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Purpose: Visceral fat is an independent risk factor for metabolic and cardiovascular disease. The study
aimed to investigate the associations between gut microbiome and visceral fat.
Methods: We recruited 32 obese adults and 30 healthy controls at baseline. Among the obese subjects, 14
subjects underwent laparoscopic sleeve gastrectomy (LSG) and were followed 6 months after surgery.
Abdominal visceral fat area (VFA) and subcutaneous fat area (SFA) were measured by magnetic resonance
imaging. Waist, hipline, waist-to-hip ratio (WHR) and body mass index (BMI) were included as simple
obese parameters. Gut microbiome was analyzed by metagenomic sequencing.
Results: Among the obese parameters, VFA had the largest number of correlations with the species that
were differentially enriched between obese and healthy subjects, following by waist, WHR, BMI, hipline,
and SFA. Within the species negatively correlated with VFA, Eubacterium eligens had the strongest corre-
lation, following by Clostridium citroniae, C. symbiosum, Bacteroides uniformis, E. ventriosum,
Ruminococcaceae bacterium D16, C. hathewayi, etc. C. hathewayi and C. citroniae were increased after
LSG. Functional analyses showed that among all the obese parameters, VFA had strongest correlation
coefficients with the obesity-related microbial pathways. Microbial pathways involved in carbohydrate
fermentation and biosynthesis of L-glutamate and L-glutamine might contribute to visceral fat accumu-
lation.
Conclusions: Visceral fat was more closely correlated with gut microbiome compared with subcutaneous
fat, suggesting an intrinsic connection between gut microbiome and metabolic cardiovascular diseases.
Specific microbial species and pathways which were closely associated with visceral fat accumulation
might contribute to new targeted therapies for metabolic disorders.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

About 1014 microbes live in the human gut [1]. This complex
and dynamic ecosystem functions like an organ, profoundly influ-
encing its host’s energy metabolism and immunoregulation. The
pivotal role of gut microbiota in obesity has now been widely rec-
ognized [2–4]. Using polymerase chain reaction, gene chip technol-
ogy, and 16S rRNA sequencing, previous studies have linked the
composition of gut microbiota with obesity [5–7]. Fecal microbiota
transplantation (FMT) and germ-free mouse model establish
causality for these correlations [8–10]. Compared with 16S rRNA
sequencing, metagenomic sequencing provides information on
gut microbes at the species or even strains level. Some bacteria,
such as Bacteroides thetaiotaomicron, Akkermansia muciniphila and
Lactobacillus reuteri are protective against obesity and diabetes
[11–13]. Functional analyses based on metagenomic sequencing
describe the complex and diverse functions of gut microbiota
[14]. Some microbial metabolites such as lipopolysaccharides
(LPS), short chain fatty acids (SCFAs) and branched chain amino
acids (BCAAs) and bile acids metabolism were involved in the cor-
relation mechanisms of gut microbiota and energy metabolism
[11,15–18].

The pathogenesis and progression of the obesity-related car-
diometabolic complications are primarily dependent on fat distri-
bution [19]. Visceral fat and subcutaneous fat are significantly
different even from an ontogenetic sight [20]. Visceral fat accumu-
lation significantly increases the risks of type 2 diabetes [21], car-
diovascular disease [22], cancer [23], and all-cause mortality [24];
whereas subcutaneous fat acts as a ‘‘buffer pool” for the circulating
fatty free acid and has a protective role in metabolism [25]. Never-
theless, few studies have investigated the relationship between
visceral fat and gut microbiota. These previous studies explored
the role of gut microbiome only to the phylum or genus level
[26–28]. Bacterial species belonging to the same genus sometimes
have distinct functions. For example, B. thetaiotaomicron amelio-
rates colon inflammation in preclinical models of Crohn’s disease
[29], while B. pyogenes causes bacteremia secondary to liver
abscess [30]. In order to reduce complications in FMT and find
potential therapeutic targets, it is essential to discover the contri-
butions of specific bacterial species to the disease phenotype. In
this study, we aimed to investigate the relationships between gut
microbiome and visceral fat accumulation in a cross-sectional
cohort, and further explore the changes of the visceral fat-
associated bacterial species in a longitudinal cohort after weight
loss intervention.
2. Results

2.1. Clinical characteristics of subjects

The study included a cross-sectional cohort with 32 obese
adults and 30 healthy participants and a longitudinal cohort with
14 of the obese subjects receiving laparoscopic sleeve gastrectomy
(LSG) who were followed 6 months after surgery (Fig. 1a). Visceral
fat area (VFA) and subcutaneous fat area (SFA) were precisely mea-
sured by magnetic resonance imaging (MRI) for all participants.
VFA and SFA had opposite correlations with the parameters of gly-
colipid metabolism (Fig. 1b). VFA and waist-to-hip ratio (WHR)
was positively correlated with the inferior glycolipid parameters,
while SFA and hipline seemed to be protective on glucose metabo-
lism (Fig. 1b). Compared with healthy controls, obese subjects had
significantly higher obese parameters and worse homeostasis in
glucose metabolism, lipid metabolism, hepatic function, uric acid
(UA) and systemic inflammation (Wilcoxon rank sum test;
p < 0.05; Fig. 1c; Suppl. Table 1). At 6 months after LSG, almost
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all the obese parameters (except for WHR) experienced significant
decrease, with median values decreased by 8.39 kg/m2 for body
mass index (BMI), 89.95 cm2 for VFA, and 216.80 cm2 for SFA
(Fig. 1c). Compared with the pre-operative status, blood pressure,
glucose metabolism, lipid metabolism, hepatic function, and
inflammation significantly improved 6 months after LSG (paired-
sample Wilcoxon test; p < 0.05; Suppl. Table 1).

2.2. Community diversity in obese adults, healthy controls and after
LSG

Community diversity including alpha and beta diversity were
evaluated at taxonomic levels from phylum to family, genus, and
species. Alpha diversity by Shannon index was not significantly dif-
ferent between healthy controls and obese subjects at all taxo-
nomic levels (Fig. 2a). However, alpha diversity of post-operative
communities was significantly increased at the species level com-
pared with pre-operative communities (paired Wilcoxon signed-
rank test; p < 0.05) (Fig. 2a).

We subsequently investigated community dissimilarity among
participant groups based on beta diversity by Bray-Curtis index
and Aitchison distance. Comparisons of the Bray-Curtis distance
between healthy and obese samples showed no significant separa-
tion by nonmetric dimensional scaling ordination (permutational
multivariate analysis of variance (PERMANOVA); p = 0.42)
(Fig. 2b). However, within-group distances were significantly
higher in obese subjects than in healthy controls, suggesting the
microbiome communities were more similar within the population
of healthy participants (Wilcoxon rank sum test; p < 0.05) (Fig. 2c).
Furthermore, comparisons of the Aitchison distance between
healthy and obese subjects suggested a significant separation (PER-
MANOVA; p < 0.05) (Suppl. Fig. 4a). The significantly higher
within-group distances in obese patients comparing with healthy
subjects consistently proposed the higher variations within the
obese population (Wilcoxon rank sum test; p < 0.05) (Suppl.
Fig. 4b). We further observed significant differences in Bray-
Curtis distance between pre- vs. post-operative subjects (PERMA-
NOVA; p < 0.05) (Fig. 2d) with within-group distances significantly
decreased after LSG (Wilcoxon rank sum test; p < 0.05) (Fig. 2e).
However, from the view of Aitchison distance, the difference
between pre- and post-operative subjects lost the significance
but still with the same trends (PERMANOVA; p = 0.14; Wilcoxon
rank sum test; p = 0.34) (Suppl. Fig. 4c & d). Furthermore, by
comparing between-group distances, we observed that healthy
controls and post-operative subjects had significantly lower Bray-
Curtis distances (Wilcoxon rank sum test; p < 0.05) (Fig. 2f). The
significant differences in between-group Bray-Curtis diversity
among participants who were healthy, obese, pre- or post-
operative suggested that the LSG made the overall microbial com-
munity of obese subjects more similar with a healthy community.

2.3. Association among gut microbiome profiles, obesity and LSG

2.3.1. Microbial differences from comparisons of healthy controls vs.
obese subjects and pre- vs. post-operative subjects

We compared microbial differences at the species level
between healthy controls and obese subjects (Suppl. Table 2). We
identified 20 different species (Wilcoxon rank sum test; original
p < 0.05; q < 0.37) (Fig. 3a), with 14 enriched in healthy controls
and 6 enriched in obese subjects. A group of species belonging to
order Clostridiales (such as Eubacterium eligens, Clostridium citron-
iae, C. hathewayi, and C. symbiosum) were enriched in healthy con-
trols. Three species belonging to order Bacteroidales (Paraprevotella
xylaniphila, Alistipes shahii, and B. uniformis) were also enriched in
healthy controls. B. massiliensis, Escherichia coli, Dorea longicatena,
E. hallii, Slackia piriformis, and Eggerthella lenta were enriched in



Fig. 1. Study design and characteristics of the obese parameters. (a) Study design including cross-sectional cohort and longitudinal cohort. (b) Partial correlation analysis
between the obese parameters and metabolic parameters of glucose and lipid. Age, sex, and BMI were adjusted. Red columns indicated to positive correlations, green columns
indicated to negative correlations, and * indicated to p < 0.05. (c) Comparisons of the obese parameters between healthy vs. obese subjects, pre- and post-operative subjects. **

indicated to p < 0.01 compared with healthy subjects; ## indicated to p < 0.01 compared with pre-operative subjects. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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obese subjects. We further evaluated the significant results by per-
forming Compositional Data Analysis (CoDA). Among the 20 signif-
icantly different species, 10 species remained significant (Wilcoxon
rank sum test; original p < 0.05; q < 0.37) (Fig. 3a).

After false discovery rate (FDR) correction, the healthy enrich-
ment of B. uniformis, E. eligens, Flavonifractor plautii, Ruminococ-
caceae bacterium D16, C. citroniae, and C. symbiosum remained
significant while the obese enrichment of E. hallii remained signif-
icant (Wilcoxon rank sum test; q < 0.25).

Species abundance was also compared for pre- and post-
operative samples (Suppl. Table 2). We found 26 different species
(paired Wilcoxon signed-rank test; original p < 0.05, q < 0.28)
(Fig. 3b), within which 24 were enriched in post-operative group
and 2 were enriched in pre-operative group. After FDR correction,
we still observed 13 significantly different species, such as post-
operative enrichment of C. symbiosum, C. hathewayi, C. asparagi-
forme, Clostridiales bacterium 1 7 47FAA, Anaerotruncus colihominis,
A. putredinis, C. bolteae, C. nexile, B. caccae, C. citroniae and B. thetaio-
taomicron (paired Wilcoxon signed-rank test; q < 0.20). Confirmed
by CoDA, 8 species consistently showed significant difference
(paired Wilcoxon signed-rank test; original p < 0.05; q < 0.19).
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Combining results from comparisons of healthy controls vs.
obese subjects and pre- vs. post-operative subjects showed 6
potentially beneficial species (A. shahii, E. eligens, unclassified Oscil-
libacter, C. hathewayi, C. symbiosum and C. citroniae) and 1 poten-
tially harmful species (D. longicatena). The 6 beneficial species
were all enriched in healthy controls, decreased in obese subjects,
and increased to similar levels with healthy controls after LSG.
Moreover, supported by the results from CoDA, the difference of
D. longicatena and C. symbiosum in both comparisons remained
significant (Fig. 3c).

2.3.2. Gut microbiome correlated with a panel of clinical
characteristics

Spearman’s correlation analysis was used to explore the corre-
lations between species abundances and the clinical characteris-
tics. Sixty-two samples combined from healthy controls and
obese subjects were included. We found 271 correlations with
original p values < 0.05 (Spearman’s correlation value > 0.25
or < -0.25; q < 0.61) (Suppl. Table 3; Fig. 3d). Among the 6 obese
parameters, VFA had the largest number of correlations with bac-
terial species (n = 26, q < 0.08), followed by waist (n = 24,



Fig. 2. Comparison of the microbial community among participant groups. (a) Alpha diversity of the four groups (healthy controls, obese subjects, pre-operative, and post-
operative subjects) were analyzed at the phylum, family, genus, and species levels. Gray lines connected pairwise data of pre- and post-operative samples. (b) Non-metric
multidimensional scaling (NMDS) plot of Bray-Curtis distances for healthy controls and obese subjects. (c) Within-group Bray-Curtis distance comparison for healthy controls
and obese subjects. (d) NMDS plot based on Bray-Curtis distances for pre- and post-operative subjects. (e) Within-group Bray-Curtis distance comparisons for pre- and post-
operative subjects. (f) Between-group Bray-Curtis distance comparisons among healthy controls, obese subjects, and post-operative subjects.

X. Nie et al. Computational and Structural Biotechnology Journal 18 (2020) 2596–2609
q < 0.09), waist-to-hip ratio (WHR, n = 20, q < 0.11), BMI (n = 18,
q < 0.12), hipline (n = 14, q < 0.15) and SFA (n = 11, q < 0.19). C.
citroniae, C. symbiosum and E. eligens had the most frequent corre-
lations with the obese parameters (Fig. 3e). Within the species
negatively correlated with VFA, E. eligens had the strongest correla-
tion, followed by C. citroniae, C. symbiosum, B. uniformis, E. ventrio-
sum, Ruminococcaceae bacterium D16, C. hathewayi, A. shahii, and F.
plautii. Species negatively correlated with the obese parameters
were also frequently and negatively correlated with triglyceride
(TG), white blood cell count (WBC), low-density lipoprotein choles-
terol (LDL), glycated hemoglobin A1c (HbA1c), fasting C-peptide
(FCp), alanine aminotransferase (ALT), systolic blood pressure
(SBP), and diastolic blood pressure (DBP), while were positively
correlated with high-density lipoprotein cholesterol (HDL).

2.4. Co-abundance networks of species community

For a better understanding of the relationships among species
and overall interconnectivity within individual communities, we
evaluated the correlations among gut microbes with co-
abundance networks based on the relative abundance of bacterial
species. Networks were constructed using BAnOCC for four groups:
healthy, obese, pre-, and post-operative (Fig. 4). Only significant
edges with 95% credibility were used for network construction.
Overall, co-occurrence relationships were within and between
phylum Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria and
Proteobacteria.
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For healthy participants, networks showed 35 positive corre-
lations and 12 negative correlations among 47 species (Fig. 4a).
For obese participants, the number of significant correlations
was more than twice as that of healthy participants, with 67
positive and 42 negative correlations among 49 species
(Fig. 4b). The number of pre-operative correlations (86 positive,
29 negative) (Fig. 4c) was higher than that of post-operative cor-
relations (61 positive, 36 negative) (Fig. 4d). We also tested dif-
ferences in node centrality measures of node degree,
betweenness, and closeness. Comparisons of healthy vs. obese
groups and pre- vs. post-operative subjects using pairwise Wil-
coxon signed-rank tests showed significantly higher node cen-
trality in obese and pre-operative groups, respectively (node
degree and node closeness between healthy and obese; node
closeness between pre- vs. post-operative subjects; p < 0.05.)
(Suppl. Fig. 1), suggesting higher centralization among species
in these communities.

Comparisons of detailed co-occurrence results among groups
(Suppl. Table 4) showed that positive correlations between Mega-
monas hypermegale and unclassified Megamonas, and between
Megamonas rupellensis and unclassified Meganomas were consis-
tently significant for all four groups. Correlations between B. ple-
beius and B. coprocola; unclassified Citrobacter and Citrobacter
freundii; and unclassified Veillonella and Veillonella parvula were
significant only in healthy controls and post-operative subjects,
suggesting obesity might disrupt these correlations, which were
then re-established after LSG.



Fig. 3. Microbiome differences among groups and connections to obese parameters. (a) Abundance of species that were different between healthy controls and obese
subjects. (b) Abundance of species that were significantly different in pre- and post-operative subjects. For (a), and (b), significant results after FDR correction were marked
with stars. (c) Common species that differed in both comparisons. For (a), (b), and (c), significant results from CoDA were marked with the plus sign. (d) Correlation matrix for
species and obese parameters. Cells in red indicated positive correlations while blue represented negative. Cell with dot indicated original p < 0.05, cells with star indicated
q < 0.25. For (a), (b), (c), and (d), species from order Clostridiales were in red and from order Bacteroidales were in blue. (e) The amount of significant correlations for the six
obese parameters and seven species with the most frequent correlations. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 4. Co-abundance relationships of communities. (a–d) Co-abundance networks for microbiome communities of (a) healthy controls, (b) obese subjects, (c) pre-, and (d)
post-operative subjects. Only significant edges (based on 95% credibility interval) with |r| >= 0�3 (a, b) or 0�6 (c, d) were shown. Species from different phyla were marked with
different colors (red circles: Bacteroidetes; green circles: Proteobacteria; blue circles: Firmicutes; grey circles: Actinobacteria; yellow circles: Fusobacteria). Blue edge, negative
correlation; red edge, positive correlation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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2.5. Functional shifts contributed by microbiome in different
participants

2.5.1. Functional differences from comparisons of healthy controls vs.
obese subjects and pre- vs. post-operative subjects

We also constructed functional profiles for each sample using
the MetaCyc pathway database by HUMAnN2. We retrieved 330
microbial MetaCyc pathways. We evaluated functional alpha diver-
sity by Shannon index which did not show significant differences
either between healthy controls vs. obese subjects or pre- vs.
post-operative subjects (Suppl. Fig. 2).
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In the comparison of MetaCyc pathway abundance between
healthy controls and obese subjects, 52 pathways were signifi-
cantly different (Wilcoxon rank sum test; original p < 0.05,
q < 0.30) (Fig. 5a; Suppl. Table 5). The two healthy-enriched path-
ways were: (1) glycolysis III (from glucose), a major pathway of
central metabolism; and (2) GDP-mannose biosynthesis, a key sub-
strate in glycoprotein formation. Within the 50 obesity-enriched
pathways, 10 were responsible for energy generation (tricarboxylic
acid cycle, TCA) and carbohydrate degradation, utilization and
assimilation (fucose, rhamnose, glucose, D-glucarate, and
glucose-1-phosphate); 14 were related to the biosynthesis of
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cofactors, electron carriers and vitamins such as nicotinamide ade-
nine dinucleotide, thiamine diphosphate, demethylmenaquinol
and ubiquinol (these pathways contributed largely to redox reac-
tion and TCA); 2 were involved in the biosynthesis of tetrahydrofo-
late. Two pathways involved in the biosynthesis of L-
phenylalanine, L-glutamate and L-glutamine were also enriched
in the obese microbiome. The mixed acid fermentation pathway
and partial TCA cycle pathway (incorporate carbon from exoge-
nous pyruvate, acetate, and glutamate into cellular amino acids)
were also obesity-enriched pathways, suggesting that the capaci-
ties to ferment and utilize SCFAs were enhanced in the obese
microbiome. In addition, the obesity-enriched pathways also con-
tributed to ppGpp biosynthesis (regulate gene expression during
the stringent response or other environmental stress in some bac-
teria) and polymyxin resistance (a part of antibiotic resistance).
After FDR correction, the heathy-enrichment of GDP-mannose
biosynthesis remained significant, while the obesity-enriched
pathways including glucose and glucose-1-phosphate degradation,
and biosynthesis of tetrahydrofolate, thiamin diphosphate, ubiqui-
nol, L-glutamate, L-glutamine and ppGpp remained significant
(q < 0.25).

Next, we compared pathway abundance between pre- vs. post-
operative subjects (Fig. 5b). The pathways enriched in the pre-
operative group also included 4 pathways responsible for the car-
bohydrate utilization. Twenty-two MetaCyc pathways increased
after LSG (paired Wilcoxon signed-rank test; original p < 0.05,
q < 0.56). Among these pathways, 11 were involved in nucleoside
and nucleotide biosynthesis, suggesting that gut microbiome
might be re-established after LSG. However, none of the enrich-
ments were significant after FDR correction (all q > 0.25).

Using HUMAnN2, we also calculated pathway abundance based
on contributions from individual species (Suppl. Table 6). We cre-
ated species-specific pathway profiles, focusing on different path-
ways from the MetaCyc analyses of total community and the
contributions of individual species. Comparison of healthy and
obese microbial communities showed 58 different species contri-
butions within 49 pathways (Wilcoxon rank sum test; original
p < 0.05, q < 0.28), with 49 differences involving E. coli. Specifically,
for two pathways enriched in the healthy group, the dominant
coding species was A. shahii (original p < 0.05, q < 0.16), which
was negatively correlated with VFA and WHR. Comparison of
pre- and post-operative subjects showed 27 significant difference
in 19 pathways. Interestingly, potential SCFA producer species C.
symbiosum, Clostridiales bacterium 1 7 47FAA and C. asparagiforme
have significantly higher contributions to pathways responsible
for the biosynthesis of adenosine nucleotides and guanosine
deoxyribonucleotides as well as the degradation of sucrose and
L-histidine in post-operative subjects.

2.5.2. Microbial pathways correlated with a panel of clinical
characteristics

We combined the results from the significantly different Meta-
Cyc pathways and important clinical characteristics for Spearman’s
correlation analyses (Spearman’s correlation value >0.25 or
<�0.25). Sixty-two samples combined from healthy controls and
obese subjects were included. Heatmaps were constructed with
Spearman’s correlations (Fig. 6, Suppl. Table 7). It was surprising
that BMI only had 7 correlations with pathways (original
p < 0.05, q < 0.41), and none of the correlations remained signifi-
cant after FDR correction. WHR (n = 64, original p < 0.05,
q < 0.07), waist (n = 54, original p < 0.05, q < 0.08) and VFA
(n = 53, original p < 0.05, q < 0.09) hadmuchmore frequent and sig-
nificant correlations with pathways. The potentially protective SFA
had 51 correlations with pathways (original p < 0.05, q < 0.09).
Lower body fat was found to be protective against metabolic disor-
ders [31], and the corresponding parameter hipline only had 12
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correlations with pathways (original p < 0.05, q < 0.24). The results
suggested that the obesity differentiated pathways might poten-
tially contribute to adverse fat distribution. In order to evaluate
the correlation strength of different obese parameters, we further
compared the significant correlations between obese parameters
and the obesity-related microbial pathways. Among the 6 obese
parameters, VFA had strongest correlation coefficients, followed
by WHR, BMI, SFA, waist and hipline (Suppl. Fig. 3). Pathways pos-
itively correlated with WHR, waist and VFA were involved in car-
bohydrate degradation and biosynthesis of L-phenylalanine, L-
glutamate, L-glutamine, and lipopolysaccharides. These results
indicated that the microbial functions in fermentation and utiliza-
tion of carbohydrate, biosynthesis of L-glutamate and L-glutamine
were closely related to visceral fat accumulation and abdominal
obesity.
3. Discussion

Our metagenome-wide association study found that among the
obese parameters, VFA had largest number of correlations with gut
microbial species. Within the species negatively correlated with
VFA, E. eligens had the strongest correlation, followed by C. citron-
iae, C. symbiosum, B. uniformis, E. ventriosum, Ruminococcaceae bac-
terium D16, C. hathewayi, A. shahii and F. plautii. After LSG, C.
symbiosum, C. hathewayi and C. citroniae, were significantly
increased. Microbial pathways involved in carbohydrate fermenta-
tion and biosynthesis of L-glutamate and L-glutamine might con-
tribute to visceral fat accumulation.

The obesity-related metabolic and cardiovascular disease risks
are closely related to fat distribution. The traditional anthropomet-
ric parameter BMI can only evaluate total body fat, but not fat dis-
tribution. The major fat depots in the human body include visceral
fat, lower- and upper-body subcutaneous fat [25]. In this study, we
measured 4 parameters of central obesity, including waist, WHR,
VFA and SFA. Waist gauges both visceral fat and upper-body sub-
cutaneous fat. WHR further combines waist and hipline, the latter
represents the lower-body subcutaneous fat. Waist and WHR are
all simple indices of central obesity. VFA and SFA measured by
MRI can precisely distinguish visceral fat and upper-body subcuta-
neous fat. Different fat depots are significantly different in the
uptake and release of fatty acid and secretion of adipokines and
inflammation factors. Compared with subcutaneous fat, visceral
fat is more active in storing dietary fatty acid [32], secreting adipo-
nectin [33] and some inflammation cytokines like interleukin-6
[34], tumor necrosis factor-alpha [35] and colony-stimulating
factor-1 [36]. Central obesity with excessive visceral fat accumula-
tion significantly increased the risks of subclinical atherosclerosis
[37], type 2 diabetes mellitus [38], cancer [39] and all-cause
mortality [40]. Therefore, although the relationship between gut
microbiota and obesity evaluated by BMI has been demonstrated
before, it is essential to make further analysis on the relationships
between gut microbiota and visceral fat.

Few studies have explored the relationships between gut
microbiota and visceral fat. In the Twins UK cohort, Tim et al. per-
formed 16S rRNA sequencing to determine correlations between
visceral fat content detected by dual energy X-ray absorptiometry
and the heritable components of gut microbiota [26]. They found
that members of family Ruminococcaceae, Lachnospiraceae and
genus Oscillospira were strongly related to visceral fat content.
Most of the correlations were negative, which strongly supported
our findings. In total, we found 6 species belonging to Lach-
nospiraceae (C. citroniae, C. symbiosum, C. bolteae, C. asparagiforme,
Lachnospiraceae bacterium 3 1 57FAA CT1, and C. nexile) that were
enriched in healthy controls or increased after LSG. Among them,
C. citroniae and C. symbiosum were further negatively correlated



Fig. 5. Functional profiles of the gut microbiota in different participant groups. (a) MetaCyc pathways with different abundance between healthy controls and obese subjects
(original p < 0�05, q < 0.30, Wilcoxon rank sum test). Pathways with stars indicated q < 0.25. (b) MetaCyc pathways with different abundance between pre- vs. post-operative
subjects (original p < 0�05, q < 0.56, paired Wilcoxon signed-rank test).
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Fig. 6. Spearman’s Correlation matrix for obesity-correlated pathways and clinical characteristics. MetaCyc pathways which were significantly correlated with 6 obese
parameters were selected for performing correlation with clinical characteristics. Cell color indicated correlation type (red: positive, purple: negative). Cell with dot indicated
original p < 0.05, cells with star indicated original p < 0.01 (q < 0.26). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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with VFA. We also found species belonging to Ruminococcaceae
such as F. plautii and R. bacterium D16 that were negatively corre-
lated with VFA. Due to the lack of metagenomic data, the study of
Tim et al. was limited in functional interpretation of the microbial
dysbiosis. In our study, based on shotgun metagenomic data, we
found that VFA had the strongest correlations with the obesity-
differentiated species. We also found groups of microbial pathways
which were positively correlated with visceral fat. Together, our
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study not only expanded the relationships between the gut micro-
biome and visceral fat at the species level, but also provided poten-
tial functional interpretation for the association between gut
microbiota and visceral fat accumulation.

In another Chinese obesity cohort, Liu et al. also explored gut
microbiome alterations among obese subjects and after LSG. In
their study, obese parameters mainly included BMI, waist, WHR
and whole body fat [11], while visceral fat was not measured. They
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found that D. longicatena and C. comes were positively correlated
with obesity, which was consistent with our findings. B. thetaio-
taomicron, a healthy marker species which was negatively related
to obese parameters in their study, was also increased after LSG
in our study. However, we found that D. longicatena and B. thetaio-
taomicronwere not correlated with VFA. Consistent with their find-
ings, we also found that the capacity of L-glutamate and L-
glutamine biosynthesis was highly enriched in the obese micro-
biome. We further found that the capacity of L-glutamate and L-
glutamine biosynthesis was positively correlated with VFA. After
LSG, L-glutamate degradation pathway increased. L-glutamate is
used to produce monosodium glutamate (MSG), a commonly used
food additive that contributes to metabolic disorders [41–44]. Our
results suggested that glutamate biosynthesis of gut microbiota
might be an influencing factor of visceral fat accumulation.

We noted that a large group of Clostridiales might be considered
as ‘‘good” microbes because they were enriched in healthy con-
trols, increased after LSG, and were negatively correlated with
metabolic disease markers. Previous studies suggested that
Clostridiales were important in producing SCFAs [45–47]. Recent
evidence suggested that SCFAs produced by gut microbiota exert
multiple beneficial effects on the host energy metabolism [48]. E.
eligens, which was negatively correlated with VFA in our study, is
a SCFA producer in the healthy gut [17]. Jie et al. found that E. eli-
gens was enriched in heathy individuals and decreased in
atherosclerotic cardiovascular disease [16]. In a previous study
investigating gut microbiota in malnourished Malawian children,
E. eligenswas a biomarker of mature gut microbiota [49]. Function-
ally, we found that pathways contributing to the fermentation and
utilization of SCFAs were enhanced in the obese microbiome,
which might lead to a relatively low level of SCFAs in the gut of
obese subjects.

Bacterial metabolites (decomposition or biosynthesis) such as
bile acids, SCFAs, and trimethylamine N-oxide are identified as
essential mediators to construct the bidirectional association
between gut microbiome and the host [4]. In our study, the main
clues of the association mechanism between visceral fat accumula-
tion and gut microbiome point to glutamate and SCFAs. In terms of
glutamate, epidemiology studies found that dietary MSG intake
contributed to increased risks of overweight [50,51]; in addition,
circulating glutamate was positively associated with VFA,
abdominal obesity, and insulin resistance [52,53]. In mice, MSG
injection induced hypothalamic lesions, leptin resistance, and obe-
sity [54,55]. Furthermore, MSG diet led to a significant increase in
visceral fat accumulation and altered expression of many genes
that were critical for adipocyte differentiation. Among them,
Keratin-19 (a biomarker of visceral mesothelial cells) and cyclin
D3 were significantly up-regulated, suggesting that MSG increased
visceral adipocyte differentiation [56]. While in terms of SCFA, a
previous study found that the SCFAs receptor G-protein coupled
receptor 43 (GPR43) was a sensor of excessive dietary energy,
inhibiting insulin signaling and fat accumulation in adipose tissue
[57]. Propionate inhibited adipocytes formation from mesenchy-
mal stem cells via GPR43 [58]. Fructo-oligosaccharides, a soluble
dietary fiber, ameliorated visceral adiposity by increasing SCFAs
production [59]. Moreover, dietary SCFAs were reported to induce
a peroxisome proliferator-activated receptor-c-dependent switch
from lipid synthesis to utilization [60]. Generally, the potential
mechanisms underlying the gut microbiome-glutamate/SCFAs-visc
eral fat accumulation link remains much for further exploration.
The novel associations between specific bacterial species/pathways
and visceral fat accumulation could provide new clues for
microbiome-targeted therapies such as probiotics and FMT. Fur-
ther studies investigating the targets and signaling pathways of
glutamate and SCFAs in the host would promote the development
of new drugs.
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Our study has some limitations. Firstly, the sample size is rela-
tively small. Secondly, that causality between the discovered spe-
cies and VFA cannot be proven using our study design and
should be further confirmed in germ-free mice. Thirdly, the study
subjects are all Han Chinese, thus the results may not be general-
ized to other ethnic groups. Further clinical studies with larger
prospective cohorts and multiethnic data are needed to fully eluci-
date the association between gut microbiome and visceral fat
accumulation.
4. Conclusions

In this study, we established metagenomic associations
between gut microbiome and visceral fat accumulation. VFA had
the strongest correlation with the species that were differentially
associated with obesity compared with other obese parameters,
suggesting an intrinsic connection between the gut microbiome
and metabolic cardiovascular diseases. Specific microbial species
and pathways which were closely associated with visceral fat accu-
mulation might lead to new therapies for metabolic disorders.
5. Materials and methods

5.1. Participants

From January 2017 to May 2018, 32 obese adults and 30 healthy
participants aged 18 years or older were recruited at Shanghai Jiao
Tong University Affiliated Sixth People’s Hospital. Exclusion crite-
ria were: malignant tumor, secondary obesity, acute inflammation,
moderate to severe anemia, severe hepatic and renal dysfunction,
heart failure, respiratory failure, gastrointestinal ulcers, inflamma-
tory bowel disease, hyperthyroidism, hypothyroidism, subacute
thyroiditis, schizophrenia, or hormone replacement therapy. For
healthy controls, additional exclusion criteria were: BMI � 24.00
kg/m2, hypertension, history of obesity, impaired glucose toler-
ance, impaired fasting glucose, diabetes, or dyslipidemia. Fourteen
out of 32 obese subjects underwent LSG and were followed for
6 months after surgery. LSG surgery was as described previously
[61]. The clinical trials were registered in the Chinese Clinical Trial
Registry (ChiCTR-COC-17011355, date of registration: 11 May
2017; ChiCTR-SOC-17011356, date of registration: 11 May 2017).
All participants provided informed consent. The study was
approved by the Ethics Committee of the Shanghai Jiao Tong
University Affiliated Sixth People’s Hospital and performed in
accordance with the Helsinki declaration.

5.2. Anthropometric and laboratory assessments

Height and body weight were measured in subjects with light
clothes and without hats or shoes. BMI was calculated as body
weight in kilograms divided by height in meters squared. Waist
was measured with a tape measure at the midaxillary line around
the midpoint between the lower margin of the 12th rib and the
iliac crest. Hipline was measured at the most prominent part of
the buttocks. WHR was calculated as waist (cm) divided by hipline
(cm). After 15 min of rest in a sitting position, blood pressure was
measured at the right arm using an electronic
sphygmomanometer.

Venous blood was drawn after a 10-hour overnight fast. The
glucose oxidase method was used to detect fasting plasma glucose
(FPG) and 2-hour plasma glucose (2hPG). FCp and 2-hour C-
peptide (2hCp) were detected by radioimmunoassay (Beijing North
Institute of Biological Technology, Beijing, China). HbA1c was
detected by high performance liquid chromatography (Bio-Rad
Laboratories, Hercules, CA, USA). Total cholesterol (TC), triglyceride
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(TG), HDL, LDL, UA, creatinine (Cr), ALT and aspartate aminotrans-
ferase (AST) were detected by standard methods on a Hitachi 747
analyzer (Castle Hill, NSW, Australia). WBC was detected by
nucleic acid staining on a XN-350 automated hematology analyzer
(Sysmex Europe GmbH, Norderstedt, Germany).

5.3. Measurements of VFA and SFA

MRI is an internationally recognized method for precisely mea-
suring abdominal fat [62]. MRI scanning was performed on all par-
ticipants using a 3.0 T clinical MRI scanner (Archiva, Philips
Medical System, Amsterdam, The Netherlands). MRI scans were
obtained by T1 weighted sequence at the umbilicus level between
L4 and L5 vertebrae in the supine position. The scanning thickness
was 1 cm, the scanning field was 42 cm � 42 cm. Six layers were
scanned. SliceOmatic software 4.2 (Tomovision, Montreal, Canada)
was used to process images. Two trained observers analyzed the
images independently. If the difference between their results was
<10%, then took the averages as the recorded results. If the differ-
ence was larger than or equal to 10%, a third person who did not
know the results would reanalyze the images and take the aver-
ages of the two results with a difference <10%.

5.4. Definitions

Obesity was defined as BMI � 28.00 kg/m2 [63].

5.5. Stool sample collection and DNA extraction

Before stool sample collection, all participants confirmed they
did not take probiotics or yogurt in the past week and antibiotics
in the past month. PSP Spin Stool DNA Plus Kits (Stratec Molecular
GmbH, Berlin, Germany) were used for stool sample collection,
storage, and DNA purification. About 150 mg of stool was collected
in a stool collection tube with stool DNA stabilizer. Samples were
kept at room temperature for up to 24 h and then transferred to
�80℃. Bacterial DNA was extracted and purified according to the
kit manual. A NanoDrop 2000 spectrophotometer was used in
the preliminary testing for DNA quality and abundance. Qubit 2.0
fluorimeter (Thermo Fisher Scientific Inc., MA, USA) and agarose
gel electrophoresis were further used to analyze the concentration,
integrity, and purity of DNA samples.

5.6. Library preparation, metagenome sequencing and taxonomic
profiling

A total amount of 700 ng DNA per sample was used as input
material for the DNA sample preparations. Sequencing libraries
were generated using NEB Next� Ultra DNA Library Prep Kit for
Illumina� (NEB, USA). Index codes were added to attribute
sequences to each sample. Briefly, AMPure XP system (Beckman
Coulter, Beverly, USA) was used to purify the Chip DNA. After
adenylation of 30 ends of DNA fragments, the NEB Next Adaptor
with hairpin loop structure were ligated to prepare for hybridiza-
tion. Then electrophoresis was used to select DNA fragments spec-
ified in length. 3 mL USER Enzyme (NEB, USA) was used with size-
selected, adaptor-ligated DNA at 37 �C for 15 min followed by
5 min at 95 �C before PCR. Then PCR was performed with Phusion
High-Fidelity DNA polymerase, Universal PCR primers and Index
(X) Primer. At last, PCR products were purified (AMPure XP system)
and library quality was assessed on the Agilent Bioanalyzer 2100
system. After the cBOT cluster is generated, the library prepara-
tions were sequenced on an Illumina Novaseq 6000 platform and
150 bp paired-end reads were generated. Raw sequencing
paired-end reads passed through standard quality control mea-
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sures after human contamination, adapter regions, and low-
quality reads were removed, as per Li et al. [64,65].

Taxonomic classification and quantification were performed
using MetaPhlAn2 with default settings [66]. Relative abundances
of taxa were extracted from original outputs for each taxonomic
level. Prokaryotic community profiles were constructed at the phy-
lum, family, genus, and species levels for statistical analyses.

5.7. Microbial community composition

Alpha diversity indices detailing microbial community compo-
sition within samples were calculated using vegan [67] in R. Shan-
non index was used for alpha diversity evaluation based on the
relative abundance of each taxonomic level. Statistical compar-
isons of healthy controls vs. obese subjects and pre- vs. post-
operative subjects were performed by Wilcoxon rank sum test
and rank sum test paired Wilcoxon signed-rank test. For estimat-
ing community dissimilarities, Bray-Curtis distances were calcu-
lated by phyloseq [68] and vegan [67] and Aitchison distances
were calculated by robCompositions [69] based on the relative
abundance of each taxon at phylum, family, genus and species
level. Adonis from vegan package [67] in R was used for PERMA-
NOVA tests to evaluate differences among groups (number of per-
mutation set to 999). Within-group distance (Bray-Curtis distance
among samples from the same group) indicating the community
divergence and between-group distances (Bray-Curtis distance
among samples from each of the two groups) indicating the differ-
ence between two communities were determined and compared
by Wilcoxon rank sum test, paired Wilcoxon signed-rank and
Kruskal-Wallis tests, where appropriate.

5.8. Species comparisons

Species were filtered by 10% prevalence across all samples and
the relative abundances of remaining species were used for statis-
tical comparisons of healthy controls vs. obese subjects and pre- vs.
post-operative subjects by Wilcoxon rank sum test and paired Wil-
coxon signed-rank tests, respectively. The Benjamini-Hochberg
FDR correction [70] was applied to adjust p values for multiple
tests in R. CoDA were further performed for statistical test for the
significant result with the ALDEx2 package in R [71]. Datasets were
first transformed based on centered log-ratio (clr). Wilcoxon rank
sum test for comparisons between healthy controls and obese sub-
jects and paired Wilcoxon signed-rank tests between pre- and
post-operative subjects were performed. Expected p value and
expected Benjamini-Hochberg corrected p value were used for sig-
nificance evaluation.

5.9. Correlation analyses using clinical metadata abundance

To evaluate the potential effects of the gut microbiome on obese
parameters, we calculated Spearman’s correlations between spe-
cies abundance and 24 clinical characteristics relevant to obesity.
FDR correction was applied to each obese parameter across
species.

5.10. Co-abundance networks

Co-abundance networks were created using BAnOCC based on
prevalent species (in over 20% of participants) within microbial
communities in four participant groups for comparisons (healthy
controls vs. obese subjects and pre- vs post-operative subjects)
[72]. BAnOCC was executed with 5 chains, 5000 iterations, and
1000 warmup cycles to read convergence. For posterior inference,
we used a 95% credible interval. Only significant correlations with
an absolute estimated coefficient of at least 30% were used for fur-
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ther analyses of obese and healthy communities. We increased the
absolute estimated coefficient to 60% for pre- and post-operative
communities, for illustration purpose.

5.11. Functional annotation

HUMAnN2 [73] was used with metagenomic reads to estimate
gene family abundances. Reads per kilobase (RPK) values for gene
family abundances were copies per million (CPM) normalized.
MetaCyc pathway and species-coding pathway profiles were fur-
ther annotated. Functional alpha based on MetaCyc pathway pro-
files were analyzed with Wilcoxon rank sum test and paired
Wilcoxon signed-rank tests as for taxonomic profiles. Wilcoxon
rank sum tests were detecting statistically significantly different
MetaCyc pathway and species-coding pathways among groups.
Spearman’s correlations were determined between significant
pathways and important clinical characteristics. The absolute coef-
ficient values from the significant correlations of the 6 obese
parameters were selected and compared by using Wilcoxon rank
sum tests.

5.12. Data visualization

Packages ggplot2 and gplots in R and matplotlib in Python were
used for visualizations. Cytoscape v3.7.1 was used for co-
abundance network and correlation visualization.
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