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Simple Summary: TGFβ1 is a growth factor that plays a major role in the remodeling process of the
heart by inducing cardiomyocytes dysfunction and apoptosis, as well as fibrosis, thereby restricting
heart function. TGFβ1 mediates its effect via the TGFβ receptor I (ALK5) and the activation of SMAD
transcription factors. But, TGFβ1 is also known as activator of phosphoinositide-3-kinase (PI3K) via
the non-SMAD signaling pathway. The aim of this study was to investigate whether PI3K is also
involved in TGFβ1–induced cardiomyocytes apoptosis and contractile dysfunction. Pharmacological
inhibition of PI3K with Ly294002 reduced TGFβ-induced apoptosis and reduced cell shortening.
Inhibition of the PI3Kγ isoform also abolished the TGFβ effect on apoptosis and cell shortening.
These data support a role for a PI3K and ALK5/SMAD pathway in TGFβ1-induced apoptosis and
impaired cell shortening, which in part appears to be PI3Kγ-dependent.

Abstract: Background: TGFβ1 is a growth factor that plays a major role in the remodeling process of
the heart by inducing cardiomyocyte dysfunction and apoptosis, as well as fibrosis thereby restricting
heart function. TGFβ1 mediates its effect via the TGFβ receptor I (ALK5) and the activation of SMAD
transcription factors, but TGFβ1 is also known as activator of phosphoinositide-3-kinase (PI3K)
via the non-SMAD signaling pathway. The aim of this study was to investigate whether PI3K is
also involved in TGFβ1–induced cardiomyocytes apoptosis and contractile dysfunction. Methods
and Results: Incubation of isolated ventricular cardiomyocytes with TGFβ1 resulted in impaired
contractile function. Pre-incubation of cells with the PI3K inhibitor Ly294002 or the ALK5 inhibitor
SB431542 attenuated the decreased cell shortening in TGFβ1–stimulated cells. Additionally, TGFβ-
induced apoptosis was significantly reduced by the PI3K inhibitor Ly294002. Administration of a
PI3Kγ-specific inhibitor AS605240 abolished the TGFβ effect on apoptosis and cell shortening. This
was also confirmed in cardiomyocytes from PI3Kγ KO mice. Induction of SMAD binding activity
and the TGFβ target gene collagen 1 could be blocked by the PI3K inhibitor Ly294002, but not by the
specific PI3Kγ inhibitor AS605240. Conclusions: TGFβ1-induced SMAD activation, cardiomyocyte
apoptosis, and impaired cell shortening are mediated via both, the ALK5 receptor and PI3K, in adult
cardiomyocytes. PI3Kγ specifically contributes to apoptosis induction and impairment of contractile
function independent of SMAD signaling.

Keywords: TGFβ1; PI3K; cardiomyocytes; apoptosis; contractile function; SMAD; ALK5

1. Introduction

The transition of compensated hypertrophy to heart failure is accompanied by an
increased expression of transforming growth factor β (TGFβ) [1,2] that contributes to
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cardiomyocyte apoptosis [3], enhanced β-adrenergic signaling [4] and contractile dysfunc-
tion [5–7], since overexpression of TGFβ in transgenic mice led to a moderate increase of
myocardial β-adrenoceptor density and increased prohypertrophic signaling [1].

TGFβ mediates its signaling by binding to a heteromeric serine/threonine kinase
receptor complex in the membrane [8,9], which is composed of the constitutive active
type II TGFβ receptor that, upon binding of TGFβ, phosphorylates type I TGFβ receptor
(ALK5) [10]. This results in activation of the canonical small other against decapentaplegic
(SMAD) signaling cascade by phosphorylation of SMAD2/SMAD3 and binding of co-
SMAD4 that translocates into the nucleus [3,11]. Besides activation of ALK5, TGFβ receptor
II also activates a non-SMAD signaling cascade including p38 mitogen-activated protein
(MAP) kinase [12], extracellular-signal-related kinase (ERK) [13,14], protein phosphatase
2A (PP2a) [15], c-Jun N-terminal kinase (JNK) [16] and PI3K [17]. The TGFβ receptor II is
constitutively associated with the regulatory subunit of PI3K, p85, [18], whereas association
of p85 with TGFβ receptor I needs activation with TGFβ [19]. Activation of PI3K can be
beneficial as well as detrimental for the heart [20]. This may depend on the stimulus used,
the involved PI3K isoform and the cell type that is affected.

PI3K belongs to a family of lipid kinases and can be divided into three classes [21–23].
Class I PI3Ks are best characterized and can be subdivided in PI3K α, β, γ, and δ. They
function as heterodimers composed of the catalytic subunit p110 (α, β, γ, δ) and an adaptor
subunit (p84/87 or p101 for PI3Kγ, as well as p85 for PI3Kα, β and δ) that mediates
binding to receptors and activation of enzymes [24]. PI3Kα and PI3Kβ are ubiquitously
expressed [25]. In contrast, PI3Kγ is essentially expressed in cardiomyocytes, hematopoietic
cells, and endothelial cells [26]. In the heart, PI3Kα mainly seems to be involved in the
control of physiologic cardiac hypertrophy [27–29], thereby acting in a cardioprotective
manner [30,31]. PI3Kγ is a stress kinase activated by various cardiac conditions [32]. PI3Kγ

is also a scaffold protein influencing the cAMP compartmentalization [33] and is implicated
in the fine tuning of cardiac contractile function [27,33–35]. Here the PI3Kγ-dependent
switch of cyclic adenosine monophosphate (cAMP) compartmentalization affects multiple
β2–AR/cAMP microdomains via protein kinase A (PKA)-mediated activation of distinct
phosphodiesterases (PDEs) [33]. This mechanism is relevant for regulating cardiac function
and and once out of balance appears to be involved in the development of heart failure.

We now wanted to analyze to what extent TGFβ stimulation affects adult cardiomy-
ocyte function and apoptosis through the classical ALK5 or the PI3K pathway and to what
extent the PI3Kγ isoform is involved in the latter.

2. Materials and Methods
2.1. Animals

Female and male wild type C57BL/6J mice (Janvier SAS, Le Genest Saint Isle, France),
PI3Kγ knock-out mice (kindly provided by the working group of Professor Emilio Hirsch,
Department of Molecular Biotechnology and Health Sciences, Center for Molecular Biotech-
nology, Torino, Italy) and wild type male Wistar rats (Janvier SAS) were used for prepara-
tion of isolation of cardiomyocytes. This study was approved by the institutional animal
care committee of the Justus-Liebig-University Giessen and was registered under the
number 668_M and 644_M.

2.2. Materials

Medium 199 was obtained from Boehringer (Mannheim, Germany) and fetal calf
serum from PAA (Linz, Austria). Crude collagenase was bought from Biochrom (Berlin,
Germany), TGFβ1 and Ly294002 from Sigma (Merck Bioscience, Darmstadt, Germany),
laminin from Roche (Mannheim, Germany), oligonucleotides were from Invitrogen (Karl-
sruhe, Germany), SB431542 from Cayman (Biomol, Hamburg, Germany) and AS605240
from Selleckchem (Biozol, Eching, Germany).
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2.3. Isolation of Murine Cardiomyocytes

Mice were anaesthetized by an inhalation of 5% isoflurane followed by the euthana-
sia with the cervical dislocation. The hearts were extracted and rinsed with 4 ◦C cold
0.9% NaCl. Thereafter, the hearts were digested with retrograde perfusion in a Langen-
dorff apparatus for 25 min containing collagenase and calcium-free buffer (in mmol/L:
10 glucose monohydrate D+, 25 HEPES, 2.5 KCl, 1.2 KH2PO4, 1.2 MgSO4 × 7 H2O, 110
NaCl) with a pH of 7.4 at 37 ◦C. Subsequently, the tissue was minced and incubated for
another five minutes in the recirculating buffer. The suspension was filtered and the car-
diomyocytes were separated from the other cells by centrifugation. To reconstruct the
physiological calcium concentration the material was resuspended with an step-wise in-
crease of calcium up to 1 mM followed by resuspension in the culture medium (in mmol/L:
2.5 CaCl2-dihydrate, 5 glucose, 10 HEPES, 4.7 KCl, 1.2 KH2PO4, 0.8 MgSO4, 118 NaCl and
1.9 Na-pyruvate). Finally, the cardiomyocytes were plated on laminin-coated (5 µg/mL)
culture dishes and incubated at 37 ◦C (5.5% CO2, 95% humidity). After 1 h, the cells were
washed with fresh culture medium and could be then stimulated. The cardiomyocytes
were treated with TGFβ1. Times of stimulation are given for the respective experiments in
the figure legends. TGFβ1 concentrations will be given in the figure legends. Untreated
samples served as a control.

2.4. Isolation of Rat Cardiomyocytes

The isolation of ventricular cardiomyocytes from 200 to 250 g male Wistar rats were
performed similar to the isolation of murine cardiomyocytes. The cells were suspended
in culture medium and subsequently plated onto preincubated culture dishes (4% fetal
calf serum in medium 199, overnight). Two hours later, the cells were washed twice
with fresh CCT medium (modified medium 199 including Earle’s salts, 2 mM l-carnitine,
5 mmol/L taurine, 100,000 IU/L penicillin, 100 mg/L streptomycin and 10 µmol/L cytosine-
β-d-arabinofuranoside (pH 7.4). On average, about 90% of the cultures were quiescent
rod-shaped cells. Subsequent to the cell washing, they were treated with 1 ng TGFβ1.
Untreated samples served as controls.

2.5. Determination of Cell Function

Cell contraction behavior was analysed at room temperature by using a cell-edge-
detection system. The cultured cardiomyocytes were stimulated by using two AgCl elec-
trodes with biphasic electrical stimuli constituted out of two equal but opposite rectangular
50 V stimuli of 0.5 ms duration. Each cell was stimulated with a voltage of 2 Hz and was
measured four times. To calculate the cell shortening of a given cell, the mean of these
measurements was used. In addition, cell lengths could be analysed by using a line camera,
recording at 500 Hz. The resulting data are presented as cell shortening normalized to
diastolic cell length (dL/L (%)).

2.6. Electrophoretic Mobility Shift Assay (EMSA)

For the extraction of nuclear extracts, isolated cardiomyocytes were homogenized
in swelling buffer (10 mM Tris–HCl, pH 7.9, 1 mM MgCl2, 10 mM KCl, 1 mM DTT).
Thereafter, the homogenates were placed on ice for one hour and nuclei were pelleted by
centrifugation at 900 rpm for ten minutes. Supernatants were used for Western blots. Pellets
were homogenized in 10 mM Tris–HCl, pH 7.9, 300 mM sucrose, 1mM DTT, 1.5 mM MgCl2,
0.3% triton X-100 and another time centrifuged as above. These pellets were resuspended
in storage buffer (10 mM HEPES, pH 7.5, 50 mM KCl, 300 mM NaCl, 1 mM EDTA, 1 mM
DTT, 1 mM PMSF, 20% glycerol) on ice for 30 min and centrifuged at 13,000 rpm, 4 ◦C, for
five minutes. For electrophoretic mobility shift assays (EMSAs) the resulting supernatants
were taken. Complementary sequences of SBE (SMAD binding elements) oligonucleotides
were hybridized. 5′-GTACAT TGTCAGTCTAGACATACT-3′ was the sequence for binding
of SMAD transcription factors [3]. In the presence of Cy3-dCTP, oligonucleotides were
incubated with terminal transferase. Using gel filtration. Unincorporated nucleotides were
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parted from fluorescence-labeled oligonucleotides. Ten µL nuclear extracts were incubated
with labeled oligonucleotides in the presence of one µg poly (dIdC) at 30 ◦C for 30 min.
The samples were run on 4% native polyacrylamide gels. Complete gels were exposed on
fluorescence imager (BioRad, Hercules, CA, USA).

2.7. Western Blot Analysis

To lyse the supernatans of the homogenized cardiomyocytes, lysis buffer [(Cell Sig-
naling, Beverly, MA, USA) containing Tris (pH 7.5) 20 mmol/L, NaCl 150 mmol/L, EDTA
1 mmol/L, sodium pyrophosphate 2.5 mmol/L, EGTA 1 mmol/L, Na3VO4 1 mmol/L,
β-glycerophosphate 1 mmol/L, Triton X-100 1%, leupeptin 1 µg/mL, supplemented with
1× Complete Protease Inhibitor Cocktail (Roche, Basel, Switzerland)] was used followed
by a 10 min centriufation step at 13,000× g. By using DC Protein Assay kit (BioRad) protein
concentration was determined. 50 µg proteins were electrophoretically separated on 10%
Bis-Tris gels. After transferring the proteins onto a nitrocellulose membrane, they were
blocked with 5% skim milk powder in TBS/1% Tween for one hour at room temperature.
Afterwards the membranes were incubated at 4 ◦C overnight with primary antibody pS-
MAD2 (Ser465/467) (Cell Signaling Technology, Frankfurt, Germany, #3108S), SMAD2
(Cell Signaling Technology, #3103S) or Vinculin (Sigma, Taufkirchen, Germany, V9131) at
4 ◦C. HRP-conjugated goat anti-rabbit IgG or goat-anti mouse IgG were used as secondary
antibody (Cell Signaling Technology) for one hour at room temperatur. Immuno-reactive
bands were detected using the SuperSignal West Femto Maximum Sensitivity Substrate
(Pierce, Rockford, IL, USA). Protein bands were quantified with Quantity One software
Version 4.6.9 (Bio-Rad Laboratories GmbH, Feldkirchen, Germany).

2.8. Real-Time RT-PCR

According to the instructions by the manufacturer, total RNA of cardiomyocytes was
extracted with Trizol (Invitrogen, Hercules, CA, USA). Reverse transcription was done for
one hour at 37 ◦C in a final volume of 10 µL using 1 µg of RNA, eight units of RNasin,
1 mol/L dNTPs, 100 ng of oligo (dT)15 and 60 units of Moloney murine leukemia virus reverse
transcriptase. Aliquots (1.5 µL) of the synthesized cDNA were used for PCR in a final volume
of 10 µL including primer pairs at 1.5 µmol/L, 1.5 mol/L MgCl2, 0.4 mol/L dNTPs, and
1 unit of Taq polymerase. For each tested gene, annealing temperature, and the number of
cycles resulting in a linear amplification range were tested. RT-PCR was run in an automated
thermal cycler. SYBR Green fluorescence was used for quantification and detected with the
Bio-Rad detection system (Bio-Rad). The calculations of the results were done according to the
2−∆∆Ct methods as described [36]. Determination of the “most stable” housekeeping genes in
real-time RT-PCR was performed by using repeated pair-wise correlation analysis of GAPDH
18sRNA, B2M, and HPRT [37] as listed in Table 1.

Table 1. Primer sequences used for real-time RT-PCR.

Gene Accession Numbers Forward Primer 5′→3′ Reverse Primer 5′→3′

B2M NM_012512 GCCGTCGTGCTTGCCATTC CTG AGG TGG GTG GAA CTG AGA C
18sRNA Qiagen QT00199374
HPRT NM_012583 CCA GCG TCG TGA TTA GTG AT CAA GTC TTT CAG TCC TGT CC

GAPDH NM_017008 TCCATGCCATCACTGCCACTC TGACCTTGCCCACAGCCTTG
SMAD7 AF042499 AGAGGCTGTGTTGCTGTG CATCGGGTATCTGGAGTAAGG

Collagen1 NM_053304 GCG AAC AAG GTG ACA GAG CCA GGA GAA CCA GCA GAG

2.9. Caspase 3/7 Assay

The kit “Caspase-Glo 3/7” (Promega, Mannheim, Germany) was used for the mea-
surement of caspase activity as recommended by the company. In brief, cardiomyocytes
were stimulated with TGFβ1 for six hours. Thereafter, a caspase-3/7 pro-luminescent
substrate was added to the cells. This led to cell lysis and caspase cleavage of the substrate.
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Using a spectrophotometer the generation of a “glow-type” luminescent signal could be
measured. The values obtained were normalised to the amount of protein per well.

2.10. Statistical Analysis

The SPSS programme (IBM SPSS Statistics 27, IBM Deutschland GmbH, Ehningen,
Germany) was used for statistical data analysis. Results are expressed as mean ± standard
error of the mean (SEM) as indicated in the figure legends. A one-way ANOVA was
applied followed by Student-Newman-Keuls post hoc test, and the Mann-Whitney-U test
to further evaluate differences between two means. Differences among multiple groups
were evaluated using a two-way analysis of variance (ANOVA) for the two factors genotype
(WT versus PI3Kγ knock-out) and treatment (with/without TGFβ1), followed by Tukey’s
post hoc test. Values of p < 0.05 were marked to be statistically significant.

3. Results
3.1. TGFβ1–Induced Apoptosis Depends on PI3K

To study the impact of PI3K on TGFβ1–induced apoptosis, adult rat cardiomyocytes
were treated with TGFβ1 and the PI3K inhibitor Ly294002. Increase of caspase 3/7 activa-
tion by TGFβ1 was reduced by the administration of Ly294002 (Figure 1).
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Figure 1. TGFβ1–induced apoptosis was determined with and without addition of the PI3K inhibitor
Ly294002 (10 µM) by caspase 3/7 activation after six hours stimulation with 1 ng/mL TGFβ1. Data
are shown as means ± SEM of 11 different rat cardiomyocytes preparations. Significance is indicated
by * p < 0.05.

3.2. Involvement of PI3K in TGFβ1-Dependent SMAD Binding Activity and TGFβ Target Genes

TGFβ1–induced apoptosis is mediated via SMAD transcription factors. To evaluate
whether PI3K is involved in enhanced SMAD binding activity under TGFβ stimulation,
electromobility shift assays were performed. Increase in SMAD binding activity could be
abolished by inhibition of PI3K with Ly294002 (Figure 2).

Analysis of two TGFβ target genes revealed an increase in expression upon TGFβ
stimulation. Whereas SMAD7 expression was not affected, collagen 1 mRNA expression
was down-regulated by the PI3K inhibitor Ly294002 (Figure 3).
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analysis. Data are shown as means ± SEM of four different rat cardiomyocytes preparations. Significance is indicated by
*** p < 0.001.
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3.3. PI3K Affected TGFβ1-Dependent Depression of Contractile Function

Isolated cardiomyocytes of adult rats responded with a decrease in cell shortening
upon TGFβ1 stimulation. Pre-incubation of the cells with Ly294002 abolished this effect
(Figure 4A). In addition, pre-incubation of cardiomyocytes with TGFβ receptor I (ALK5)
inhibitor SB431542, similarly inhibited the impairment of cardiomyocytes contractile func-
tion by TGFβ (Figure 4B) demonstrating that both PI3K and SMADs mediate contractile
dysfunction of cardiomyocytes under TGFβ stimulation.
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3.4. PI3Kγ Is Involved in TGFβ1-Dependent Depression of Contractile Function and in
TGFβ-Dependent Apoptosis Induction

Since PI3Kγ is highly expressed in cardiomyocytes, we now analyzed, if this specific
isoform contributes to TGFβ-induced contractile dysfunction. Pharmacological inhibition
of PI3Kγ by AS605240 did not affect baseline cardiomyocytes shortening but led to a
reduction of TGFβ1-dependent depression of cardiomyocytes shortening (Figure 5A). This
was validated in cardiomyocytes from PI3Kγ KO mice. Whereas WT cardiomyocytes
responded to TGFβ stimulation with a decrease in cell shortening, PI3Kγ cardiomyocytes
were not affected by TGFβ (Figure 5B). This demonstrates that PI3Kγ is involved in the
impairment of contractile function under TGFβ stimulation.
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Since PI3Kγ influences cardiomyocyte function, we wanted to know whether this iso-
form also has an influence on apoptosis. Pharmacological inhibition of PI3Kγ by AS605240
blocked TGFβ1–induced caspase 3/7 activation (Figure 6).
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3.5. PI3Kγ Action Is Independent of SMAD Activation

Further, we analysed whether the influence of the TGFβ1-dependent effects of PI3Kγ

were linked to the canonical TGFβ signalling pathway. SMAD activation demonstrated by
phosphorylation of SMAD2 revealed no inhibition of TGFβ-induced SMAD2 activation
by the use of the PI3Kγ-specific inhibitor AS605240. (Figure 7A,B). Addition of the PI3Kγ

inhibitor AS605240 did not block SMAD binding activity (Figure 7C). Also, expression of
the TGFβ target genes SMAD7 and collagen 1 were not affected by inhibition of PI3Kγ

(Figure 7D,E).
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is indicated by * p < 0.05, ** p < 0.01 and *** p < 0.001.

4. Discussion

We have identified PI3K as a further signalling molecule involved in TGFβ-mediated
decrease in cell shortening as well as apoptosis in cardiomyocytes. That TGFβ is capable of
decreasing cell shortening was demonstrated in adult rat cardiomyocytes stimulated with
AngII [6], which induces activation and release of TGFβ [38]. Addition of neutralizing
TGFβ antibodies into the culture medium of AngII-stimulated cardiomyocytes improved
their function [6]. Banerjee et al. [39] also demonstrated that TGFβ decreased contractile
function in embryonic cardiomyocytes of mice in a SMAD-dependent manner. Isolated
cardiomyocytes of TGFβ-overexpressing mice had an attenuated cell shortening [7], which
was accompanied by decreased mitochondrial energy metabolism due to increased expres-
sion of mitochondrial uncoupling proteins (UCP). However, none of the above studies
proposed an involvement of PI3K in TGFβ-mediated contractile dysfunction.

Both beneficial and detrimental roles in the regulation of cardiomyocyte contractility
have already been shown for PI3K. Enhancement of PI3Kα or reduction of PI3Kγ as a
therapeutic approach in heart disease has been suggested [40]. Accordingly, overexpres-
sion of cardiac-specific PI3Kα resulted in increased contractility in mice [41], whereas
cardiac-specific ablation of p110α—the catalytic subunit of PI3Kα—in adult mice caused
significant reductions in voltage-dependent L-type Ca2+ channel density, Ca2+ transients,
and cardiomyocyte contraction that resulted in compromised cardiac contractility [42]. In
contrast, targeted deletion of PI3Kγ significantly increased contractility [35,43] and en-
hanced cardiac function as assessed by increased fractional shortening [27,35]. Additionally,
mice expressing a kinase-dead PI3Kγ (PI3KKD) displayed protection from maladaptive
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remodeling and cardiac dysfunction up to 16 weeks after aortic constriction [44]. Also
in the present study, supporting previous findings, PI3Kγ KO improved cardiomyocytes
shortening under basal conditions.

In contrast to the PI3Kγ KO cardiomyocytes, pharmacological PI3Kγ inhibition itself
had no effect on the cardiomyocytes function of WT mice. However, the inhibition of PI3Kγ

with AS605240 could reverse TGFβ-induced depression of cell shortening as seen also in
PI3Kγ KO cardiomyocytes. Cardiomyocytes from PI3Kγ KO mice already have higher cell
shortening due to cAMP elevation than WT mice already at baseline [34], and therefore
TGFβ1 probably could not influence contractility in PI3Kγ KO cardiomyocytes. Our
findings on differences in contractility depending on the complete KO of PI3Kγ or inhibition
of PI3Kγ activity by AS605240 has been seen comparing PI3Kγ−/− to PI3KγKDmice. In
contrast to PI3Kγ KO mice, the loss of kinase activity of PI3KγKD did not lead to a change
in contractility [34].

The TGFβ and also the PI3K signalling pathway are important for the organism to
control various cell responses, such as apoptosis. Many studies suggest that these two
pathways may counteract each other, especially in cell survival where PI3K has a protective
role via activation of AKT (for a review see Kandel and Hay [45]. Although PI3K signaling
usually improves survival in combination with SMAD signaling this effect is reversed. The
decisive factor seems to be the extent to which SMAD or AKT is in the predominance [46,47].
There is also evidence that both pathways work in the same direction, for example, for
progression of tumour cells [48]. In addition to SMAD activation [3], we now demonstrate
that PI3K is also necessary for TGFβ-induced apoptosis. This is supported by Bakin
et al. [49], who showed an interaction between PI3K and TGFβ. In epithelial cells, inhibition
of PI3K led to blockage of TGFβ-induced SMAD2 activation, which thereby regulated
signaling molecules of TGFβ-induced apoptosis. In addition, Conery et al. [47] identified a
crosstalk between the TGFβ and PI3K pathways in different cell lines that led to apoptosis.
This study showed that with an increase in the amount of SMAD3 translocating into the
nucleus, apoptosis induction was enhanced. We also could decrease SMAD translocation
by inhibition of PI3K demonstrated by EMSA. This is in line with other studies showing
PI3K/SMAD signaling being harmful for the heart [50,51].

Recently, Aki et al. [52] elucidated the crucial role of PI3K for TGFβ signaling in
vascular endothelial cells. PI3Kα knockdown nearly completely abolished TGFβ1-induced
phosphorylation and nuclear translocation of SMAD2/3—the canonical transcription
factors downstream of TGFβ. Our study now identified PI3K as another down-stream
signaling molecule of TGFβ-induced apoptosis in cardiomyocytes with PI3Kγ being the im-
portant isoform. Other studies confirm that PI3K modulates the SMAD signalling pathway
and thus apoptosis. In the present study we did not see an influence of PI3Kγ on SMADS,
although PI3Kγ did influence apoptosis. This suggests that PI3Kγ acts independently
of SMADs.

SMAD transcription factors are the canonical mediators of TGFβ signaling, where
SMAD2 and SMAD3 are phosphorylated upon receptor activation and SMAD7 acts as
an inhibitory SMAD. Whereas SMAD7 transcription could be abolished by SB431542 [3],
the inhibition of PI3K had no effect on SMAD7 transcription. Our findings fit quite well
with the studies by Edlund et al. [53], here pretreatment with the PI3K inhibitor LY294002
did not abolish the Smad7-induced activation of Cdc42 in human prostate cancer cell line
(PC-3U). They stated that Smad7 has probably different roles in addition to its inhibitory
function in TGFβ signaling which suggests that there is a parallel signaling pathway. In
contrast to SMAD7, the TGFβ-induced upregulation of collagen 1 expression could be
blocked by inhibition of PI3K. This could also be measured in human mesangial cells,
where the PI3K inhibitor LY294002 decreased TGFβ-stimulated Col1 mRNA expression
by blocking induction of COL1A2 promoter activity [54]. This supports the notion that
the TGFβ-induced increase in collagen 1 expression is PI3K-dependent. However, in the
present study, PI3Kγ had no effect on collagen 1 expression, which was also supported by
the fact that neither SMAD translocation nor SMAD2 phosphorylation could be inhibited.
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TGFβ-induced upregulation of collagen-1 expression may be mediated via another PI3K
isoform that has not yet been identified.

5. Conclusions

Our data support a role for a PI3K and ALK5/SMAD pathway in TGFβ1-induced
apoptosis and impaired cell shortening. More specifically, the influence on apoptosis and
contractile dysfunction of TGFβ1 stimulation in part appears to be PI3Kγ-dependent.
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