
Articles
Landscape of exitrons in gastric cancer

Yihao Zhang,a,b Gengtai Ye,a,b Qingbin Yang,a,b Boyang Zheng,a,b Guofan Zhang,a,b

Yanfeng Hu,a,b Jiang Yu,a,b and Guoxin Li a,b*
aDepartment of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Tech-
nology Research Center of Minimally Invasive Surgery, Guangzhou, Guangdong 510515, China
bGuangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong 510515,
China
eBioMedicine 2022;84:
104272
Published online xxx
https://doi.org/10.1016/j.
ebiom.2022.104272
Summary
Background Exitron is a new type of non-canonical alternative splicing. Accumulating evidence implies exitron may
have pathological function and contribute to another source of anti-tumor immunogenicity in various cancers. Its
role in gastric cancer remains poorly understood. Large-scale, multi-omics analysis could comprehensively character-
ize the landscape of exitrons in gastric cancer, reveal undiscovered mechanism and hopefully identify molecular bio-
markers for predicting immunotherapy response.

Methods We collected datasets from five studies for analysis. RNA sequencing was used for exitron identification.
Somatic mutations were detected by whole exome sequencing. Neopeptides were confirmed by proteome mass
spectrometry.

Findings 42174 gastric cancer-specific exitrons (GCSEs) were identified in 632 patients. GCSEs were clinically rele-
vant to gender, age, Lauren type, tumor stage and prognosis. Tissue specificity test and pathogenic exitron prediction
revealed their unique functional impact. GCSEs were mutually exclusive with mutations and demonstrated both
unique and complementary function against TP53 mutation in gastric cancer. We further established splicing regu-
latory network to reveal upstream regulation of exitron splicing. We also evaluated the immunogenicity and diagnos-
tic potential of GCSEs. Evidence of GCSEs-derived neopeptide expression was validated by whole proteome mass
spectrometry. PD-1 and Siglecs were significantly increased in high neoantigen load patients. But exitron-related bio-
markers failed to predict immunotherapy response, possibly due to small sample size and insufficient sequencing
depth.

Interpretation The present study provided a comprehensive multidimensional landscape of gastric cancer exitrons
and underscores insights into underexplored mechanism in gastric cancer pathology.
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Introduction
Gastric cancer is the 3rd leading cause of cancer-related
mortality, representing 8.2% of all deaths from can-
cer.1 For the last decade, exploring genetic/epigenetic
alteration has revealed mechanistic complexity in gas-
tric cancer. Chronic infection of H. pylori and Epstein-
Barr virus, mutated driver genes, driver gene amplifi-
cation have been demonstrated to contribute to gastric
cancer pathology.2-4 Efforts have been made to develop
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targeted therapies but few have shown clinical benefit,
which reflects the fact that pathological mechanism in
gastric cancer remains largely unknown. Recently,
accumulating evidence revealed an important role of
alternative splicing in cancer. Disrupted alternative
splicing is commonly observed in various cancers and
can functionally drive oncogenic process in a driver
gene mutation-complementary manner5 or produce
non-functioning transcriptional noise to promote anti-
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Research in Context

Evidence before this study

Non-canonical alternative splicing, exonic intron (exi-
tron) in gastric cancer has been largely overlooked. Pre-
vious studies described exitron features in breast
cancer, prostate cancer, and other cancer types. But the
characteristics and function of exitrons in gastric cancer
remained poorly understood. In this study, we compre-
hensively illustrated a multidimensional landscape of
gastric cancer exitron, identified exitron-dependent
machinery related to oncogenesis of gastric cancer, and
evaluated the clinical application potential of gastric
cancer exitrons in immunotherapy.

Added value of this study

Our study included transcriptome of 632 patients,
whole exome of 481 patients and proteome of 77
patients to characterize gastric cancer exitrons. We pre-
sented in-depth analyses of exitrons splicing, somatic
mutations, in-silico functional assay, pathogenic predic-
tion, mutual exclusivity, upstream splicing regulatory
network, neoantigen prediction, neopeptide validation,
and immunotherapy response prediction.

Implications of all the available evidence

Pathological mechanism of gastric cancer remains
largely unknown. Comprehensive understanding of gas-
tric cancer exitrons could provide insight into discover-
ing pathological mechanism, oncogenic candidates,
diagnostic biomarkers and treatment targets. Our study
characterized landscape of gastric cancer exitron, dem-
onstrated its unique function and features in oncogenic
process, and provided important information for
genetic screening and functional validation of potential
candidates in the future.
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tumor immunogenicity by increasing neoantigen
load.6

Exonic intron (in short, exitron) is a new type of non-
canonical alternative splicing.7 These cryptic introns
could be spliced inside annotated exons, thus contain
both splicing and coding potential. Exitron splicing has
been observed in both tumor and normal samples.7-9 In
two pilot studies, exitrons recurrently spliced within
tumor suppressor genes in breast cancer and prostate
cancer.7,8 In a pan-cancer analysis, 129406 exitrons
were discovered in 9599 tumor samples.9 Among 33
cancer types, ovarian cancer, esophageal cancer, gastric
cancer are the top three tumors with highest exitron
load. On the one hand, some exitrons could exhibit
oncogenic potential. For example, exitron-spliced NEFH
produced a progressive phenotype in prostate cancer
cells, indicating its tumor suppressor role in prostate
cancer. On the other hand, exitrons could increase
immunogenicity as the expression and presentation of
exitron-derived neoantigen was validated in ovarian can-
cer and breast cancer patients. Moreover, putative neo-
antigen burden could predict response to immune
checkpoint inhibitor in clear cell renal cell carcinoma
patients. These findings underscore the importance of
investigating exitrons in cancer pathology.

Currently, a full picture about exitron splicing in gas-
tric cancer is still lacking due to insufficient samples for
comprehensive analysis. Meanwhile, it is worth noting
that characteristics of exitron events in a particular can-
cer could be underrepresented in pan-cancer analysis.10

In the present study, we illustrated a multidimensional
comprehensive landscape of exitron splicing in gastric
cancer. We characterized the biological and clinical fea-
ture of gastric cancer exitrons. The pathogenicity of gas-
tric cancer exitrons was validated by tissue-specific test
and pathogenicity prediction. We demonstrated unique
functions of gastric cancer exitrons. Furthermore, we
investigated mutual exclusivity of gastric cancer exitrons
and somatic mutations and identified two groups of
compensatory/synergistic exitrons against p53 muta-
tions. To discover the upstream regulatory candidates of
gastric cancer exitron splicing, we built molecular net-
works connecting expression/mutation profile of splic-
ing factors with exitrons. Additionally, we confirmed
the expression of gastric cancer-specific exitrons
(GCSEs)-derived transcripts by mass spectrometry (MS)
analysis. The expression of PD-1 and Siglecs family
members were significantly increased in patients with
high GCSEs-derived neoantigen load, indicating GCSEs
were of value to clinical diagnosis and treatment predic-
tion.
Methods

Clinical cohort and data usage
We systematically searched PubMed, GEO dataset,
European Nucleotide Archive (ENA) to find studies
including gastric cancer patient samples. No other limi-
tation was applied for searching. Overall, five clinical
cohorts from United States, Korea and China were
included.9,11-13 Five datasets contained transcriptome
data. Three datasets contained whole exome data. One
dataset contained whole proteome data. Information
including age, gender, stage, Lauren pathology classifi-
cation, overall survival time, follow-up status and
immune checkpoint inhibitor response were collected
from these datasets if available. In the present study, we
mainly conducted 11 experiments using abovemen-
tioned data. Detailed dataset characteristics and data
usage for each experiment can be found in Table S1.
Data quality control
Fastp 0.20.014 was used to perform quality assessment
and reads filtering of raw FASTQ files in RNA-Seq and
whole exome sequencing (WES) datasets. Briefly,
www.thelancet.com Vol 84 October, 2022
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adapters were automatically detected by setting parame-
ter �detect_adapter_for_pe. Reads with mean read qual-
ity less than 20 within a range of 4bp sliding window
were filtered. The first 15bp in front of reads were
trimmed.

Sequencing reads alignment
All RNA-Seq data were aligned to GENCODE hg38 ref-
erence genome using splice junction-aware software
STAR 2.7.9a with two-step alignment strategy. Whole
exome sequencing data were aligned to GENCODE
hg38 reference genome using BWA-MEM algorithm.
Mapped reads were further sorted by samtools.

Tumor somatic variant calling
The Genome Analysis Toolkit (GATK 4.2.0) was used
for tumor somatic variant calling from whole exome
sequencing data. We followed the practice guideline
for somatic variant calling with GATK4 Mutect2.15

BaseRecalibrator performed locus-based traversal oper-
ating at known sites provided by the 1000 Genome
Project phase 1, dbSNP 138, Mills and 1000G gold
standard indels, and hg38 known indels. Somatic var-
iants of paired samples were called by Mutect2 accord-
ingly. The germline mutation resource from gnomAD
hg38 and a 1000G panel-of-normal were used for vari-
ant masking. Filtered variants were annotated by
Ensembl-VEP 104.3.

Exitrons identification and characteristics
Exitron splicing events were identified from RNA-Seq
data by ScanExitron as previously described.9 Briefly,
ScanExitron extracted uniquely mapped reads with
MAPQ >50 and identifies splicing junctions. GEN-
CODE hg38 annotated intron regions were removed.
Novel junctions with canonical splicing sites located
within exons were identified as exitron-splicing events.
ScanExitron calculated the ratio of exitron spliced
reads to overall reads across exitron regions and
defined it as percent of spliced-out (PSO) value to rep-
resent the efficiency of exitron splicing. Exitrons with
at least three supporting reads and PSO >0.05 were
eligible for analysis. The difference of exitron burden
between tumor and normal groups was measured by
Wilcoxon signed rank test. Exitrons spliced in three or
more normal samples, considered normal splicing
events, were excluded from tumor exitrons. The rest of
tumor exitrons were defined as gastric cancer-specific
exitrons (GCSE). GenVisR16 was used to visualize vari-
ant events. A threshold of 15% exitron splicing fre-
quency was applied to display the most frequently
spliced genes.
Differential splicing analysis
A generalized linear regression model-based differential
test with PSO value as dependent variable and group
www.thelancet.com Vol 84 October, 2022
condition as binomial independent variable was per-
formed to detect differential exitron splicing events as
previously described.6,9 Paired tumor and normal sam-
ples were selected for analysis because splicing variant
expression from unpaired samples can be dramatically
varied and affect sensitivity and statistical validity. Dif-
ferentially spliced cancer driver genes listed in Cancer
Gene Census hallmarks (https://cancer.sanger.ac.uk/
census) were highlighted. The differential spliced genes
were visualized in Manhattan plot.
Identification of frequently spliced genes
A binomial distribution was used to model the exitron
splicing events along exons. The background splicing
probability, p, was calculated as follow:

p ¼ Ntotal

Ltotal
ð1Þ

where Ntotal represented the number of exitron splicing
events in all genes. Ltotal represented the total length of
protein-coding exons.

Furthermore, the probability of observing ki exitron
splicing events for gene i occurred in ni length of its
exon was given by the probability mass function as fol-
low:

Pr X ¼ kð Þ ¼ ni!

Ki! ni � kið Þ! p
ki 1� pð Þni�ki ð2Þ

For each gene, the p value was further adjusted by
Benjamini-Hochberg false discovery rate (FDR). Genes
with FDR < 10�4 was eventually defined as frequently
exitron-spliced genes.
Functional enrichment
The hypergeometric distribution of interested genes in
gene sets derived from MSigDB Hallmark (https://
www.gsea-msigdb.org/gsea/msigdb/) and Gene Ontol-
ogy (GO) (http://geneontology.org/) were tested using
ClusterProfiler.17 Function enrichment was visualized
in dot plot and chord plot by R package ggplot2 and
circlize, respectively. The width of each chord repre-
sented the number of exitron splicing events in respec-
tive frequently exitron-spliced genes.

Tissue specific test
GCSEs contained non-tissue-specific exitrons. We
extracted tumor-specific exitrons from a pan-cancer
cohort and excluded those detected from stomach ade-
nocarcinoma patients. GCSEs filtered with the rest pan-
cancer tumor-specific exitrons were defined as gastric
cancer tissue-specific exitrons (GCTSEs).
Pathogenic exitrons detection
Pathogenic exitrons were predicted using a gradient
boosting tree model.18 A pickled pre-trained model and
3
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VCF file containing all unique gastric cancer-specific
exitrons were used as input for CAPICE predict module.
The larger the CAPICE score, the more possible the exi-
tron is pathogenic. Therefore, we used a cutoff of 0.96
for all variants to extract the most likely pathogenic exi-
trons. The rest of gastric cancer-specific exitrons were
considered non-pathogenic, in other word, transcrip-
tional noise.
Expression quantification and differential expression
analysis
Gene expression count was measured by feature-
Counts.19 The differential expression analysis was per-
formed using DESeq2. Batch effect was controlled by
setting adjusted variable in DESeq2. Normalized TPM
was batch-corrected by an improved algorithm specifi-
cally designed for RNA-Seq count data, COMBAT-Seq.20
Expression and mutation profile of splicing factors
The expression/mutation profile and regulatory function
of splicing factors (SFs) were evaluated in 128 paired
samples. A gene set containing 409 SFs was collected
from two independent studies.21,22 Expression changes
of SFs within individual patient were presented as the
log2 fold-change of TPM normalized gene expression
between tumor and paired normal sample. Some SFs
with low or undetectable expression in all samples were
excluded. Mutations of SFs were identified as abovemen-
tioned. Exitron-splicing events occurred in less than 5%
of tumor samples were excluded. Exitrons with standard
deviation of DPSO exceeding 0.02 were selected.

To evaluate the interaction between expression/
mutation and exitron splicing, each SF was paired with
a single exitron. Kendall Correlation Coefficient (KCC)
was used to assess the correlation between expression/
mutation status and splicing alteration. 95% confident
intervals were calculated by DescTools (https://github.
com/AndriSignorell/DescTools). SF-exitron pairs with |
KCC| > 0.5 and p value < 0.05 were considered signifi-
cantly correlated. For those significantly correlated
pairs, positive KCC defined SF an active regulator that
promoted its respective exitron splicing, otherwise the
SF was defined as a negative regulator. Exitron spliced
genes with identified significant splicing regulators
were searched in a putative cancer driver gene database,
OncoVar.23 Genes with driver score > 20 were consid-
ered potential cancer drivers. Linear regression analysis
of significant SF-driver pairs was performed. Further-
more, a regulatory network of putative cancer drivers
was visualized by R packages igraph, intergraph and
ggnetwork.
Mutual exclusivity analysis
Characterization of mutual exclusivity between exitron
splicing events and somatic mutations was visualized
by GenVisR.16 Exitron splicing events and somatic
mutations were visualized by trackViewer.24 To anno-
tate mutation and exitron loci with Pfam database, we
extracted sequence and performed annotation using
PfamScan 1.6.
Identification of compensatory and synergistic
exitrons
Exitron splicing, mutation and survival data were
required for complementary exitron identification.
Therefore, cross-validated survival analysis was per-
formed in 340 patients from TCGA-STAD cohort. In
mutation-free patients, compensatory exitrons could
compensate oncogenic effect of a driver gene mutation,
resulting in non-additive consequence (pneg < 0.05 and
ppos > 0.05). In driver gene mutated patients, synergis-
tic exitrons could enhance oncogenic effect of driver
mutations, resulting in additive consequence (ppos <

0.05). Exitron splicing events are relatively rare compar-
ing to mutations. Considering the retrospective design,
it is necessary to decrease false positive discovery. First,
splicing group should contain at least 3 exitron events.
Second, a multivariate Cox regression model imple-
mented tumor stage as a known prognosis-associated
covariate and evaluated the variance inflation factor
(VIF) of tumor stage and each exitron splicing event to
explore the interaction between stage and exitrons. VIF
larger than 10 was considered of significant interaction.
Frequently mutated gene set in gastric cancer was devel-
oped from COSMIC and examined for their interaction
with exitrons. Survival analysis was performed using R
package survival (https://github.com/therneau/sur
vival), rms (https://github.com/harrelfe/rms) and surv-
miner (https://rpkgs.datanovia.com/survminer/index.
html).
Genotyping HLA class I
Following the recommended online protocol, Razers325

was used to extract and realign HLA gene raw reads.
OptiType26 was used for HLA class I genotyping. An in-
house script was used to integrate HLA-I genotyping
result for neoantigen prediction.
Neoantigen prediction
VCF files were manually reformatted by in-house script.
Ensembl-VEP was used to annotate GCSEs. ScanNeo
workflow27 took annotated VCFs and HLA genotypes as
input to predict neoantigens with HLA binding affinity
(IC50 < 500nM).
Validation of neoantigen peptides expression in CPTAC
Whole proteome mass spectrometry (MS) data of gastric
cancer samples was download from the Clinical Proteo-
mic Tumor Analysis Consortium (CPTAC) data portal.12
www.thelancet.com Vol 84 October, 2022
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Target database was created as follow. Inframe exitron
FASTA included ten amino acids upstream and down-
stream of splicing junction. Frameshift exitron FASTA
included ten amino acids upstream of splicing junction
and all of the downstream neopeptide sequence. Target
sequences were concatenated with UniProt proteome
reference. To control the false discovery rate, reverse
decoy sequences were concatenated with target data-
base. Fragpipe28 was used to perform peptide search
and quantification. FDR filtering parameters were set
as: �prot 0.05 �pep 0.05 �ion 0.05. Identified peptides
were annotated to proteome data and visualized in
TOPPView.29 Sashimi plot was used presented evi-
dence of neoantigen-expressing exitron splicing events
at RNA level by The Integrative Genomics Viewer (IGV
2.10.0).
Correlation of neoantigen burden and immune
infiltration
TPM normalized data was deconvoluted by TIMER2.030

(http://timer.cistrome.org/) to estimate the proportion
of immune cells. Spearman correlation analysis
between neoantigen burden and immune infiltration
was performed. Significance level was indicated in the
Spearman correlation coefficient heatmap.
Checkpoints expression and immunotherapy response
A list of immune checkpoint molecules was literature-
curated. The difference of checkpoint molecules expres-
sion/immune checkpoint blockade response between
high neoantigen load and low neoantigen load groups
was tested by Wilcoxon rank test. A frameshift exitron
splicing event triggering a premature stop codon found
in (1) first exon within first 200nts of coding sequence,
(2) last exon, (3) penultimate exon within 50nts of the 3’
exon junction was defined a nonsense-mediated decay
(NMD)-escape event as previously described.31
Statistical analysis
Hypergeometric test was performed for gene set enrich-
ment test. Wilcoxon signed ranked test was used for
expression comparison between groups. Fisher’s exact
test was used to test mutual exclusivity between exitrons
and mutations. Benjamini-Hochberg FDR was calcu-
lated for multi-comparison correction. Log-rank test and
univariate/multivariate Cox regression were performed
for survival analysis as described above. In multivariate
Cox regression model, gender, age, GCSEs load, stage
and Lauren type were taken as independent variates.
Imputations for missing values were performed
134 times with 250 iteration each. Imputed datasets
were combined under Rubin’s rule.32 Significant level
was reported at four levels: * p < 0.05, ** p < 0.01, ***
p < 0.001, **** p < 0.0001.
www.thelancet.com Vol 84 October, 2022
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Results

Characteristics of gastric cancer exitrons
RNA-Seq, WES and MS data were collected from ENA,
TCGA, CPTAC and Nanfang Hospital cohort. Overall,
transcriptome of 632 patients, whole exome of 481
patients and proteome of 77 patients were analyzed in
this study. The study workflow was illustrated in
Figure 1. In gastric cancer samples, exitron splicing load
was significantly increased (Figure 2a), reflecting dis-
rupted exitron splicing machinery in gastric cancer. Dif-
ferential spliced exitrons were observed in various
cancer driver genes. 19 variants from 11 hallmark tumor
driver genes were differentially spliced in tumor sam-
ples (Figure 2b). For instance, exitron AMER1 D50-327
locates at the N terminus of WTX domain (Figure S1a),
which interacted with b-catenin, AXIN2 and APC to
functionally promote ubiquitination and degradation of
b-catenin, resulting in tumor suppression.33 Inframe
deletion of WTX domain in this variant may cause loss-
of-function. Exitron RECQL4 D318-349 locates at the
center of second Sld2-like DNA binding regions (Figure
S1e), which have been demonstrated to be indispensable
for its DNA annealing activity.34 Exitron SPEN D3419-
3450 locates at the C-terminal SMRT interacting
domain (Figure S1f). Its transcription regulatory func-
tion requires SMRT-binding repression domain.35 Exi-
trons of other driver genes e.g. BCL9L, FOXO4 and
POLQ produced frameshift variants, resulting in loss-
of-function effect (Figure S1b-d). Furthermore, normal
exitrons were excluded and those solely expressed in
gastric cancer samples were considered as gastric can-
cer-specific exitrons (GCSEs). 42174 GCSEs were
detected in the present study. Consistent with previous
findings,7,9 majority of GCSEs are inframe (Figure 2c).
Frequency of GCSE splicing for each gene was then
tested to identify frequently GCSE-spliced genes. Over-
all, 1546 significantly spliced genes were detected
(Figure 2d and Table S2). GCSEs were frequently
spliced in some well-studied tumor driver genes e.g.
MUC4, TAF15, FUS, KMT2D, EWSR1 etc. It is likely
that these previously overlooked GCSEs play important
roles in oncogenic process. To evaluate clinical rele-
vance of GCSEs, we examined clinical features and
prognostic value of GCSEs. Male, intestinal type, stage
IV and � 65-year-old patients have significantly higher
GCSE load (Figure 2e-h). These results indicated that
GCSEs could be relevant to clinical features and progno-
sis. Indeed, both univariate and multivariate Cox regres-
sion analyses identified GCSE load, age, stage IV as risk
factors for patient prognosis (Table 1). High GCSE load
5
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Figure 1. Workflow of the present study.
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was significantly related to worse overall survival
(Figure 2i). These findings highlighted the clinical rele-
vance and unexplored importance of gastric cancer exi-
trons.

To understand functional impact of GCSEs, hyper-
geometric test was performed on Molecular Signatures
Database (MSigDB) hallmark gene sets and Gene
Ontology (GO). Frequently GCSE-spliced genes were
significantly enriched in epithelial-mesenchymal transi-
tion (EMT, 42 genes), downregulated UV response (30
genes) and mitotic spindle (35 genes) cancer hallmark
pathways (Figure 3a). A large proportion of frequently
GCSE-spliced genes are not enriched in any of cancer
hallmarks. Gene Ontology (GO) enrichment revealed
that molecular functions are enriched in transcriptional
regulation, cell junction, adhesion and cell growth
(Figure S1g), which reflected the fact that disrupted
splicing machinery generated a large amount of tran-
scriptional noise and may not have any functional sig-
nificance.36 Despite GCSEs were uniquely expressed in
www.thelancet.com Vol 84 October, 2022



Figure 2. Characteristics and clinical features of gastric cancer exitrons.
(a) Exitron splicing load was significantly elevated in gastric cancer samples comparing to normal samples in all cohorts except

for TCGA due to lack of normal samples (totally 270 tumor and 129 normal samples). p value (Wilcoxon signed rank test) (b) A linear
regression model-based differential splicing analysis showed various hallmark cancer drivers contained differential spliced exitrons.
128 paired tumor/normal samples were used for test. Pink dot represented fusion gene. Red dot represented oncogene. Gold dot
represented oncogene/tumor suppressor gene. Green dot represented tumor suppressor gene. Blue dot represented other genes
which were not annotated as driver genes in Cancer Gene Census. (c) Proportion of frameshift and inframe GCSEs in 632 tumor sam-
ples. (d) Illustration of frequently exitron-spliced genes. Events occurred in>15% samples were showed. (e-h) GCSEs load was tested
in 632 tumor samples comparing different gender (e), age (f), Lauren classification (g), and stage groups (h). Pies indicate the propor-
tion of samples in respective groups. p value (Wilcoxon signed rank test). (i) Overall survival comparison of patients with high and
low GCSE load. The first quantile was defined as high GCSE load while the last quantile was defined as low GCSE load. p-value (Log-
rank test). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Univariate Multivariate

Variable Hazard ratio (95% confident interval) p-value Hazard ratio (95% confident interval) p-value

GCSE load 1.002 (1.0005-1.003) 0.007 1.002 (1.0003-1.003) 0.019

Gender

Female 1 [Ref.] 1 [Ref.]

Male 1.41 (0.99-2.002) 0.058 1.32 (0.92-1.90) 0.13

Age (years) 1.02 (1.008-1.04) 0.0029 1.03 (1.01-1.05) 0.0004

Stage

I 1 [Ref.] 1 [Ref.]

II 1.32 (0.71-2.46) 0.39 1.36 (0.73-2.57) 0.34

III 1.57 (0.87-2.84) 0.14 1.79 (0.98-3.25) 0.056

IV 3.49 (1.77-6.90) 0.0003 4.40 (2.20-8.82) 0.00003

Lauren type

Diffuse 1 [Ref.] 1 [Ref.]

Intestinal 0.89 0.56-1.39) 0.6 0.68 (0.42-1.10) 0.11

Mixed NA NA NA NA

Table 1: Cox regression analysis of overall survival in gastric cancer patients.
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gastric cancer samples, a large proportion of GCSEs
were not tissue specific (Figure 3b). 19366 of 42174
GCSEs were gastric cancer tissue-specific exitrons
(GCTSEs), which drew our interests to investigate the
function of gastric cancer exitrons in tissue-specific
manner. We excluded tumor-specific exitrons detected
in all tumors except for stomach adenocarcinoma
(STAD) in a pan-cancer cohort9 to keep GCTSEs in this
study. The most frequently GCTSEs-spliced genes
included MUC17, AHNAK, PLEC, AHNAK2, MUC4,
RRBP1, MKI67, EPPK1, BDP1, NUMA1, SRRM2,
CRYBG2, TAF15 and EVPL (Figure S1h). Genes with
spliced GCTSEs affected more cancer-associated func-
tional pathways, including TNFa-NFkB, p53, estrogen
response, interferon a and myc targets (Figure 3c). Fur-
thermore, a pre-trained gradient boosting tree model
was used to predict pathogenicity of GCSEs to validate
the findings of GCTSEs. Higher CAPICE score indi-
cated the higher probability of exitron pathogenicity. A
threshold of 0.96 was used to determine pathogenic
GCSEs. Consistently, majority of GCSEs was identified
as transcriptional noise. 38.55% of GCSEs were identi-
fied as pathogenic exitrons (Figure 3d). Pathogenic
GCSEs were found in many known cancer driver genes.
Functional enrichment showed highly overlapped can-
cer pathways distribution comparing to that of GCTSEs
(Figure 3e). Additionally, GO analysis demonstrated a
significant enrichment of both pathogenic GCSEs and
GCTSEs in true pathogenic signals rather than tran-
scriptional noise (Figure S1i, j). We also evaluated the
prognostic value of GCTSEs. 103 prognostic GCTSE-
spliced genes were found (Table S3). For instance,
GCTSE-spliced BCOR, as a known tumor suppressor
gene, showed worse prognosis (Figure S1k). Taken
together, these findings demonstrated aberrant exitron
splicing has clinical importance and contributes to
oncogenic process in gastric cancer.
Mutual exclusivity reveals oncogenic compensatory
and synergistic exitrons
Apart from structure change induced driver effect, alter-
native splicing variants can be mutually exclusive with
driver mutations and represent independent oncogenic
process.5,9 Despite aberrant exitron splicing is closely
related to oncogenic process in gastric cancer, it
remains elusive if GCSEs underlie complementary
mechanism against mutations. To address this ques-
tion, we evaluated mutual exclusivity of exitrons at gene
and protein levels, respectively. Frequency of mutations
and exitron splicing in each gene were analyzed. Driver
genes like TP53, ARID1A, KMT2C, PIK3CA were the
most frequently mutated genes in gastric cancer accord-
ing to COSMIC database. Very low splicing frequency
was detected in these genes. On the contrary, frequently
spliced genes like TAF15, EWSR1, FUS had low muta-
tion frequency (Figure 4a). Mutual exclusivity for most
driver genes among individual patient was observed as
well (Figure 4b). Furthermore, mutual exclusivity for
event loci within genes was detected. For instance, two
exitrons RECQL4 V198Pfs*43 and RECQL4 D 318�349
locate at Sld2-like DNA binding region of RECQL4,
whereas nearly all of the mutations locate at DEAH box
domain or its C-terminal region (Figure 4c). Two exi-
trons SPEN D3419�3450 and V3419Sfs*58 locates at C-
terminal SMRT interaction domain of SPEN. Loss-of-
function frameshift mutations of SPEN largely locate at
other regions (Figure 4d). Previously, KMT2D was
found to be infrequently spliced in pan-cancer cohort
with significant mutual exclusivity.9 In the present
www.thelancet.com Vol 84 October, 2022



Figure 3. Functional assay of gastric cancer exitrons.
(a) Frequently GCSEs-spliced genes were enriched in MSigDB hallmark pathways. (b) intersection between GCSEs and tumor-

specific exitrons in TCGA 32 tumor cohorts. GC, gastric cancer; LAML, Acute Myeloid Leukemia; ACC, Adrenocortical carcinoma;
BLCA, Bladder Urothelial Carcinoma; LGG, Brain Lower Grade Glioma; BRCA, Breast invasive carcinoma; CESC, Cervical squamous cell
carcinoma and endocervical adenocarcinoma; CHOL, Cholangiocarcinoma; LCML, Chronic Myelogenous Leukemia; COAD, Colon
adenocarcinoma; ESCA, Esophageal carcinoma; GBM, Glioblastoma multiforme; HNSC, Head and Neck squamous cell carcinoma;
KICH, Kidney Chromophobe; KIRC, Kidney renal clear cell carcinoma; KIRP, Kidney renal papillary cell carcinoma; LIHC, Liver hepato-
cellular carcinoma; LUAD, Lung adenocarcinoma; LUSC, Lung squamous cell carcinoma; DLBC, Lymphoid Neoplasm Diffuse Large B-
cell Lymphoma; MESO, Mesothelioma; OV, Ovarian serous cystadenocarcinoma; PAAD, Pancreatic adenocarcinoma; PCPG, Pheo-
chromocytoma and Paraganglioma; PRAD, Prostate adenocarcinoma; READ, Rectum adenocarcinoma; SARC, Sarcoma; SKCM, Skin
Cutaneous Melanoma; TGCT, Testicular Germ Cell Tumors; THYM, Thymoma; THCA, Thyroid carcinoma; UCS, Uterine Carcinosar-
coma; UCEC, Uterine Corpus Endometrial Carcinoma; UVM, Uveal Melanoma. (c) MSigDB hallmark enrichment analysis of gastric can-
cer tissue-specific exitrons. Adjusted p-value (Benjamini-Hochberg false discovery rate) (d) Pathogenicity prediction of GCSEs.
CAPICE score ranged from zero to one. The larger the score, the more possible the pathogenicity of GCSE is. A threshold of 0.96 was
used to define pathogenic exitrons. Blue dot represented pathogenic exitrons in non-cancer driver genes. Red dash line represented
the 0.96 CAPICE score cutoff. Red dot represented pathogenic exitrons in cancer driver genes. Driver genes with pathogenic exitrons
were labeled. A pie chart showed the proportion of pathogenic exitrons and transcriptional noise. (e) MSigDB hallmark enrichment
analysis of pathogenic GCSEs. Adjusted p-value (Benjamini-Hochberg false discovery rate). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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study, KMT2D has relatively high splicing frequency
with significant mutual exclusivity. Somatic mutations
were dispersed along the entire gene and more than
half of exitrons overlapped with mutations (Figure 4e).
Due to lack of protein structure, we are unable to map
these exitrons to reveal the structural alteration in a
higher dimension and directly predict their functions.

To understand if functional impact of exitrons was
different from somatic mutations, we evaluate mutual
www.thelancet.com Vol 84 October, 2022
exclusivity of protein function based on annotated pro-
tein database. Exitrons and mutations loci were anno-
tated with Pfam database to highlight mutation/exitron-
affected protein domains. Most mutations and exitrons
were identified within Pfam annotated domains and
families (Figure 4f). Mutations are less likely to occur in
disordered and repeat regions. Furthermore, analyzing
mutation/exitron load of each annotated protein
domain revealed functional exclusivity. Mutation-
9



Figure 4. Mutual exclusion of gastric cancer exitrons with somatic mutations.
(a) The frequency of exitron splicing and mutations was visualized in scatter plot. Dash line represented 10% threshold. Genes of

interest were highlighted in red. (b) The event occurrence of interest genes was visualized. Fisher’s exact test was used to calculate
the mutual exclusion of sample distribution between exitrons and somatic mutations. Significant exclusion was highlighted in red.
p-value (Fisher’s exact test). (c-e) Lolliplot indicating somatic mutations and exitrons in RECQL4, SPEN and KMT2D. (f) Barplot showed
total amount of mutations/exitrons in different Pfam annotated categories. (g) Scatterplot showed the number of exitrons/muta-
tions identified in Pfam domains. Pie chart showed the proportion of exitron/mutation-affected Pfam domains. Interested Pfam
domains were highlighted in red. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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annotated Pfam domains and exitron-annotated Pfam
domains have 620 overlaps, representing 20.3% of all
annotated domains. Consistent with our previous find-
ings, exitrons were highly enriched in functional
domains related to cell junction, migration and growth
(Figure 4g). Mutations on the other hand were more
likely to be enriched in domains related to signal trans-
duction and transcription regulation. In other cases, exi-
trons and mutations share common cancer-associated
domains e.g. protein kinase, G-protein coupled recep-
tor, Ras protein family, Wnt signaling, Forkhead. Taken
together, we found that a group of exitrons specifically
www.thelancet.com Vol 84 October, 2022
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affected proteins related to adhesion, migration and
growth in gastric cancer. Another group of exitrons
have functional impact on cancer-associated domains
together with mutations, suggesting exitrons play both
unique and complementary roles exclusive from muta-
tions in gastric cancer.

Exitrons with driver effect could be under positive
selection during oncogenic process, distinguishing
from non-driver events.37 To distinguish unique driver
exitrons, we performed univariate Cox regression to
identify prognostic exitrons. Six and four exitrons were
found to be risk or protective predictors in gastric can-
cer, respectively (Figure 5a). For instance, the splicing
of exitron SRRM2 D516-603 affected integrity of N-ter-
minal transcriptional regulator domain and predicted
worse prognosis in gastric cancer patients (Figure 5b).
Considering that exitrons can also produce complemen-
tary effect against mutations during oncogenesis, we
cross-validated prognostic exitrons in two complemen-
tary subpopulations, namely driver gene mutation posi-
tive (Driverpos) or negative (Driverneg) patients.
Compensatory exitrons could predict Driverneg progno-
sis rather than Driverpos due to non-additive conse-
quence under the same pathway. Synergistic exitrons
could predict prognosis of Driverpos because synergistic
enhancement resulted in additive consequence. Regard-
ing to 20 highly mutated driver genes in gastric cancer,
21 compensatory exitrons and 24 synergistic exitrons
were identified by multivariate Cox regression model
(Table 2). most complementary exitrons were found to
interact with TP53 mutation. Seven synergistic exitrons
interact with LRP1Bpos subpopulation. Two synergistic
exitrons interact with CDH1pos subpopulation. One syn-
ergistic exitron interact with APCpos subpopulation.
Some well-studied cancer-associated genes including
MUC4, TAF15, AXIN1, APOE and YTHDF2 were pres-
ent in the list. Recently, mechanism of p53-mediated
speckle association underscored the important role of
nuclear speckle in cancer-associated transcription regu-
lation.38 It was worth noting that two exitrons in nuclear
speckle formation gene, SRRM2, were categorized as
both compensatory and synergistic exitrons against
TP53 mutation. Exitron SRRM2 D1119-1147 found
within C-terminal disordered region of SRRM2 (Figure
S3) was identified as compensatory exitron of TP53
(Figure 5c). Exitron SRRM2 D516-603 on the contrary
was identified as synergistic exitron of TP53 (Figure 5d).
C-terminal region is indispensable for nuclear speckle
formation,39 suggesting that SRRM2 exitrons may play
dual roles in p53-mediated regulation. Intriguingly,
some unique prognostic exitrons were also identified as
synergistic exitrons (e.g. SRRM2 D516-603 and
CCDC85B D33-48). These exitrons were likely to drive
oncogenic process, especially in TP53-dependent man-
ner. Overall, we identified driver exitrons that may
underlie unique or complementary mechanism in gas-
tric cancer.
www.thelancet.com Vol 84 October, 2022
Splicing regulatory network unraveled splicing factors
targeting aberrant exitron splicing
Our findings demonstrated a downstream effect of exi-
trons in oncogenic process of gastric cancer. It is still
unclear if any upstream factor participated in it as well.
Dysfunction of trans-acting splicing factors can greatly
affect RNA splicing efficiency and produce aberrant
transcripts with distinct downstream effect.5,6 In the
present study, 409 splicing factor genes were literature-
curated from two independent studies21,22 (Figure S2a).
Expression of splicing factors was largely disrupted. But
the expression change was not closely related to muta-
tions. Moreover, splicing factors/individuals were not
clustered by mutation load, suggesting disrupted
expression and mutation in splicing factors could be dif-
ferent sources for aberrant exitron splicing (Figure 6a).

To address this question, we paired splicing factors
with exitrons, creating two large datasets containing
112221 mutation-exitron pairs and 129745 expression-
exitron pairs for Kendall correlation analysis. Kendall
correlation coefficient (KCC) was used to measure the
correlation between these pairs. Among expression-exi-
tron pairs, 709 active regulators and 540 negative regu-
lators were detected. Among mutation-exitron pairs,
339 active regulators and 293 negative regulators were
detected. Gastric cancer potential driver genes (Census
score > 20) were extracted from OncoVar database23

and the top regulators were highlighted (Figure S2b, c).
Furthermore, the interaction between mutation and
expression of splicing factor-exitron pairs were evalu-
ated. Majority of GCSEs were solely affected either by
aberrant splicing factor expression or mutation. 214 nor-
mal exitron pairs and 17 GCSE pairs were affected by
both mutation and expression change (Table S4). Splic-
ing regulators can be classified to four categories: splic-
ing/gain-of-function, promoting splicing/loss-of-
function, suppress splicing/gain-of-function and sup-
press splicing/loss-of-function (Figure 6b). Positive
expression correlation indicated increasing expression
of regulator promoted exitron splicing, while positive
mutation correlation indicated mutated regulator
gained exitron splicing function.

Next, we focused on splicing regulators for tumor
driver genes. Expression-based regulatory network dis-
covered 239 splicing factors regulating 364 exitrons in
11 putative driver genes (Figure 6c and Table S5). Muta-
tion-based regulatory network discovered 110 mutated
splicing factors regulating 149 exitrons in 8 putative
driver genes (Figure 6d and Table S6). No common reg-
ulators were detected in both two networks because
most exitrons were solely affected either by aberrant
expression or mutation as previously described
(Figure 6b). It was worth noting that unique regulators
for driver genes were commonly observed. Only a few
splicing factors were found to regulate exitron splicing
of multiple driver genes. Therefore, exitron splicing
mechanism could be target-centered rather than
11



Figure 5. Identification of prognostic and complementary exitrons.
(a) Univariate Cox regression model was used to test prognostic exitrons. Red dot represented risk exitrons. Blue dot represented pro-

tective exitrons. HR, hazard ratio. p-value (Univariate Cox regression). (b) Splicing of exitron SRRM2 D516-603 resulted in worse prognosis
among all patients. p-value (Logrank test). (c) Splicing of compensatory exitrons MUC17 D 3268-3385 and SRRM2 D 1119-1147 showed
worse prognosis in TP53 mutation-free patients. p-value (Logrank test). (d) Splicing of synergistic exitrons CCDC85B D 33-48 and SRRM2
D 516-603 showed worse prognosis in mutated-TP53 patients. Survival analysis was performed in 340 patients. p-value (Logrank test).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Chromosome Start End Spliced gene Cancer driver gene

Compensatory exitrons

chr11 62518888 62519019 AHNAK TP53

chr14 1.05E+08 1.05E+08 AHNAK2 TP53

chr16 9092072 9092137 C16orf72 TP53

chr11 65856093 65856161 CFL1 TP53

chr1 1.54E+08 1.54E+08 CHTOP TP53

chr6 73517849 73517890 EEF1A1 TP53

chr9 1.29E+08 1.29E+08 ENDOG TP53

chr1 1.7E+08 1.7E+08 F5 TP53

chr3 1.29E+08 1.29E+08 H1FX TP53

chr11 1.19E+08 1.19E+08 HYOU1 TP53

chr7 1.01E+08 1.01E+08 MUC17 TP53

chr19 50223287 50223334 MYH14 TP53

chr8 1.44E+08 1.44E+08 PLEC TP53

chr12 11267474 11267851 PRB3 TP53

chr12 11267663 11267851 PRB3 TP53

chr7 44885103 44885159 PURB TP53

chr16 2763884 2763970 SRRM2 TP53

chr3 1.01E+08 1.01E+08 TFG TP53

chr12 49185097 49185384 TUBA1A TP53

chr12 49128204 49128257 TUBA1B TP53

chr19 23361396 23361479 ZNF91 TP53

Synergistic exitrons

chr11 62520071 62529880 AHNAK TP53

chr19 44908645 44908719 APOE LRP1B

chr16 288155 288193 AXIN1 LRP1B

chr5 71510492 71510656 BDP1 TP53

chr11 65890880 65890927 CCDC85B TP53

chr10 1.19E+08 1.19E+08 EIF3A LRP1B

chr15 32730782 32730877 GREM1 TP53

chr19 35267258 35267352 LSR TP53

chr7 1.01E+08 1.01E+08 MUC17 CDH1

chr7 1.01E+08 1.01E+08 MUC17 LRP1B

chr3 1.96E+08 1.96E+08 MUC4 CDH1

chr11 1017426 1018097 MUC6 TP53

chr8 1.44E+08 1.44E+08 PLEC TP53

chr19 17365453 17365618 PLVAP TP53

chr7 44801328 44801389 PPIA LRP1B

chr3 51993773 51993820 RPL29 TP53

chr11 75566536 75566631 SERPINH1 TP53

chr17 81720292 81720365 SLC25A10 TP53

chr16 2762073 2762336 SRRM2 TP53

chr17 35844573 35844749 TAF15 APC

chr1 42700968 42700991 YBX1 LRP1B

chr4 68337202 68337237 YTHDC1 LRP1B

chr1 28743160 28743192 YTHDF2 TP53

chr19 57859546 57859797 ZNF587 TP53

Table 2: Compensatory and synergistic exitrons interacted with gastric cancer frequently mutated driver genes.
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regulator-centered. Taken together, splicing regulatory
networks provided important information for unravel-
ing new targets associated with stomach oncogenesis.
Combining our findings in upstream regulatory
www.thelancet.com Vol 84 October, 2022
network and downstream pathogenic effect, we pro-
vided a full picture of gastric cancer exitrons and impor-
tant information for genetic screening and functional
validation in the near future.
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Figure 6. Upstream exitron splicing regulatory network.
(a) Heatmap revealed expression change of splicing factors in paired gastric cancer samples. Top panel represented the muta-

tion burden in each patient. Right panel represented the mutation burden of each splicing factor among all patients. (b) Expression
and mutation profile of splicing factors revealed functionally distinct groups of splicing factors regulating respective exitron splicing.
Kendall correlation coefficient (KCC) was calculated for splicing factor-exitron pairs. Pairs with p value <0.05 was showed. Red dot
represented splicing factor-GCSE pairs. (c) Regulatory network of putative gastric cancer drivers based on expression profile of splic-
ing factors. Differential expression of regulators at bulk-level were also measured. Gene symbols of upregulated regulators were
highlighted in red. Gene symbols of downregulated regulators were highlighted in blue. (d) Regulatory network of putative gastric
cancer drivers based on mutation profile of splicing factors. In (c) and (d), red dot represented putative cancer gene nodes. Green
dot represented splicing factor nodes. Gold line represented active regulation for respective pairs (KCC >0.5). Blue line represented
negative regulation for respective pairs (KCC >-0.5). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Exitron-derived neoantigen peptides expressed in
gastric cancer
Aberrant splicing not only produce functional tran-
scripts with driver effect but also non-functional tran-
scripts with passenger effect. These neopeptides
constituted of a large pool for tumor neoantigens.6 On
the one hand, neoantigens could be used to predict
immunotherapy response in various cancer types.40 On
the other hand, neopeptides could be developed as can-
cer-specific vaccination targets.41 In the present study,
we found that majority of GCSEs were transcriptional
noise, which could be a neopeptide pool to improve
diagnosis and treatment strategies in gastric cancer.
Therefore, we investigated the immunogenicity and
clinical applicability of gastric cancer exitrons. Immune
composition for all patients were estimated by deconvo-
lution algorithm.30 Majority of infiltrated immune com-
ponents are M2 macrophages and resting CD4+

memory T cells (Figure 7a). Frameshift transcripts have
much higher propensity of immunogenicity than
inframe transcripts. Following ScanNeo27 neoantigen
prediction, most predicted neopeptides were derived
from frameshift GCSEs. GCSEs-derived neoantigen
burden was then calculated. The burden of GCSEs-
derived neoantigens had strong positive correlation
with regulatory T cells, follicular T helper cells, M0
macrophages and negative correlation with plasma cells
and eosinophils (Figure 7b). These results suggested a
dormant microenvironment may counteract increasing
immunogenicity in gastric cancer.

To validate the expression of predicted neoantigens,
whole proteome mass spectrometry data of 77 samples
from the Clinical Proteomic Tumor Analysis Consor-
tium (CPTAC) was analyzed. Six CPTAC-confirmed
peptides expressed in 10 patients (Table 3). One peptide
recurrently expressed in pt15, pt25, pt26, pt45
(Figure 7c), and one peptide recurrently expressed in
pt49 and pt57. Due to lack of immunopeptidomics data,
www.thelancet.com Vol 84 October, 2022



Figure 7. Immunogenicity and diagnostic potential of GCSEs.
(a) Estimated immune composition using deconvolution algorithm CIBERSORT. (b) Spearman correlation between predicted

GCSEs-derived neoantigen burden and proportion of different immune component. Asterisk represented significant correlation
(p< 0.05). p-value (Spearman correlation test). (c) Expression of neoantigen peptides TPNSTGEEVPVQR derived from GPBAR1 frame-
shift exitron splicing was confirmed by proteome mass spectrometry. (d) Expression difference of immune checkpoint molecules. p-
value (Wilcoxon signed rank test). (e) Exitron-related biomarkers with response of immune checkpoint inhibitor. p-value (Wilcoxon
signed rank test).

Peptide Search Gene Genome Position Patient

TPNSTGEEVPVQR GPBAR1 chr2:218262749-218263529 pt15

TPNSTGEEVPVQR GPBAR1 chr2:218262749-218263529 pt25

TPNSTGEEVPVQR GPBAR1 chr2:218262749-218263529 pt26

QGDGEQSAGGGPGR FOXQ1 chr6:1312917-1312980 pt29

EEAAAGEHAGLMVTGGR APOBR chr16:28497455-28497799 pt33

TPNSTGEEVPVQR GPBAR1 chr2:218262749-218263529 pt45

PGSNGNPGPPPAGNTGAPGS COL3A1 chr2:189004001-189004036 pt49

PGSNGNPGPPPAGNTGAPGS COL3A1 chr2:189004001-189004036 pt57

QAGECLTVLPDGAACR ATP10A chr15:25679498-25679598 pt59

SVEMGSVNEAYR IGFN1 chr1:201210343-201210450 pt74

Table 3: Validate the expression of exitron-derived neoantigen peptides in CPTAC gastric cancer dataset.
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we were unable to validate whether exitron-derived neo-
antigens could be presented to major histocompatibility
complex.

The expression level of immune checkpoint mole-
cules was considered one of the indications for immune
checkpoint inhibitor therapy.42 We compared the
www.thelancet.com Vol 84 October, 2022
expression of 16 literature-curated immune checkpoint
molecules between high and low neoantigen load
patients. The expression of PD-1, Siglec1, Siglec2,
Siglec3 and Siglec7 was significantly higher in high neo-
antigen load group (Figure 7d). It is possible that
patients with higher GCSE-derived neoantigen load
15
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have better response for immune checkpoint blockade.
Mutation-derived neoantigen burden is a valuable bio-
marker for immune checkpoint inhibitor treatment
response.40 Recently, growing evidence showed that
nonsense-mediated mRNA decay (NMD) could repress
expression of neoantigens in cancer. NMD-escape var-
iants were associated with clinical benefit to immune
checkpoint inhibitors and increased anti-tumor
immunogenicity.31,43 Therefore, we tested if different
exitron biomarkers could distinguish responders from
nonresponders in Kim’s cohort.11 Unfortunately, GCSE
load, frameshift GCSEs, neoantigen burden and NMD-
escaping neoantigen burden did not have statistical sig-
nificance (Figure 7e).
Discussion
Exitron splicing load in gastric cancer cohort ranks 3rd
among all the other cancers.9 But characteristics and
function of gastric cancer exitrons remains poorly
understood. In the present study, we illustrated a com-
prehensive multidimensional landscape of gastric can-
cer exitrons in a large population.

Exitrons were aberrantly spliced in gastric cancer.
Gastric cancer-specific exitron was significantly
increased in male, elderly (� 65-year-old), stage IV and
intestinal type patients. Increased GCSE load was
related to poor prognosis. Functional assay demon-
strated that GCSEs affected epithelial-mesenchymal
transition (EMT), mitotic spindle and downregulated
UV response. Epithelial-mesenchymal transition (EMT)
was one of the most important mechanisms for epithe-
lial-origin tumorigenesis.44 We demonstrated that pref-
erential enrichment of exitrons in epithelial-related
genes and pathways is a unique feature in gastric can-
cer. From one aspect, these genes usually contain a
large exon, in which exitrons are more likely to be found
as previously described.7 From another aspect, specific
enrichment represents the unique function of exitrons
and probably reflects an undiscovered mechanism
involving in gastric cancer pathology. Tissue-specific
analysis and pathogenic prediction of GCSEs were per-
formed to validate a confident subset of pathogenic gas-
tric cancer exitrons. Genes with pathogenic exitron
splicing uniquely enriched in additional cancer-associ-
ated pathways including p53, TNFa-NFkB, estrogen
response and interferon a response pathways, together
suggesting that pathogenic exitrons were likely to con-
tribute to oncogenic process of gastric cancer by affect-
ing respective cancer pathways.

Exitron shows mutual exclusivity with mutations at
individual, gene and protein level. We demonstrated
that exitrons can have unique function or complemen-
tary function with tumor driver genes. A prognostic exi-
tron cross validation was performed to identify
compensatory or synergistic exitrons against tumor
driver gene mutations. One candidate gene and its
exitrons has drawn our attention. SRRM2 and SON are
indispensable paired components for nuclear speckle
formation.39 Recent study demonstrated that p53-medi-
ated nuclear speckle association regulated the RNA
amount of p53 targets for downstream transcription tun-
ing.38 These studies imply that SRRM2 could be of par-
ticular importance in oncogenesis. In the present study,
we identified compensatory exitron SRRM2 D1119-1147
and synergistic exitron SRRM2 D516-603 against TP53
mutation. SRRM2 D1119-1147 is located at C-terminal
disordered region. SRRM2 D516-603 overlaps with tran-
scription regulator domain. A previous report showed
that nuclear speckle formation was disrupted with
expression of C-terminal truncated SRRM2 where N ter-
minus remained intact.39 Our findings suggested
SRRM2 D516-603 and SRRM2 D1119-1147 could have
distinct functional role in p53-dependent manner. More
interestingly, splicing of SRRM2 D516-603 could pre-
dict prognosis among all patients. Hence, splicing of
SRRM2 exitrons is likely to be a unexplored mechanism
in oncogenic process of gastric cancer.

To understand if upstream regulatory factors elicit
the downstream effect caused by aberrant exitron splic-
ing, we established a splicing regulatory network to
identify splicing factors targeting respective exitrons.
Because the expression change of only a few splicing
factors could be detected at bulk level (Figure S2D),
individual paired test was necessary to increase the sen-
sitivity for detection. We found that exitron splicing reg-
ulation was target-centered rather than regulator-
centered. Moreover, we listed splicing regulator candi-
dates for tumor driver gene exitrons. These findings
should provide useful information for experimental
screening and validation in the future.

Immune checkpoint inhibitor is a promising treat-
ment for gastric cancer. However, clinical benefit could
only be observed in specific patients.45 Discovery of bio-
markers to predict checkpoint inhibitor response is in
urgent need. Currently, microsatellite status, EB virus
infection, tumor mutation burden, neoantigen burden,
immune gene signatures, plasma cells are demon-
strated to be predictive biomarkers in solid tumors.11,46-
48 In the present study, significant increase of immune
checkpoints (PD-1, Siglec1, Siglec2, Siglec3 and Siglec7)
was detected in high GCSE-derived neoantigen load
patients. Intriguingly, high GCSE-derived neoantigen
load was found to be correlated with Siglecs expression.
We do not know if exitrons have any interactions with
Siglecs or Siglecs-targeted therapy. Further investiga-
tion may provide more evidence. Despite expression dif-
ference of PD-1 was detected, we failed to distinguish
responders from nonresponders using any of GCSEs-
related biomarkers. A possible explanation was that data
collected from Kim’s cohort was small sample size and
the transcriptome sequencing is at a relatively low reso-
lution. These could lead to insufficient calling of aber-
rant splicing events. Previously, a significant association
www.thelancet.com Vol 84 October, 2022
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between exitron-derived neoantigen burden and clinical
benefit could only be observed in clear cell renal cell car-
cinoma but not in melanoma.9 Therefore, we were
unable to draw any conclusion so far. The predictive
value of exitrons in gastric cancer remains elusive and a
larger, better-designed, high-resolution study is needed.

The present study has several limitations. First, func-
tions of most exitron-spliced genes in cancer are over-
looked. Considering a large proportion of exitron
splicing might be transcriptional noise, it will be a chal-
lenge to screen and validate cancer driver genes from
this gene set. Moreover, the present study is an in-silico
analysis. Therefore, experimental screening and valida-
tion is necessary to uncover the relevant mechanism.
Second, it is better to identify exitrons using RNA-
based, full-length sequencing strategy due to potential
artifacts found recently.49 But this technique is not eas-
ily performed. Third, most samples in CPTAC gastric
cancer cohort are derived from diffuse-type early-onset
gastric cancer patients. Considering that exitron splic-
ing load is much higher in intestinal patients, the selec-
tion bias in this cohort will underrepresent the diversity
and amount of exitron-derived neoantigens.

Taken together, we illustrated a multidimensional
comprehensive landscape of gastric cancer exitrons.
GCSEs splicing had functional impact on oncogenic
process and clinical importance. Pathogenic gastric can-
cer exitrons demonstrated unique function and epithe-
lial function preference. More importantly, we
identified complementary GCSEs against TP53 muta-
tions and revealed potential targets for previously undis-
covered oncogenic mechanism in gastric cancer.
Splicing network was also established to illustrate
upstream regulatory candidates eliciting downstream
effect via exitron splicing. Additionally, the immunoge-
nicity of GCSEs-derived neoantigens was validated by
MS. GCSEs-derived neoantigen load could distinguish
patients with different expression of PD-1 and Siglecs.
But GCSEs-related biomarkers failed to predict check-
point blockade response, possibly due to insufficient
sequencing depth. A large-scale genetic screening and
functional validation will be necessary to provide more
solid evidence and support our findings.
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