampled from
a distribution), median, percentiles, as well as higher order
moments such as skew and kurtosis. This characteristic of the
model is helpful when users attempt to derive estimates of model
confidence, for instance by relying on standard deviation and
kurtosis measures.

Constructing the model requires that we determine the
p (xi) , the marginal distributions for the predictors, as well
as the joint distribution p

(
yi, x1, x2, x3

)
. As detailed shortly,

we also require p
(
yi
)
, the marginals for the outcomes for

determining the joint distribution. We compute p(xi) and p(yi)
using density estimation methods applied to data acquired from
a variety of original research data sources. Using these estimated
marginals as well as effect sizes gleaned from the literature,
an optimization-based approach is developed which determines
a joint distribution which “best” fits the marginals and the
moment information implied by effect sizes. Both processes
are detailed below.

Gathering Model Inputs: Marginal
Distributions
For each of the identified predictors and outcomes we estimated
PDFs to characterize the marginal distributions. These PDFs
serve as inputs into our model. This process involved two primary
steps, which we describe in turn.

First, we identified, downloaded, and organized open access
data for each of the six variables of interest. To identify
extant data, we leveraged longitudinal study databases, primary
research reports that included supplementary data alongside the
publication and contacted colleagues and authors to request
archival data. Table 1 provides a full list of data sources used
to define marginal distributions. Table 2 details the primary
measures that were identified for each of the six variables
of interest, including the number of data points identified.
When identifying the primary measures for each variable, we
chose to select gold-standard measures that could feasibly be
measured and characterized in both laboratory (seated, still)
and field (moving, sweating) conditions. For example, when
selecting measures of stress, we chose to include measures
that could be sensed with saliva sensing (i.e., cortisol, alpha
amylase), physiological sensing (i.e., heart rate), and subjective
stress ratings. In contrast, we chose to omit some specialized
measures such as electrodermal activity (EDA), which may be
valuable for detecting acute stress states in laboratory settings
(Liu and Du, 2018) but relatively limited or challenging to
interpret under conditions of thermoregulatory sweating and
intense movement (Boucsein et al., 2012; Posada-Quintero et al.,
2018). When similar measures (e.g., cortisol) used different
measurement units, we converted to a common unit. To calculate
error rates for executive function and perceptuo-motor control,
we calculated a moving average for each of five successive trials in
an original data set.

Second, we estimated PDFs from the data we collected. We
used two different methods, depending on whether the data for a
variable could be converted to a common unit or not.

TABLE 1 | Original resources for deriving raw data to define marginal distributions
(upper row) and effect size estimates to define xy relationships (lower row).

Data derived Original resources

Raw data to
define marginal
distributions

Brunyé et al., 2013; Giles et al., 2014; Mathiassen et al.,
2014; Solis et al., 2015; Inoue et al., 2016; Harris et al.,
2017; Hutchinson et al., 2017; Klein et al., 2017;
Rosenbaum et al., 2017; Heuberger et al., 2018; Sandra
and Otto, 2018; Schumacher et al., 2018; Angelidis et al.,
2019; Bock et al., 2019; Goldfarb et al., 2019; Okano et al.,
2019; Pyke et al., 2019; Sanabria et al., 2019; Wei et al.,
2019; Barrett et al., 2020; Baumert et al., 2020; Fiedler
et al., 2020; Holgado et al., 2020; Johnson et al., 2020;
Knelange and López-Moliner, 2020; Larsen et al., 2020;
Lin H. et al., 2020; Madore et al., 2020; Pahwa et al., 2020;
Rodas and Greene, 2020; Rodeback et al., 2020; Timme
and Brand, 2020; Tsukahara et al., 2020; Vine et al., 2020;
von Helversen and Rieskamp, 2020; Pavlov and
Kotchoubey, 2021

Effect size
estimates to
define xy
relationships

Lisper and Kjellberg, 1972; Glenville et al., 1978; Larsson,
1989; McMorris and Keen, 1994; Brisswalter et al., 1995,
1997; Hogervorst et al., 1996; Tharion et al., 1997; Forest
and Godbout, 2000; Collardeau et al., 2001; Lieberman
et al., 2002; Falleti et al., 2003; Grebot et al., 2003; Lee
et al., 2003; Moorthy et al., 2003; Bartel et al., 2004;
Nilsson et al., 2005; Deslandes et al., 2006; Mouelhi
Guizani et al., 2006; Scott et al., 2006; Acheson et al.,
2007; Groeger et al., 2008; Arora et al., 2010a; Lim and
Dinges, 2010; McMorris et al., 2011; Chang et al., 2012;
Jackson et al., 2013; Olver et al., 2015; Shields et al., 2015,
2016; Ludyga et al., 2016; Muley et al., 2016; Starcke and
Brand, 2016; Bajunaid et al., 2017; Lowe et al., 2017;
Gallicchio et al., 2019; Connaboy et al., 2020

TABLE 2 | The six variables of interest, including three predictors and three
outputs, their primary methods of measurement, and the number of data points
used to estimate each variable’s PDF.

Variable type Variable
name

Primary
measure(s)

Number of
data points

Marginal
computation
method

Predictor Stress Cortisol, alpha
amylase, heart
rate, and
subjective
responses

2,066 Mixture
modeling
+ Maximum
likelihood

Sleep Hours duration 204,403 Kernel density
estimate

Physical
exertion

Borg ratings of
perceived
exertion

4,560 Kernel density
estimate

Outcome Reaction
time

Milliseconds
latency

20,973 Kernel density
estimate

Executive
function

Proportion
errors

5,691 Kernel density
estimate

Perceptuo-
motor
control

Proportion
errors

8,265 Kernel density
estimate

All Units the Same – Non-parametric Density
Estimation
For variables whose datapoints can all be converted to a common
unit (sleep, physical exertion, reaction time, executive function,
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and perceptuo-motor control – see Table 1 for the primary
measure for each variable), nonparametric density estimation
methods (Izenman, 1991) are employed to construct the PDF. To
be concrete, suppose we have N data sources for y1. Then the PDF
p
(
y1
)

is computed as

p(y1) =

N∑
k=1

πkp(y1|Fk)

where Fk denotes the k-th data source, πk is the fraction of
points from the N sources coming from Fk, and p(y1|Fk) is the
conditional PDF of y1 under the conditions associate with Fk.
This function is computed and manually tuned from the raw data
using the kde function from scikit-learn (Pedregosa et al., 2011).

Different Units – Mixture Modeling and Maximum
Likelihood
For the one variable with multiple primary measures (stress,
derived from measures of cortisol, alpha amylase, heart rate, and
subjective responses), we needed to map disparate data into a
common space. We will illustrate the process in this section.
While stress is mentioned here, the process can be applied to any
future variable with multiple primary measures.

Assume we have N sources of information for stress, Fi, i =
1, 2, . . . , N. Let di be a random variable (in the probabilistic
sense) for the data from the i-th source. We assume that these
data are related to the latent variable stress, s, via unknown
functions, gi (s) which for simplicity in this manuscript we take
as affine. Thus, the j-th data point from the i-th source is

di,j = gi
(
sj
)
= aisi,j + bi

With θi =
{

ai, bi
}

the parameters associated with the model for
the i-th data source, basic properties of derived random variables
(Yates and Goodman, 2014) relates the PDF of the observed data
given these parameters to the PDF of s as

p
(
d|θi

)
=

1
|ai|

pS

(
d − bi

ai

)
(2)

In (2) above, the notation pS

(
d−bi

ai

)
indicates the PDF of stress

evaluated at the point (d − bi)/ai. For pS (s), we use a mixture of
Gaussians

pS (s) =
Nc∑

c=1

αcg(s;µc, σ
2
c )

where g(x; a, b) denotes a Gaussian PDF in the variable x with
mean a and variance b and for c = 1, 2, . . . , Nc we have 0 ≤
αc ≤ 1,

∑
c αc = 1, σc > 0, and µc is any real number. In the

remainder of this manuscript, we used Nc = 6 with good results.
We leave for future work the task of choosing this parameter in
an adaptive manner.

Given the data from all N sources then, the problem we face is
to find the maximum likelihood (ML) estimates of the following
parameters:

2 ≡
{

ai, bi, αc, µc, σc
}

for i = 1, 2, . . . , N, c = 1, 2, . . . , Nc.

To find the ML estimate, we need the joint distribution of the
data. Here we assume that all data points are independent draws
from their respective conditional distributions, p(di|θi). We let Ni
be the number of observed datapoints from source i and di,j the
k-th observed datum from source i where j = 1, 2, . . . , Ni. With
d the vector of all data from all sources, the joint PDF of the
observations is

p
(
d|2

)
=

N∏
i=1

Ni∏
k=1

p
(
di,k|θi

)
Formally the ML estimate is defined as the solution to the
following optimization problem:

2̂ = argmin
2∈�

N∑
i=1

Ni∑
k=1

− ln p
(
di,k|θi

)
(3)

where � accounts for any constraints on the parameters such as
the positivity of the σc. The solution to (3) was obtained using the
optimize function in scikit-learn (Pedregosa et al., 2011). The use
of this routine requires the specification of an initial estimate for
the parameters in 2. For bi and ai we used the sample standard
deviation and sample mean of the i-th data set. With the ai and
bi as above, we linearly spaced six Gaussians of identical width
and height in the interval [−2, 4]. Concretely, the {αc, µc, σc}

parameters were initialized to

αc =
1

Nc
σc =

1
Nc

µc = −2+ (c− 1) ∗
(4 −−2)

Nc − 1

= −2+
6(c− 1)

Nc − 1

This approach to initialization allows for a natural
interpretation of the linear transformation as generalized
Z-score coefficients. The initialization process described above
treats each data set independently and takes as given the linear
transformed data as the basis for fitting the GMM parameters.
The maximum likelihood approach requires jointly optimizes
all parameters across the model allowing for the transformation
parameters from one data set to influence those of the other data
sets as well as the GMM parameters.

Gathering Model Inputs: Joint
Distributions
For each pairwise combination of predictor and output we
estimated correlation coefficients to define their conditional
linear relationships. To develop estimates we gathered effect
size estimates from original research and meta-analyses. We
prioritized meta-analyses when they existed for a particular
pairwise relationship, such as stress effects on executive function
(Shields et al., 2016).

In some cases, however, meta-analyses did not exist, and we
needed to aggregate effect size estimates from a review of original
research articles. For example, no meta-analysis exists relating
stress and perceptuo-motor control, so we aggregated across
original research studies examining this relationship (Arora et al.,
2010b; Bajunaid et al., 2017).
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Various effect size measures, such as Cohen’s d and Hedges
G, were converted into correlation coefficients (r) to derive
a common effect size estimate for each of the nine pairwise
combinations (3 × 3). The final effect size matrix relating
the three predictors and outcomes is detailed in Table 3,
and the original sources for deriving effect sizes are detailed
in Table 1. Note that a negative-going coefficient indicates a
negative association between variables; for example, the negative
coefficient relating physical exertion to reaction time indicates
that higher physical exertion levels are generally associated with
lower (faster) reaction times. In contrast, the positive coefficient
relating physical exertion with executive function errors indicates
that higher physical exertion levels are generally associated with
higher (more error-prone) executive function task performance.

Adaptive LASSO Model Optimization for
Determining the Joint Density
The final component of the model we propose is p(yi, x1, x2, x3),
the joint distribution of an output variable and all three inputs.
In this section, we detail a construction of this PDF as the
solution to an optimization problem. Specifically, the four-
dimensional PDF is represented as a convex superposition
of isotropic Gaussian densities of varying widths uniformly
distributed in z =

(
yi, x1, x2, x3

)
. We choose the coefficients in

this expansion such that:

• The marginal distributions for p(y) and p(xi) computed
using the joint model match in an appropriate sense those
constructed from the data as detailed in section “Gathering
Model Inputs: Marginal Distributions” above. Figure 1
depicts the supplied and recovered marginal distributions
for p(y) and p(xi), also detailed in Table 4.
• The correlation coefficient computed using the joint model

similarly, match those obtained from literature in Table 2.
• The LASSO (Tibshirani, 1996) approach resulting in a

model which is parsimonious in that only a few coefficients
in the expansion are nonzero corresponding to what, in
a sense we can make precise, are the “most important”
Gaussians.

We chose to employ a LASSO-based approach because
of its strong theoretical guarantees. Specifically, the LASSO
formulation yields a convex optimization problem to determine

TABLE 3 | Effect size estimates (and 95% confidence intervals) relating each of
the predictors (stress, sleep, and physical exertion) to each of the outcomes of
interest (reaction time, executive function, and perceptuo-motor control).

Reaction time Executive
function

Perceptuo-
motor
control

Stress r = 0.220
(0.157, 0.283)

r = 0.091
(−0.006, 0.188)

r = 0.459
(0.395, 0.523)

Sleep r = −0.278
(−0.363,
−0.193)

r = −0.183
(−0.251,
−0.115)

r = −0.189
(−0.334,
−0.044)

Physical
exertion

r = −0.053
(−0.156, 0.05)

r = −0.074
(−0.154, 0.006)

r = 0.578
(0.223, 0.933)

the α coefficients. Such problems possess a single, globally
optimum solution which can be found regardless of how the
parameters are initialized in the search process. This fact along
with the robust codes that exist for solving the large-scale
instances of such problems as arise in this work make the LASSO
alternative quite convenient.

To simplify the notation, in this section, we shall drop the i
subscript in yi identifying the specific output variable of interest,
as the process is the same for all three outcome variables, and we
let x =(x1, x2, x3) be the vector of three predictor variables.

While the marginals obtained via the method in section
“Gathering Model Inputs: Marginal Distributions” have
meaningful units attached to the associated variables, for the
purposes of the joint distribution reconstruction we normalize
the variable axis of the marginal to fit within the region [−1, 1].
Formally, we specify a lattice of points consisting of N equally
spaced points (with N an odd number) between −1 and 1 on
each axis. This will produce a grid of N4 points in the 4D space.
Letting µn ∈ R4 denote the n-th point in this 4D grid, at each of
these points we place M Gaussians of the form

fn,m (z) =
1

(2π)2 σ4
m

exp
(
−

1
2σ2

m
||z − µn||

2
2

)
where the M values for σm must be chosen judiciously to allow
for a range of “features” in the resulting 4D PDF. For the work
here, we found that the following M = 7 values were sufficient:

σm ∈ {0.03, 0.05, 0.10, 0.15, 0.20, 0.30, 0.40}.

Rather than using two indices, m = 1, 2, . . . , M and n =
1, 2, . . . , N4, we shall use one index i = 1, 2, . . . , MN4

≡ NB
so that the above equation now takes the form:

fi (z) =
1

(2π)2 σ4
i

exp
(
−

1
2σ2

i
||z − µi||

2
2

)
.

The underling ordering of the points can be arbitrary,
as long as it is used consistently in the software
implementation of this method.

Using these Gaussian basis functions, we represent p(y,x)as a
mixture model:

p
(
y, x

)
=

∑
i

αifi
(
y, x

)
(4)

where the expansion coefficients satisfy the probability simplex
constraints:

0 ≤ αi ≤ 1 and
NB∑

i =1

αi = 1. (5)

Using this model, the marginals are expressed in terms of the αi
coefficients as

p
(
y
)
=

∑
i

αifi
(
y
)

(6)

p
(
xj
)
=

∑
i

αifi
(
xj
)

j = 1, 2, 3 (7)
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FIGURE 1 | Comparison of true (supplied) and recovered marginal distributions for each of the three dependent (top) and independent (bottom) variables, along
with the centers of the Gaussian kernels, which were computed using the LASSO method detailed in section “Gathering Model Inputs: Marginal Distributions”. Note,
the marginals for the dependent variables were generated after separate runs of the fitting algorithm using all three independent variables. The marginal distributions
shown for the independent variables were obtained from the fit using reaction time (the marginal fits of the independent variables using the other two dependent
variables displayed an equal level of accuracy). In addition to the fidelity between the LASSO model (recovered) and data-generated (supplied) marginals, we also
observe that the KDE and ML methods for recovering marginals were able to resolve a variety of detail and non-Gaussian structure within the distributions.

TABLE 4 | Supplied and recovered effect size estimates (r) for each of the three independent (rows) and dependent (columns) variables.

Simple reaction time Perceptuo-motor control Executive function

Supplied Recovered Supplied Recovered Supplied Recovered

Stress 0.220 0.216 0.459 0.456 0.091 0.096

Exertion −0.053 −0.054 0.578 0.576 −0.074 −0.081

Sleep −0.276 −0.269 −0.189 −0.194 −0.187 −0.187

Because fi (z) is an isotropic Gaussian PDF, fi
(
y
)

in (6) is a
univariate Gaussian with mean equal to the first (that is the “y”-
th) element of the vector µi and standard deviation σi. A similar
interpretation holds for fi

(
xj
)
. To represent the correlation

coefficients in terms of the αi coefficients, recall that

rxjy =
E
[
xjy
]
− E

[
xj
]

E[y]
sxj sy

(8)

where sxj is the standard deviation of xj and similarly, for sy. In
(8), the means and the standard deviations for the individual
random variables are determined from the marginals computed
in section “Gathering Model Inputs: Marginal Distributions”.

Using (4) in (8) allow us to relate the literature-determined effect
sizes to the unknown coefficients as

rxjy +
mxj my

sxj sy
=

∑
i

αi
µxji

µyi

sxj sy
. (9)

To construct a finite dimensional utility function for finding the α

coefficients, we uniformly discretize each of the y and xi axes into
K points. Evaluating (6) and (7) at these K points gives 4K linear
relationships between the αi and the marginals. For example

p
(
yk
)
=

∑
i

αifi
(
yk
)
= A1,kα (10)
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with A1,k a row vector containing fi
(
yk
)

and α the column vector
of the NB α parameters. Collecting all K of these relations gives a
matrix-vector model of the form p1 = A1α where p1 is a vector
of length K and A1 is a matrix with K rows and NB columns.
Similarly, we have p2 = A2α , p3 = A3α , and p4 = A4α for
the three sets of constraints of (7). Finally, (9) provides three
constraints on the α vector resulting in p5 = A5α where p5 is
length three and A5 has three rows and NB columns.

A typical LASSO approach for selecting α is known to
not provide sparse solutions for problems involving simplex
constraints (Li et al., 2020). An iterative procedure overcomes this
issue by modifying an adaptive LASSO objective as follows

α
∗

= argmin
α

5∑
k=1

wk||pk − Akα||
2
2 + λ||diag(c)α||1 (11)

subject to 0 ≤ αi ≤ 1 and
∑

i
αi = 1

where c is a weight vector and diag(c) is the diagonal matrix with
the vector c on the diagonal. The approach in Li et al. (2020)
solved (11) repeatedly, updating c from one iteration to the next
to enforce sparsity in α. The formal process is as follows:

(1) Initialize c to (1, 1, . . . , 1)T

(2) Run the optimization problem with the objective in (11),
obtaining a α

∗

(3) Update the coefficient weight vector c based on α
∗

:

ci =


1
α
∗

i
if αi > t

1
2α
∗

i
else

(4) Threshold α
∗

:
α
∗

i = 0 if α
∗

i ≤ t , else leave the value unchanged.
(5) Count the number of nonzero elements in the thresholded

α
∗

:

(a) If that number is less than or equal to Nz , stop
the procedure. The thresholded α

∗

is the final
sparse solution.

(b) If that number is higher than Nz, go back to step 2
using the updated c vector and repeat the process.

We have found that coefficients with high weights are forced
almost to 0, and thresholding these “almost-0” coefficients to
0 has little effect on the recovered joint distribution while
significantly increasing the sparsity. A threshold of t = 10−9

retained this property even on a problem with 1.3 million
coefficients. We implemented this procedure in Python using the
cvxpy package (Diamond and Boyd, 2016).

In (11), the wk can be used to weight the different constraints.
We found it useful to set a high weight (w5 = 75) on the A5
term, which only has three rows, and a low weight (wi = 1 for
i = 1, 2, 3, 4) on the other Ai terms, which each have K > 3
rows, to balance the importance of fitting the recovered marginal
and fitting the recovered r-values. The parameter λ is chosen
to balance the impact of the first term in the cost function,
which encourages a model that fits the marginals and moment
constraints well, against the second term which seeks a vector of

coefficient that is “sparse;” in that it contains a few large entries
with the remainder small or zero. In the context of our iterative
procedure, λ affects the rate at which coefficients get pulled to 0
after each iteration: when λ is large, more coefficients get zeroed
out. This provides the user with flexibility to target a specific
range of coefficients. Larger values of lambda will likely decrease
the number of iterations needed. However, this can also lead to
overshooting, and the procedure ends up zeroing out all but 10
coefficients (which is usually too sparse). We have found that
targeting a representation containing less than 400 coefficients
with λ = 1e−5 to be a decent compromise, but we encourage
readers more concerned about time to try larger values of λ.

For each of the three dependent variables of interest in this
study, i.e., simple reaction time, perceptuo-motor control, and
executive function, the joint distributions are functions of four
variables; namely the single dependent variable and the three
independent variables of sleep, stress, and exertion. To visualize
these four-dimensional distributions, in Figure 2 we plot 3D
slices of the dependent and pairs of independent variables.

As depicted in Figure 2, the marginal plots provide some
insight into the way our approach to constructing the 4D
distribution functions performs. It is evident that the Adaptive
LASSO approach yields high dimensional distributions which,
in all cases, faithfully reproduce the six marginals (Table 4).
Moreover, the correlation structure of pairs of variables is also
evident in the 2D projections; for example, the image on the
second row and first column of Figure 2 involving perceptuo-
motor control and exertion. The strong diagonal structure seen
in the exertion-perceptuo-motor control plane reflects the 0.578
effect size (Table 3) relating these two variables. Analogously, the
much smaller effect size of−0.189 between perceptuo-motor and
sleep is seen in the other 2D component of this plot, where the
directionally is far less pronounced.

SOFTWARE TOOL IMPLEMENTATION

The described model is realized in a set of Python-based software
tools that users can rely upon to understand and interact with the
model in an intuitive manner. The first iteration of this software
tool and graphical user interface is depicted in Figure 3.

The interface provides a means for users to modify each
input (x) by way of user-inputs (e.g., sliders), and visualize how
each predicted output (y) is affected. Because the conditional
distributions of y provide complete probabilistic models for
each outcome, it is possible to plot confidence intervals
around estimates and visualize outcome distributions. Each
of these features is depicted in the software tool, with 95%
confidence intervals surrounding each estimated model output,
and the distribution visualized as a violin plot alongside each
outcome variable.

We envision four primary uses for the model and software
tool. First, for scientists and engineers to identify gaps in scientific
knowledge and plan research endeavors; for example, when
characterizing the relationship between stress (x) and perceptuo-
motor skill (y), we found very few studies experimentally
examining this relationship (with a total sample size of only 41
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FIGURE 2 | Three-dimensional (3D) slices of the dependent (rows) and pairs of independent (columns) variables. In each panel, we plot the 3D iso-contours at levels
1, 10, and 50% of maximum value in yellow, red, and gray, respectively. The yellow “blobs” indicate the areas of highest probability density in the 3D space, with the
red and gray volumes providing an indication as to how the probability is spread. We also display in pink/cyan shades the two dimensional distributions of the
dependent and each independent variable with strong pink shades indicating regions of high probability density; these colormaps were saturated at a value of 10%
of maximum value to better display the variability in the distribution functions.

in total), suggesting value in continuing research in this area. As
additional predictors and outcomes are integrated into the model,
it is likely that many knowledge gaps will become apparent and
motivate research agendas.

Second, we envision the model and software tool to be useful
for military decision-makers who are planning future operations
in the context of limited personnel resources. For example,
a commander might preferentially allocate particular units to
various tasks that are more or less physically and/or cognitively
demanding [commonly termed force management decisions
(Wohl, 1981)]. Insights might be made in the context of real-
time data feeds from wearable devices and/or may result from
commanders’ intuitions about current or projected demands.
In addition to force allocation, insights from the tool might be

used to prioritize available resources such as food or water and
to introduce ample recovery periods (e.g., rest, sleep) following
especially intensive activities.

Third, outcomes of our predictive modeling can help prioritize
which internal states and contextual factors are worth targeting
with environmental sensors (e.g., ambient temperature, noise,
and pollution) and wearable biosensors. For example, if mental
stress is associated with substantial performance declines across
cognitive or physical domains deemed critical for current or
projected operations, it may prove particularly advantageous to
develop, procure, and/or deploy wearable biosensors to monitor
stress states. Recent progress with biosensors placed in the
mouth, such as affixed to a tooth, show promise for sensing
salivary analytes linked to stress, such as alpha-amylase and
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FIGURE 3 | Graphical user interface for a software tool allowing users to interact with computational model, depicting three inputs (x variables) and outputs (y
variables). Shading surrounding output estimates indicates 95% confidence interval around estimated output.

cortisol (Robles et al., 2011; Coppedè et al., 2014; Tseng et al.,
2018; Ahn et al., 2019).

Finally, outcomes of our predictive model could be used
to inform investments into future performance optimization
or enhancement techniques and technologies (Bostrom and
Sandberg, 2009; Colzato, 2018; Feltman et al., 2019; Brunyé et al.,
2020). For example, if physical encumbrance and exertion is
particularly influential for sustained performance across domains
of interest, it may warrant increased investment in strength
and endurance training, lower-extremity exoskeletons, or other
approaches for reducing physical and physiological burden of
continuous operations (Gregorczyk et al., 2010; Ozaki et al.,
2013; Scribbans et al., 2016; Seo et al., 2018; Wei et al., 2020;
Shepertycky et al., 2021). The same might be said for sleep or
stress, identifying methods for increasing the quality or duration
of naps and overnight sleep (Irwin et al., 2008; Ketz et al., 2018;
Robinson et al., 2018), and/or reducing the intensity of stress
responses (Stanley et al., 2011; Jaremko and Meichenbaum, 2013).
As additional predictors are incorporated into the model, it will
afford a more robust ranking and prioritization of cognitive
and/or physical states that are most negatively impactful for
performance and motivate research and development toward
mitigating such impacts.

LIMITATIONS AND FUTURE DIRECTIONS

We detailed a preliminary version of a computational model
and software tool to enable actionable insights into cognitive
and physical performance outcomes by interpreting biosensor
data related to sleep status, stress state, and levels of physical
workload; given the preliminary nature of the work, there are
many directions for continuing research and development.

In Figure 2, we observe distinct spherical structures in these
plots in upper left and center right plots. These features arise

from our use of isotropic Gaussians of seven fixed widths yielding
spherical clusters of similar sizes. Specifically, the LASSO-based
scheme chooses a representation of the joint probability density
function from a large but finite set of isotropic Gaussians of
varying widths on a grid of points in 4D space. The optimization
process by which this set is chosen occasionally selects spatially
isolated basis functions to help represent small scale features
in the marginal distributions. As a result, we see those isolated
spherical (since the Gaussian are isotropic) artifacts. To remove
these artifacts, our current efforts are aimed at replacing the
LASSO scheme with a more flexible method capable of employing
Gaussian basis functions with arbitrary center locations and
covariance matrices. The cost of such flexibility is an increase
in the complexity of the optimization method required to fit the
model from data. For example, as the problem is no longer convex
in the unknown parameters, we must contend with the challenge
of local minima producing poor models. The convex nature of the
LASSO scheme used in this manuscript ensures that the model we
compute is in fact unique.

The model we developed is ostensibly a main effects model,
informed only by effect size coefficients linking single input
variables to each output variable. In this manner, no interaction
terms are explicitly defined in the preliminary model. However,
there could be value in incorporating known interaction terms
among our x variables, either of the two- or three-way variety.
Reproducibility will be important for incorporating interaction
terms into the model. In our review of the extant literature
relating sleep, stress, and physical exertion to each of our outcome
variables, there were very few studies examining interactions
among our input variables. Even when those studies did exist,
one study might suggest the presence of a two-way interaction
between two of our x variables when predicting reaction time, and
another study might show an opposing pattern or no interaction
at all. In studies examining sleep deprivation, physical exertion,
and reaction time, some reliable interactions have been found. In

Frontiers in Physiology | www.frontiersin.org 11 September 2021 | Volume 12 | Article 738973

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-738973 September 2, 2021 Time: 12:50 # 12

Brunyé et al. Human Performance Prediction

one study, 30 h of sleep deprivation caused increased reaction
times, but this effect was entirely mitigated by brief bouts of
physical exertion (Scott et al., 2006). Two additional studies
showed that brief morning exercise routines were sufficient to
mitigate reaction time costs of partial sleep deprivation in elite
athletes (Taheri and Irandoust, 2020), and that acute submaximal
physical exertion counteracted reaction time deficits following a
single night of sleep deprivation (Temesi et al., 2013). Continuing
model development will begin to incorporate interaction terms
to better specify relationships among multiple x variables in
predicting outcomes. As we pursue the next expanded version
of our model, we will be seeking out and incorporating any and
all interaction terms that we can identify in the extant literature,
and training the model on these patterns. It could be the case
that some of these new interactions may qualify or possibly limit
the value of the main effects model; it could also be the case that
they serve to motivate continuing research to fill knowledge gaps
in the literature.

In addition to interaction terms among x variables when
predicting outcomes, there also likely exist relationships (i.e.,
collinearity) among both x (i.e., x-to-x relationships) and y (i.e.,
y-to-y relationships) variables. For example, when individuals are
deprived of sleep they also tend to show higher cortisol levels
throughout the day and a potentiated HPA axis response to acute
stress exposure (Minkel et al., 2014). Sleep loss can also cause
bouts of physical exertion to be experienced as more intense
than usual, increasing ratings of perceived exertion (Martin
and Gaddis, 1981; Myles, 1985) and reducing time to volitional
exhaustion (Van Helder and Radomski, 1989). In other words,
sleep loss is associated with increased stress levels (Nollet et al.,
2020) and altered behavioral responses to exercise. As it is based
only on the marginals, construction of the preliminary model
does not enforce any specific interactions among the sleep, stress,
and physical exertion; however, these patterns will be important
to incorporate into continuing model development. The same
can be noted for our outcomes of interest; we realize that
some y-to-y relationships may be important to characterize and
account for in the construction of the model. For example, slow-
downs in reaction time are often accompanied by increases in
executive function errors (Willoughby et al., 2020). Populating a
complete matrix that expands upon the one detailed in Table 3
will allow us to begin training the model on these x-to-x and
y-to-y relationships.

Incorporation of the interactions described in the previous
two paragraphs into our probabilistic models can easily be
accomplished depending on the nature of the data provided.
For example, from jointly collected observations of two input
variables, say x1, and x2 along with one output y, density
estimation methods can produce the corresponding PDF
p(y, x1, x2) which will provide another A matrix to be fit in
the LASSO process. Analogous methods would be used if we
were provided data from multiple output and inputs or just
multiple inputs.

Whereas time is an inherent property of our sleep variable, it
is not incorporated into any other aspect of the model. However,
we also know that the influence of some x variables will be
time-dependent. For example, extended bouts of moderate- to

high-intensity physical exertion are likely more impactful than
relatively brief bouts. Indeed meta-analytic investigations of the
relationship between physical exertion, duration, and cognitive
performance indicate that 1–10 min of exercise carries an effect
size of 0.06 with cognitive task performance, whereas 11–20 min
shows an effect size of −0.18, and greater than 20 min has an
effect size of 0.26 (Chang et al., 2012). Notice how the effect
sizes characterizing the relationship between physical exertion
and cognition change in magnitude and directionality. In other
words, the relationship between physical exertion and cognitive
performance may interact with duration in a non-linear manner.
There are at least two ways for the model to incorporate such
patterns. First, we could develop a new predictor that combines
physical exertion and duration into a single exposure variable
that replaces the original physical exertion variable; this approach
would be dependent on original data sources to help characterize
the relationship between exertion- and duration-contingent
effects on cognitive outcomes. Second, we could develop multiple
marginal input distributions for physical exertion, one each for
relatively brief, moderate, and long-duration periods of exertion.
Similar approaches may need to be investigated for extended
durations of stress, which may shift stress responses from acute to
chronic and alter the relationship with our outcomes of interest.

The three predictors and outcomes of interest are by no
means an exhaustive representation of the myriad individual
(e.g., traits, skills, and experience) and contextual (e.g., thermal
load, hydration, and group dynamics) factors, and cognitive
and physical performance outcomes characterizing real-world
performance. As we continue to develop the model, we will
begin to incorporate additional predictors and outcomes that
help describe the individuals in a sub-population, and more
comprehensively describe predicted outcomes. For outcomes,
near-term goals are to incorporate three additional outcomes of
interest: gross motor ability (e.g., strength, endurance), memory
(e.g., recognition, recall), and communications (e.g., verbal
language production and comprehension).

While the present model and tool are designed to ingest
and interpret data from wearable devices, either in real-time
or with opportunistic sampling, we have not yet integrated
sensing and interpretation. With some input variables, such as
sleep, there are near-term opportunities for such integration.
For example, wearable sleep trackers are becoming common
on the consumer market, with options providing daily tracking
of sleep quantity and quality. Using either discrete manual
updates by users or integrating with a device’s application
programming interface (API), the model could receive daily
updates to feed the sleep input parameter. Over the next several
months, we will be exploring integration of sensor outputs into
our model, beginning with sleep and continuing to incorporate
physical exertion and stress sensor feeds. While this research
topic is specifically related to wearable sensing technologies,
it should also be pointed out that many non-contact in-situ
sensing technologies are emerging on the market. For example,
non-contact stress detection is possible through infrared and
microwave doppler radar (Zakrzewski et al., 2012; Lee et al.,
2015; Shan et al., 2020), and doppler radar may be used to non-
contact measurements of the orientation (and possibly quality)
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of sleep (Kiriazi et al., 2021). It is possible that non-contact
biosensors may meet or exceed the sensitivity and reliability of
wearable sensors in the future, may prove valuable complements
to wearable sensors, and may increase the breadth and specificity
of measurements that could be used in predictive models. One
advantage of our approach to modeling several input data
types is that we are relatively sensor-agnostic, which ultimately
should increase the flexibility of our model to accept novel
non-contact sensor inputs.

The current version of the model is trained on both laboratory
and field study data, but model predictions have not yet been
validated in either setting. We are currently collecting both
laboratory and field data in studies intentionally designed to
manipulate and/or measure sleep, physical exertion, and mental
stress. In these studies, we are measuring a diverse number of
cognitive and physical task outcomes that are directly applicable
to the output variables of our model. Two specific studies are
worth detailing. First, we are conducting an immersive virtual
reality study that elicits high levels of mental stress via threat
of aversive torso shock (versus a low stress control condition).
In this study, we measure performance outcomes including
reaction time, recognition memory, executive function, decision
making, and perceptuo-motor control (marksmanship aiming).
Outcomes from this first study will help validate predictions
linking mental stress to the three model outputs, while also
providing helpful data to begin expanding the breadth model
predictions. Second, we are conducting an exercise physiology
study that elicits high levels of physical exertion via a prolonged
(2-hour) inclined treadmill walk while carrying a heavy backpack
load (versus a no-load control condition). In this study,
we measure performance outcomes including reaction time,
recognition memory, executive function, decision making, and
gross motor output. Outcomes from this second study will help
validate predictions linking physical exertion to the three model
outputs, additionally providing preliminary data to expand the
breadth of model predictions. Due to the SARS-CoV-2 pandemic
and associated human subjects research restrictions, these studies
have been delayed; we anticipate completing these studies and
model validation over the next year. As we continue to collect
data in these studies, we will use a portion of these data to
continue populating and expanding our model, and a portion to
validate model predictions. Based on the fit of model predictions
to our data, we will iteratively expand upon training data and/or
continue to increase the breadth of the model inputs and outputs.

Finally, the current version of the model and software
tool does not fully bridge the gap between our predictors of
interest (stress, sleep, and physical exertion) and actionable
intelligence for military applications. Whereas scientists and
engineers may be interested in predicting such aspects of
performance as reaction time and executive function errors,
and some trainers and commanders may understand and
realize how to use these predictions in their own planning
and operations, these specific processes and measures may not
be comprehensible or useful for all users. However, we argue
that any outcome of interest in an applied setting, such as
marksmanship or threat detection ability, can be summarized
from weighted combinations of model outputs. For example,

task analyses of marksmanship ability demonstrate that aspects
of gross and fine motor ability, perceptuo-motor control, and
executive function are involved (Chung et al., 2004). Weighted
combinations of these output variables can give rise to indirect
predictions of marksmanship ability through an understanding
of its component processes. This methodology will likely prove
valuable when translating model predictions to user-specific
needs across a range of applications.

CONCLUSION

As wearable sensors continue to proliferate the consumer market,
they provide opportunities to derive quantitative measures and
inform actionable insights into predicted performance outcomes
across cognitive and physical domains (Lin et al., 2020).
Communicating information to users from wearable devices
is the first step in realizing this opportunity, with the second
step involving the interpretation and translation of data into
predicted outcomes. These predicted outcomes can be used to
help plan continuing operations, allocate groups of individuals
to tasks with specific demands, identify gaps in knowledge and
opportunities for biosensing, and inform enhancement strategies
to help mitigate performance-deleterious effects of x variables.

As a first step toward addressing this challenge in the cognitive
and physical domain, we detailed an extensible computational
model that can translate inputs from wearable actigraphy/sleep
sensors, inertial measurement units (IMUs), and/or physiological
stress biosensors to actionable insights for leaders and trainers.
While preliminary in nature, our model provides a strong
foundation for continuing development of human performance
predictive capabilities in the cognitive and physical domains.
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