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Respiratory diseases adversely affect infants and are the focus of efforts to develop
vaccinations and other modalities to prevent disease. The infant immune system differs
from that of older children and adults in many ways that are as yet ill understood. We have
used a C57BL/6 mouse model of infection with a laboratory- adapted strain of influenza
(PR8) to delineate the importance of the cytokine IL-6 in the innate response to primary
infection and in the development of protective immunity in adult mice. Herein, we used this
same model in infant (14 days of age) mice to determine the effect of IL-6 deficiency. Infant
wild type mice are more susceptible than older mice to infection, similar to the findings in
humans. IL-6 is expressed in the lung in the early response to PR8 infection. While
intramuscular immunization does not protect against lethal challenge, intranasal
administration of heat inactivated virus is protective and correlates with expression of
IL-6 in the lung, activation of lung CD8 cells, and development of an influenza-specific
antibody response. In IL-6 deficient mice, this response is abrogated, and deficient mice
are not protected against lethal challenge. These studies support the importance of the
role of the tissue environment in infant immunity, and further suggest that IL-6 may be
helpful in the generation of protective immune responses in infants.
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INTRODUCTION

Respiratory tract inflammatory and infectious disease in infant children represents a significant
burden to the healthcare system (1, 2). A particular example is influenza virus infection, for which
there is evidence of increased incidence of disease severity in infants, as compared to adults in
humans and animal models (3, 4). Classic theory suggests that adaptive immunity, predominantly
the T cell immune response, is altered in infants in order to support self-tolerance, maternal
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tolerance, and tolerance to new developmental or environmental
antigen (5–7). More recent thinking about infant immunity
considers the possibility of distinct populations of T cells
present in the infant, but not in the adult, that display a
“tolerance” phenotype (8). Alternative models suggest that T
cells in neonates/infants are not inherently tolerant, but that
tissue specific signals can affect T cell activation and effector
function by limiting or supporting the access to productive
antigenic signals (9–17).

The role of the tissue environment (independently of the
immune cells) in which specific immune responses occur could
also be an important factor that affects the immune response in
neonates/infants (10, 18). Specifically, for influenza virus and
other respiratory infections, the epithelium of the respiratory
tract provides a unique environment that can tune adaptive
immune responses. Lung epithelial cells are a major source of
type I IFN which plays a critical role in antiviral responses (19).
In addition, lung epithelial cells can produce a variety of
inflammatory cytokines (e.g., IL-6) that can influence the
course of T cell responses (19). Lung epithelial cells in infants
differ from those in adults in humans (20–23) and animals (24).
The potential effect of lung epithelial cells in the immune
responses of infants is a recent area of inquiry, and could be a
significant determining factor in their apparent altered immune
response during influenza virus infection.

Although intramuscular administration of a polyvalent
formulation of chemically inactivated or disrupted influenza virus
is the most common type of vaccine for seasonal influenza both in
adults and children (25), intranasal administration of a live
attenuated influenza virus (LAIV) in the respiratory tract is also
utilized as a method of vaccination (26). However, this formulation
is restricted to children more than 2 years of age and adults (27, 28)
because of reports of increased risk of reactive airway disease (29,
30) and increased concern over the presence of underlying asthma
in young vaccine recipients (31, 32). The factors underlying the
relatively lower effectiveness of recent intranasal vaccination with
live attenuated virus compared to intramuscular administration of
inactivated virus in some flu seasons (33–35) remain incompletely
understood. Together, these issues elevate the question of whether
there might be novel specific mechanisms or alternative approaches
to enhance influenza vaccination in the very young. Similar to the
response to respiratory virus infection, lung epithelium could also
play a key role in determining the type and strength of the immune
response that intranasal immunizations can trigger.

Interleukin 6 (IL-6) is a member of a family of cytokines that
play an important role in both innate and adaptive immune
responses (36). In addition, IL-6 is important in the processes of
tissue regeneration and inhibition of apoptosis (37). IL-6 is
produced by innate immune cells such macrophages, but it is
also produced by a variety of cell types (e.g. epithelial cells,
endothelial cells, astrocytes) upon exposure to insults (36). For
example, we and others have shown that IL-6 is produced by
lung epithelial cells in response to viral infection or allergens (38,
39). In adult mice, IL-6 can enhance T-cell mediated antibody
response against i.m. influenza immunization (40) and there is
evidence supporting the importance of IL-6 in the early response
Frontiers in Immunology | www.frontiersin.org 2
to influenza infection (41). However, the specific importance of
IL-6 in infant immunity to influenza is less clear (42).

Here, we have performed gene expression profiling studies
comparing lung epithelial cells from infant and adult mice and
the results have revealed a compromised expression of IL-6 and
related signaling pathways in infant lung epithelial cells. Using a
heat-inactivated influenza virus, as a surrogate for current
attenuated virus formulations, we show that i.m. administration
in infant mice does not provide protection, while intranasal
administration does. However, such protection induced by i.n.
immunization is dependent on IL-6. Thus, these studies underline
the relevance of the tissue environment for the efficacy of
vaccinations in infants, and they bring to light potential
mechanisms related to differences in infant and adult lung
epithelium that could influence the efficacy of immunizations.
Our results could be relevant for future improvement of vaccines
for young children.
MATERIAL AND METHODS

Mice
C57BL/6J (wild type, WT obtained from Jackson Laboratory) or
IL-6 KO mice (43) were housed under specific pathogen free,
AAALAC-approved conditions using a 12-h light cycle and were
given food (normal Chow) and water ad libitum. IL-6 KO mice
used in these studies were backcrossed over 12 generation with
C57Bl/6J. Females of both strains and 8-24 weeks of age mated
freely with same strain males and littered without interference.
Thirteen to fourteen days after birth, while still nursing, mothers
and infant mice moved to a biosafety room, where they
acclimated for 12–24 h before infection or immunization of
the pups.

Influenza Virus Infections and
Immunizations
These studies utilized Puerto Rico A/PR/8/34 H1N1 influenza A
(PR8) (41). Intranasal and intramuscular immunizations utilized
heat inactivated PR8 influenza virus (iPR8). Inactivation was
performed by incubation at 56 degrees for 30 min. This method
of inactivation allows production of a virus that enters cells, since
it does not fully denature the HA protein of the virus, but which
does not replicate since the virus polymerase is made inactive at
this and lower temperatures (44, 45). iPR8 (5 × 105 EIU) in 15–
20 or 50 µl PBS was used for intranasal or intramuscular
immunizations, respectively. The average weight was 5.9+/−
0.15 g at 14–16 days of life and this was not statistically
different from any experimental group (Supplementary Figure
S1). In two experimental cohorts, mice were euthanized three
weeks after immunization to collect tissues for in vitro
examination of the immune response to immunization.

For lethal challenge in juvenile mice (day 35–48 of life) we
used 6 × 103 EIU PR8 given intranasally in 50 µl of PBS. For the
batch of PR8 virus used in these studies, 104 EIU corresponded to
2 LD50 when initially tested in adult mice (8–10 weeks of
age). For juvenile mice between 30–45 days of age, we found
October 2020 | Volume 11 | Article 568978

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Bonney et al. Infant Immunization and IL-6
6 x 103 EIU PR8, could be equivalent to the 2 LD50 in adult mice
(Supplementary Table I). Female mice weighed 16±1gram and
males weighed 20±1gram at the time of challenge. Mice
underwent inhalant anesthesia (1.5 L/min O2, 2% isoflurane) in
a chamber connected to an isoflurane vaporizer to receive
intranasal immunizations or infections with live virus. Infected
mice were weighed every 24–48 h. Mice reaching below 70% of
starting weight were euthanized consistent with stipulations of our
animal use protocol (University of Vermont IACUC# 13-029).
Therefore “survival” in these studies indicates mice who did not
fall below this threshold. Though males of each group at challenge
were heavier than same strain females, the weights of WT and
IL6KO females and those of WT and IL6KO males were
comparable (Supplementary Figure S2). To account for male
and female weight differences, males were challenged with higher
doses. Supplementary Figure S3 shows a representative sample of
the weight of WT females who were challenged with virus.

Determination of Influenza Viral Load in
Tissues
Lungs from assayed mice were freshly harvested and frozen in
liquid nitrogen. RNA was isolated from whole lung tissue
homogenized in TRIzol reagent (Invitrogen Life Technologies).
cDNA was synthesized using iScript cDNA synthesis kit (Bio-
Rad Laboratories), using the manufacturer’s protocol. Viral loads
in harvested whole lungs were determined by real-time RT-PCR
for the PR8 viral acid polymerase (PA) gene by comparison to a
standard titration of viral PA copies run on the same PCR assay,
with 20ng of cDNA used per reaction. The following primers and
probe were used to amplify and quantitate the PR8 PA gene:
forward primer, 5′-CGGTCCAAATTCCTGCTGA-3′; reverse
primer, 5′- CATTGGGTTCCTTCCATCCA-3′; probe, 5′-6-
FAM-CCAAGTCATGAAGGAGAGGGAATACCGCT-3′
(Integrated DNA Technologies) (41).

Cytokine Gene Expression
In alternate RNA isolation protocols, the Qiagen RNeasy Mini kit
(PN 74104) was utilized as recommended by the manufacturer.
cDNA was synthesized as above. Relative mRNA levels were
determined by qRT-PCR using Assays–on–Demand TaqMan Gene
Expression Assays (FAM-MGB, ThermoFisher Scientific https://
www.thermofisher.com) for IL-6(Mm00446190), CCL2
(Mm00441242), gIFN(Mm01168134), IL-10(Mm01288386), TNF
(Mm00443258), TGFB1 (Mm01337605), and Beta-2 microglobulin
(Mm00437762). Values reported are those obtained after
normalization to b2–microglobulin and analyzed by the
comparative delta CT method. In addition, serum cytokines were
quantified using a Luminex ® xMAP®multiplex platform, combined
with a customized Milliplex™ mouse chemokine/cytokine panel
from Millipore™.

Analysis of Anti-Influenza Virus Specific
Antibodies in Serum by ELISA
Influenza-specific antibody levels in serum samples were
determined by ELISA, as previously described (40). ELISA plates
were coated with inactive influenza PR8 virus (107 EIU/ml) in
Frontiers in Immunology | www.frontiersin.org 3
sodium bicarbonate buffer, washed, blocked (1% BSA/PBS solution)
and incubated with 2-fold serial dilutions of serum overnight. Plates
were washed and incubated with HRP-conjugated goat anti-mouse
total IgG (SouthernBiotech) for 45 min at room temperature. Plates
were then washed and developed using TMB Sureblue substrate and
development was stopped with TMB stop solution (ThermoFisher).
Plates were read at 450 nm in a plate reader.

Flow Cytometry Analyses of Lungs
Whole lungs harvested from immunized mice were used to prepare
single cell suspensions using the gentle MACS™ (Miltenyi Biotech)
tissue dissociation system. Red cells were removed with Geyes lysis
medium and the resulting cell suspensions were washed in Iscove’s
Modified Dulbecco’s medium with 5% FBS. Cell suspensions were
stained with antibodies to CD45 (CD45.2, clone 104, PerCP-Cy™

5.5), CD8(CD8a clone 53–6.7, Pacific Blue™) CD4 (clone GK1.5,
R-phycoerythrin) and CD44 (clone IM7 fluorescein isothiocyanate)
and were run on an LSRII (BD Biosciences). The gating scheme for
these studies is shown in Supplementary Figure S5.

Lung Epithelial Cell Gene Expression
Analysis
Four samples, each consisting of pooled epithelial cells from the
lungs of three male pups or three female pups aged 14 days (total
eight pups samples), or epithelial cells from four individual male
and four female adult (eight weeks) lungs (eight adult samples total)
were used to isolate RNA and examined by array transcriptome
profiling. Mice were euthanized by cervical dislocation. Lungs were
removed under sterile conditions into 1X PBS and cut up into very
small pieces. Tissues were transferred to MACS C-tubes (purple
tubes) for homogenization using the gentle MACS™ (Miltenyi
Biotech) tissue dissociation system. Red cells were removed by
treatment with Geye’s solution, and this was followed by
resuspension in DMEM/F12+ 5% FBS. The resulting cell
suspension was incubated in a cell culture plate at 37C degrees
and 5% CO2. Afterwards, nonadherent epithelial cells were
removed by slowly rocking the plate back and forth and gently
removing the supernatant. This was centrifuged, resuspended and
washed in MACS™ buffer and then incubated with anti-CD45
(Miltenyi) beads to remove CD45 + cells by passing the incubated
solution on a magnetized LS column (Miltenyi). Purity was checked
by flow cytometry for CD45 (less than 5 %) and histochemical
identification of keratin + cells. Transcriptome profiling was done
using the Affymextrix GeneChip system (Mouse Gene 2.0 ST
Array). Chip quality was verified, and scan data was analyzed
using RMA (46). Analysis of array data was performed using
Partek Genomics Suite® 6.6. Beta Analysis. We report
comparisons between groups using the number of probe sets that
pass an FDR of 0.05, or a binary filter (p<0.05 and 2x fold change).

Functional Analysis
We used GSEA (Gene Set Enrichment Analysis) and pathway
analysis, an approach that offers an unbiased global search for
genes that are coordinately regulated in predefined pathways (47)
rather than interrogating expression differences of single genes.
Gene set analysis was performed using the GSEA software (48)
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version 4.0.3 obtained from https://www.gsea-msigdb.org/gsea/
downloads.jsp. The gene sets database was compiled from the
Kyoto Encyclopedia of Genes and Genomes (KEGG) database
http://www.kegg.jp/ (47). The KEGG gene sets database contains
210 mouse pathways that include metabolism, genetic information
processing, environmental information processing, cellular
processes, and human diseases. One hundred eight-eight gene sets
passed the gene set size filter criteria (min, 10; max, 500). P values
for the gene sets were computed by permuting the gene sets 1,000
times in this study.

Additional Statistical Analysis
Viral load, cytokine levels, and antibody level were compared using
one-way ANOVA or nonparametric analysis as appropriate. Due to
small numbers, most normality testing used the Shapiro-Wilk test.
Survival analysis with threshold being weight below 70% of starting
(point at which we were compelled to euthanize mice) was
performed using the log-rank (Mantel-Cox) test. Data shown
represents survival analysis of combined data of percentage of
initial weight over time from challenge from over 8 cohorts of
mice that received immunization and or challenge as indicated.
Means± SEM or Median with range are reported, depending on the
hypothesis test used. For hypothesis testing, significance was set
at p<0.05.
RESULTS

High Mortality to Sublethal Dose of
Influenza Virus in Infant Mice
Similar to humans, infection with a sublethal dose of influenza virus
in adult mice leads through a period of sickness during the peak of
Frontiers in Immunology | www.frontiersin.org 4
virus replication, and eventual recovery upon virus clearance from
the lung. Several lines of evidence suggest that children less than five
years of age are more susceptible to seasonal influenza virus
infection (3, 49) and this led us to first investigate the age-related
susceptibility of infant mice to influenza. We performed viral
infection in mice 10–44 days old with different doses of PR8
influenza virus. Because the size of the lungs is determined by the
body size of the mouse, we used different doses to normalize by
weight. As we have shown (41), nearly all young adult (~5 weeks of
age) mice survived infection with a sublethal dose of influenza
(Figure 1 and Supplementary Table 1). When we infected 24-day-
old mice with same viral dose/weight ratio, we observed a small
fraction of mortality (Figure 1 and Supplementary Table 1). In
contrast, infection of 10 day or 14–16-day-old mice with a
comparative viral dose/weight ratio caused ~75% mortality
(Figure 1 and Supplementary Table 1). Thus, when corrected for
body size, infants are highly susceptible to an otherwise sublethal
dose of PR8 virus infection.

Intranasal, but Not Intramuscular,
Immunization With Inactive Influenza Virus
Provides Protection in Infant Mice
Because very young children, like infant mice examined above,
are more susceptible to death with influenza virus, there has been
pressure to identify the most appropriate and efficacious way to
immunize them against influenza. However, existing practical,
clinical, and biologic limitations on the type of influenza vaccine
that is currently provided to very young children make this issue
a subject of intense investigation. We therefore used our mouse
model above to determine a route and format of immunization
that could protect infant mice against lethal infection. Because
most children only receive an intramuscular injection of
influenza vaccine, often with minor benefit (50), we compared
FIGURE 1 | Age-related susceptibility to a sublethal dose of PR8 influenza virus. The 10 days-old mice group (n=18) received 140-200 EIU (~30 EIU per gram of
weight) of live PR8 influenza virus, the 15 days-old mice group (n=23) received 200 EIU (~30 EIU per gram of weight), the 25 days-old mice group (n=7) received
300–900 EIU (~30 EIU per gram of weight), the 35 days-old mice group (n=6) received 3000 EIU (~ 200 EIU per gram of weight). Survival was followed. Solid lines,
older mice. Dotted lines, infant mice. p value, comparison of curves for day 15 and 35 by Mantel-Cox test. Analysis is of total data obtained from 12 independent
cohorts of mice.
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both intramuscular (i.m.) and intra-nasal (i.n.) modes of
vaccination. Two-week-old mice were immunized with heat-
inactivated PR8 virus (5 × 105 EIU/mouse) through i.m. or i.n.
administration. As a control, we also included a group of infant
mice that received no immunization. Three weeks post-
immunization, mice were challenged with a lethal dose of
influenza PR8 virus. The mice were observed for weight loss
and clinical signs of severe illness as parameters to determine
mortality. Mortality in mice immunized by i.m. administration
was comparable to the mortality of mice that received no
immunization (Figure 2), indicating that i.m. immunization
does not provide protection from a lethal dose of PR8 virus. In
contrast, relative to i.m. immunized and unimmunized mice,
those mice immunized through i.n. administration of the same
inactive PR8 influenza virus have better survival to the infection
with the lethal dose of influenza virus (Figure 2). Thus, i.n.
administration of the inactive virus provides superior protection
in infant mice to influenza virus infection.
Gene Expression Profile Analysis Reveals
the Attenuation of IL-6 Gene Expression in
Lung Epithelial Cells for Infant Relative to
Adult Mice
The increased protection obtained through an intranasal
administration of iPR8 relative to the lack of protection with
the intramuscular administration suggests that there is some
specific component in the lung which supports the immune
response. In addition, the fact that infants are more susceptible
than adult mice to primary influenza infection (Figure 1),
suggested that there may be tissue specific differences, the
adaptive immune response notwithstanding, that are critical
for resolution of infection in infant as compared to older mice.
Lung epithelial cells are capable of producing a number of
cytokines in response to different insults (e.g. viral infection)
Frontiers in Immunology | www.frontiersin.org 5
(19). To investigate the presence of potential underlining
differences between infant and adult lung epithelial cells we
performed microarray analyses. We used RNA from lung
epithelial cells freshly isolated from naïve infant (2 weeks-old
mice) and adult (8 weeks-old mice) mouse lungs. Each pup
sample (eight total, four male and four female) included pooled
lung epithelial cell RNA preparation from 3 pups, while each
adult sample (eight total, four male and four female) contained
RNA from a single adult.

Analyses of the microarray results revealed that the number
of probe sets that pass an FDR of 0.05 as being differentially
expressed in infant versus adult epithelial cells was 7,334. Those
passing a binary filter (FDR <0.05 and 2x fold change) were 724.
Gene Set Enrichment Analysis and the KEGG database were
used to determine pathways that were significantly differently
expressed in infant versus adult cells using a criterion of p-value
(<0.05) and NES (> |1.5|).

We focused further attention on those immune-related
pathways that might be relevant to influenza and that were
significantly of lower expression in infant cells as compared to
adult. Several pathways were identified. One of the pathways
markedly (p= 0.0004) lower in infants was the “cytosolic DNA-
sensing pathway” that includes host genes involved in sensing
bacteria and viruses such as members of the inflammasome
pathway, RIG pathway, type I IFN, chemokines, NF-kB and some
cytokines (Figure 3A and Supplementary Figure S6A). Within-
pathway analysis defined a cluster of genes with lower expression in
epithelial cells from the lungs of infants relative to adult mice
(Figure 3A, Supplementary Figure S6A). Interestingly, IL-6 was
the gene most significantly lower in lung epithelial cells from infants
(Figure 3A, Supplementary Figure S6A). Upon binding to its
receptor, IL-6 activates the Jak/Stat pathway leading to the
activation of Stat3 (51). The KEGG “Jak/Stat pathway” was also
substantially under-expressed in lung epithelial cells from infants
relative to adult mice (Figure 3B, Supplementary Figure S6B). This
FIGURE 2 | Intranasal immunization with heat inactivated virus protects infant mice against lethal challenge. Mice aged 14–17 days of life were immunized intranasally
(Bold Dk blue, n=16) or intramuscularly (Lt blue, n=28) with 5 × 105 EIU heat inactivated PR8 virus, or left unimmunized (dotted lines, n=13). Three weeks later, all mice
received a lethal dose of live virus. Y axis: Survival. Mantel-Cox (log-rank) analysis was used to compare unimmunized to i.n.-immunized mice. Significance was set at
p<0.05. Analysis is of total data obtained from 8 independent cohorts of mice receiving immunization and or challenge.
October 2020 | Volume 11 | Article 568978
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pathway includes genes for cytokines, cytokine receptors,
transcription factors, kinases etc. Among them, IL-6 was on the
top of the cluster of genes that were significantly lower in epithelial
cells from infants (Figure 3B, Supplementary Figure S6B). The
“Cytokine-cytokine receptor interaction” pathway, containing a
number of genes for cytokines/chemokines and their receptors,
was also observed to be significantly decreased and IL-6 together
with IL-1 were the genes with the lowest expression in infant lung
epithelial cells relative to the expression found in adult mice (Figure
3C, Supplementary Figure S6C). Two other innate immune
pathways were identified to be significantly lower in infants. One
was the “TLR signaling pathway” that includes pattern recognition
receptors responsible for detecting microbial pathogens and
generating innate immune responses including molecules such as
type I IFN, NF-kB, and inflammatory cytokines (Figure 3D,
Supplementary Figure S6D). Another was the NOD-like
receptor (NLR) signaling pathway that includes intracellular NLR
family members, cytokines regulated by this pathway, caspases, NF-
kB, and others (Figure 3E, Supplementary Figure S6E). Of interest,
among all the different genes included in these two pathways, IL-6
was identified as the gene most reduced in lung epithelial cells in
infants (Figures 3D, E, Supplementary Figures S6D, E).
Additional comparative modeling for specific cytokines known to
Frontiers in Immunology | www.frontiersin.org 6
be produced by lung epithelial cells further demonstrated selectively
reduced expression of IL-6 in infant cells (Figure 3F). We did not
observe significant differences in the expression of innate cytokine
genes well-known to be expressed in epithelial cells (e.g., IFNa,
IFNb, IL-33, IL-18, Figures 3C, F, Supplementary Figure S6C).
We have previously shown a constitutive expression of IL-6 (high
levels of IL-6 mRNA) in lung epithelial cells isolated from adult
wildtype mice under physiological conditions prior to any exposure
or insult (38), while no expression was detected in resident
leukocytes (CD45+ cells) (38). The results here show that IL-6
gene expression in lung epithelial cells is regulated during
development and its expression is attenuated in infants.

Protection of Infant Mice by Intranasal
Immunization With Inactive Influenza Virus
Requires IL-6
Administration of IL-6 has been shown to enhance the
effectiveness of a subcutaneous inactive influenza virus vaccine
in adult mice (40). IL-6 derived from lung epithelial cells could
therefore contribute to the protective effect of intranasal
vaccines. Since the basal levels of IL-6 gene expression in lung
epithelial cells in infants was significantly lower when compared
to adults, we examined whether i.n. administration of the
A B D E

F

C

FIGURE 3 | Expression profiling in epithelial cells from infant and adult mice reveals IL-6 deficiency at baseline. Four samples each consisting of pooled epithelial
cells from the lungs of three male pups or three female pups aged 14 days (total eight pups samples) or epithelial cells from four individual male and four female adult
(8 weeks) lungs (eight adult samples total) were used to isolate RNA and examined by array transcriptome profiling. Gene Set Enrichment Analysis (eight total pools
per group) revealed significant differences in expression in pathways relevant to innate immunity. (A–E) Shown are heat maps for the most highly differentially
expressed genes within in the various pathways. Red-up regulated, blue down regulated. Red Arrows: IL-6. P values for the gene sets were computed by permuting
the gene sets 1,000 times. (F) Transformed RMA data for specific genes in infant versus adult epithelial cell pools. Each symbol refers to a pool of 3 mice. FDR, fold
discovery rate (reflecting comparison of groups of pools with modification for multiple comparison testing as part of the array analysis) was calculated using Partek
Suites Genomics® 6.6 Beta Analysis.
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inactive influenza virus vaccine could upregulate IL-6 expression.
Two-week-old mice were administered with an i.n. dose of
inactive PR8 virus and the lung was harvested 2 days post-
immunization for cytokine expression. Relative to the levels in
lung from non-immunized mice, higher levels of IL-6 expression
were present in lungs from i.n.-immunized mice (Figure 4A). In
contrast, we did not observe an increase in other cytokines, such
as TGFb, in lungs from immunized infants (Figure 4B). Thus,
i.n. administration of an inactive influenza virus selectively
induced IL-6 expression, suggesting that local production of
IL-6 in the lung could contribute to the protective effect of i.n.
administration relative to i.m. administration.

We next investigated the contribution of IL-6 to the protective
effect of i.n. immunization with inactive influenza. IL-6-deficient
infants (2 weeks-old) were i.n.-immunized with inactive PR8 virus
as described above for wildtype mice, or mice were left with no
immunization. Three weeks post-immunization, both immunized
and non-immunized mice were challenged with a lethal dose of
PR8 virus. Intranasal immunization in IL-6-deficient mice resulted
in mortality similar to that observed in unimmunized mice
(Figures 4C, D) with more than 50% of mice dying by 10 days
after challenge. This was true for both females (Figure 4C) and
males (Figure 4D). In contrast to WT female mice (Figure 2) and
WT male mice (Figure 4D), i.n. administration of inactive PR8
fails to provide protection in IL-6 KO mice, suggesting that the
Frontiers in Immunology | www.frontiersin.org 7
success of an i.n. immunization with inactive virus relies
significantly on IL-6 production in the lung.

Lack of IL-6 Does Not Cause an Exuberant
Systemic Immune Response to Influenza
Virus Infection
The results above show that i.n.-immunized IL-6 KO infants
experience significant mortality in response to a lethal dose of
PR8 influenza virus, while immunizedWT infants are significantly
protected. The ultimate increased mortality in IL-6-defficient mice
could be due to an early-post-challenge exuberant and
dysregulated innate response, leading to systemic tissue damage
and death. Conversely, our findings could be explained by an
insufficiency in the adaptive and protective immune response
generated by immunization. To attempt to differentiate between
these two possibilities, we investigated the systemic and local
immune responses after viral challenge. WT and IL-6 KO mice
were intranasally immunized with an inactive PR8 virus as
described above. Three weeks post-immunization, mice were
infected with a lethal dose of PR8 virus and lungs and serum
were harvested 6 days post-infection. Lung viral loads in WT and
IL6KO mice were similar (Supplementary Figure S4), suggesting
that there were not significant differences in the initial ability to
undergo infectious challenge. The levels of soluble ICAM in
serum, a marker of systemic inflammatory response, endothelial
A B

DC

FIGURE 4 | IL-6 is necessary for protective response to an i.n. administration of heat inactivated influenza virus. (A, B): On day 16 of life mice received 5 × 105 EIU
of heat-inactivated virus intranasally (Dk blue) or not (Lt blue). At 2 days after immunization, lungs were harvested and whole lung was used to extract RNA that was
later assayed for RNA expression of IL-6 (A) and for TGFb (B) by QPCR. Each symbol represents one mouse. Shown is fold-change relative to unimmunized mice in
a single experiment. The t-test was used to test for significant differences between groups. (C, D): Mice aged 14–17 days of life were i.n.-immunized (bold) with 5 ×
105 EIU heat inactivated virus or left unimmunized (dashed). Three weeks later, all mice received a lethal dose of live virus. Y Axis, survival. X axis, day post challenge.
(C) IL-6KO Female mice; i.n.-immunized, n = 11; unimmunized, n = 22. (D) Male mice; IL-6KO (red) i.n.-immunized, n = 16; unimmunized, n = 10. WT males (blue)
i.n. immunized n = 11, unimmunized, n = 8). Shown is Mantel-Cox (log-rank) analysis of total data using % initial weight as noted in methods from 5 independent
cohorts of mice receiving immunization and or challenge. Significance was set at p < 0.05.
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cell activation and acute respiratory distress (52, 53), were
comparable between WT and IL-6 KO mice (Figure 5A). In
addition, there was no difference in weight loss between WT and
IL-6 KOmice at this early time point of the infection (Figure 5B).
Since it has been reported that IL-6 deficiency could affect
macrophage recruitment by affecting chemokine expression (54),
we examined CCL2, important for monocyte trafficking, but no
difference was found between WT and IL-6 KOmice (Figure 5C).
Further, analysis of cytokine expression in the lungs revealed no
difference in inflammatory markers such TNF (Figure 5D).
However, the analysis of IFNg, a product of the adaptive
immune response (CD4 and CD8 T cells), showed a trend
toward reduced expression in immunized IL-6 KO mice after
the lethal infection with influenza virus (Figure 5E). Thus, these
results suggest that the death of immunized IL-6 KO infants in
response to influenza virus is not caused by an enhanced early
pathogenic and dysregulated innate immune response, but they
instead suggest an impaired memory T cell response.
IL-6 Is Required for Intranasal
Immunization With Inactive Influenza Virus
to Sustain Memory T Cell Response in
Infant Mice
To investigate whether, in infants, IL-6 is required for an
intranasal vaccine to trigger an efficient adaptive memory
Frontiers in Immunology | www.frontiersin.org 8
immune response, 2-week-old WT and IL-6 KO mice were
immunized intranasally with inactive influenza virus as
described above. Three weeks post-immunization, lungs from
immunized mice were harvested and processed, and different T
cell populations in lung cell homogenate were examined by flow
cytometry analysis. Leukocytes were first gated from other cell
populations in the lung using CD45 as a pan leukocyte marker
(Supplementary Figure S5). We examined the presence of CD8
and CD4 cells within the CD45 cell population. No significant
difference in the percentage of CD8 cells could be detected
between WT and IL-6 KO i.n.-immunized mice (Figure 6A).
Similarly, no significant difference in the presence of CD4 cells
was found between WT and IL-6 KO mice (Figure 6B).
However, when we examined the presence of memory CD8
cells using CD44high as marker, the frequency of memory cells
was markedly reduced in lungs from immunized IL-6 KO infants
relative to WT infants (Figure 6C). Similar results were obtained
for CD4 cells. The frequency of CD4 CD44high cells was
significantly lower in IL-6 KO infants relative to WT mice
(Figure 6D). Thus, during intranasal influenza immunization
of infants, IL-6 does not seem to promote the recruitment of
lymphocytes, but is important in a sustained memory T
cell response.

IL-6 has been shown to promote antibody production
indirectly by acting on CD8 and CD4 T cells and supporting
their IL-21 production. IL-21 in turn acts on B cells to promote
A B

D EC

FIGURE 5 | Response to a lethal dose of influenza in i.n. immunized WT and IL-6KO mice. Mice received intranasal immunization with inactive virus on day 14 of life. Three
weeks later, mice were weighed and given a lethal dose PR8 virus. Six days after challenge mice were euthanized and tissues harvested for analysis. (A) Serum ICAM was

analyzed by Luminex™. (B) Weight of mice, 6 days post-infection. Shown is the % relative to the initial weight prior to infection. (C–E) Whole lung relative mRNA expression
for CCL2 (C), TNF (D) and IFNg (E) determined by real time RT-PCR. Values show fold induction relative to a WT. Each dot represents a mouse. One experiment is shown.
Bars indicate mean for group. Comparison utilized the t test, with significance set at p < 0.05.
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antibody production, primarily IgG (40, 55). We therefore also
examined the presence of influenza-specific IgG in the serum of
WT and IL-6 KO infants 3 weeks post-immunization. The levels
of PR8-specific IgG were reduced in immunized IL-6 KO infants
compared with WT mice (Figure 6E). Thus, during i.n.
immunization of infants, IL-6 plays an important role in
sustaining effective T and B cell adaptive memory.
DISCUSSION

Infant immunity remains an important area of focus due to
significant existing morbidity related to infectious disease.
Influenza infection remains a major challenge among
infections in children under five years of age (56). While
historically it is believed to be due to an inappropriate T/B cell
immune response, pathology and resolution of primary influenza
virus infection is not dependent on the adaptive immunity but
requires innate immunity (57). Another potential difference
between children and adults is dose of the virus to which they
are environmentally exposed relative to lung size (again,
determined by body size). However, in our studies here we
show that even when influenza viral dose is normalized to
body weight (reflecting lung size), infant mice are more
susceptible to sublethal dose than adult mice. Therefore, an
Frontiers in Immunology | www.frontiersin.org 9
increased virus dose/lung size ratio does not seem to be the
main cause for the enhanced sensitivity to influenza virus
response in infants. This disparity seems to be a developmental
issue. Here, our Microarray studies have revealed a different gene
expression profile in epithelial cells from the lungs of adult and
infant mice prior to exposure to any infection or other type
of insult.

The view that infant immune cells are inherently deficient
contrasts with the view that, given the appropriate environment
infant immune cells can behave similarly to adult (11, 13–15, 58).
While it is generally believed that the deficient response of very
young children to influenza infection is due to antigen
inexperience in T or B cells, the difference in the immune
response could also be determined by cells other than immune
cells that contribute to shape the adaptive immune response
mediated by T or B cells.

For instance, epithelial cells (as well as endothelial cells) can
produce cytokines and other factors that can modulate the type
or strength of CD4 and CD8 cell mediated immune responses.
Lung epithelial cells are the main cell target of influenza virus,
as they express high levels of sialic acid on the cell surface to
which influenza binds, subsequently enters, and replicates (19).
However, lung epithelial cells can also orchestrate the innate
anti-viral immune response. Influenza virus replication induces
expression and production of type I IFN that acts as an anti-
A B
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FIGURE 6 | Lower frequency of memory CD8 and CD4 cells in the lungs of i.n. immunized IL-6 KO mice. Mice (n = 3) received intranasal immunization with inactive
virus on day 14 of life. Three weeks later, lungs were extracted and analyzed by flow cytometry. (A) Cells were gated for CD45 first. % of CD8 cells within the CD45+
population is showed. (B) Cells were gated for CD45 first. % of CD4 cells within the CD45+ population is showed. (C) Cells were gated for CD45 first, and then for
CD8 cells. % of CD44high within CD8 cells is shown. (D) Cells were gated for CD45 first, and then for CD4 cells. % of CD44high within CD4 cells is shown. p value is
determined by t test. (E) PR8-specific IgG antibody titer in serum determined by ELISA. p value is calculated using the Mann-Whitney test, with significance set at p
< 0.05. One experiment is shown.
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viral factor (39). Furthermore, lung epithelial cells are known to
be able to produce different inflammatory cytokines (e.g. IL-33,
IL-1, IL-6) that can then have an effect on the adaptive immune
response (19). Under physiologic conditions (not during
exposure to an insult) lung epithelial cells from adult mice
express high levels of IL-6 mRNA in contrast to the relative
absence during of IL-6 expression in lung resident macrophages
(38). IL-6 production and secretion by mouse and human lung
epithelial cells is triggered during infection with influenza virus
and other viruses such coronavirus (39, 59, 60). IL-6 plays a
pivotal role in dictating the types of CD4 and CD8 cell
responses. Further, IL-6 has been shown to promote
differentiation of CD4 cells into Th2 and Tfh cells that can
then, by secreting IL-21 and IL-4, enhance isotype switching
and antibody production in B cells (40, 61, 62). In influenza
virus infection, IL-6 triggers IL-21 production by CD4 cells and
IL-21 is essential for virus antibody response (40). In addition,
we have also shown that IL-6 makes CD8 cells to become
helpers of B cells through induction of IL-21. During influenza
virus, CD8 cells in the lung but not in lymph nodes produce IL-
21 and this effect requires IL-6 (55). Thus, the difference in IL-6
production by lung epithelial cells between infant and adults
could account for the difference in T and B cell responses to
influenza virus in the lung.

In this study, our gene profile analyses revealed marked
differences the expression of immune regulators in lung
epithelial cells from infants as compared to adult mice. Our
pathway analysis has revealed IL-6 as a highly selective gene
that is lower in pre-weanling epithelial cells. Interestingly,
expression of other cytokines that play a role in antiviral
immune responses (e.g. type I IFN), regulation of the
adaptive immune response (e.g. IL-33) or the innate immune
response (e.g. IL-18) was not different between infants and
adult mice, further highlighting the potential significance of the
differential expression of IL-6 that we observed. The evidence
pointing to IL-6 expression in lung epithelial cells as being
developmentally regulated could have a major impact on the
understanding of childhood immune responses to pathogenic
influenza viruses, but also to other respiratory viruses e.g.,
those producing SARS.

Since our gene expression profiling reveals a marked
reduction (more than 3-fold lower) in the IL-6 expression in
lung epithelial cells from infants relative to adult mice, it is
possible that the lower IL-6 levels in the lungs could be
responsible for the increased susceptibility. In this regard, adult
mice lacking IL-6 or IL-6R die in response to sublethal dose of
influenza virus in part due to the reduced number of neutrophils
in the lung to mediate virus clearance (41). In addition, IL-6 can
ameliorate acute lung injury in influenza virus infection in mice
by promoting tissue repair (63). In humans, the systemic
treatment with tocilizumab, the blocking anti-IL-6R antibody
approved for treatment of rheumatoid arthritis, has also been
shown to increase the risk to respiratory virus infection (64).
Therefore, although exaggerated levels of IL-6 have been
observed in adult patients with acute respiratory distress
syndrome due to massive lung tissue damage (65, 66), IL-6
Frontiers in Immunology | www.frontiersin.org 10
also likely provides protection from infections with influenza
virus and other respiratory viruses (66).

Current influenza vaccination formulations include a live
attenuated virus given intranasally, and an inactivated virus
administered via intramuscular injection (26). Each has
variable protection, depending on the formulation, the year of
production, and the population vaccinated (27). In addition, the
live-attenuated vaccine is not approved for very young children
less than 2 years of age. Thus, this population remains at high
risk every season. Here we show that a vaccine with inactive
influenza virus provides protection to ~15 day-old mice when
administered intranasally, suggesting a potential alternative
option of vaccination for this highly susceptible population of
infant children. Interestingly, our data also show that the
protective effect of the intranasal immunization with the
inactive influenza virus in infant mice is dependent on IL-6
since it fails to provide protection in IL-6 deficient mice. In
contrast to i.n. administration, intramuscular administration of
the inactive influenza virus did not provide protection in infant
mice, stressing the importance of the intranasal route over the
intramuscular route at this dose. The induction of IL-6 by the i.n.
vaccine with the inactive virus suggested that this IL-6 may come
from lung epithelial cells, although future studies will be needed
to further demonstrate that this is the case. Using a commercially
formulated multivalent vaccine for the 2012/2013 season, it has
been reported that i.m. vaccination produced a protective
response in infant mice (67). It is possible that the mix of
influenza virus strains (H3N2 in addition to H1N1) in that
particular seasonal vaccine could trigger a stronger immune
response. However, correlating with our studies in infants, i.m.
administration of inactive influenza virus in adult mice also
induces a limited antibody response (40). The superior efficacy of
the inactive virus vaccine when administered i.n. further
reinforces the relevance of the environment where the immune
response takes place. Most approved antiviral vaccines are based
on their ability to induce antibody production. There is evidence
that LAIV may trigger some T cell mediated protection (68, 69)
although it has not been fully demonstrated. Intriguingly, here
we show a reduction in the frequency of activated CD4 and CD8
cells in the lung in immunized IL-6 deficient mice relative to WT
mice. Thus, it is possible that the lower efficacy of our inactive
influenza viral vaccine in the IL-6 deficient mice could be due to
impaired memory CD4/CD8 T cell response and the subsequent
antibody response.

This investigation posits that vaccination of the infant can
generate a protective response against lethal challenge if the
correct environment is achieved. Our studies are in keeping with
previous studies suggesting that immunization of infants against
differing antigens, depending on the right source and format can
lead to T cell activation in the relevant tissue and/or systemic
antibody production (70). The critical role played by IL-6 in
these studies when taken in context are consistent with the idea
that environment matters in the development of infant
immunity. Further understanding and the ability to harness
specific tissue environments may aid in developing strategies
for protection of the very young.
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