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Abstract

Background: For three decades the Mutator system was thought to be exclusive of plants, until
the first homolog representatives were characterized in fungi and in early-diverging amoebas earlier
in this decade.

Results: Here, we describe and characterize four families of Mutator-like elements in a new
eukaryotic group, the Parabasalids. These Trichomonas vaginalis Mutator- like elements, or TYMULEs,
are active in T. vaginalis and patchily distributed among 12 trichomonad species and isolates. Despite
their relatively distinctive amino acid composition, the inclusion of the repeats TYMULE |, TvMULE?Z,
TVvMULE3 and TvMULE4 into the Mutator superfamily is justified by sequence, structural and
phylogenetic analyses. In addition, we identified three new TvMULE-related sequences in the
genome sequence of Candida albicans. While TvMULE! is a member of the MuDR clade,
predominantly from plants, the other three TvMULEs, together with the C. albicans elements,
represent a new and quite distinct Mutator lineage, which we named TvCaMULEs. The finding of
TVMULE| sequence inserted into other putative repeat suggests the occurrence a novel TE family
not yet described.

Conclusion: These findings expand the taxonomic distribution and the range of functional motif
of MULEs among eukaryotes. The characterization of the dynamics of TvMULEs and other
transposons in this organism is of particular interest because it is atypical for an asexual species to
have such an extreme level of TE activity; this genetic landscape makes an interesting case study for
causes and consequences of such activity. Finally, the extreme repetitiveness of the T. vaginalis
genome and the remarkable degree of sequence identity within its repeat families highlights this
species as an ideal system to characterize new transposable elements.
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Background

Transposable elements (TEs) are ubiquitous components
of prokaryotic and eukaryotic genomes and, as a conse-
quence of their prevalence, mobility and concomitant
mutagenicity [e.g., [1,2]], they can induce profound
changes in genome organization and have an important
evolutionary impact on expression and function of host
genes [3-6]. TEs can lead to genome expansion and con-
traction [7-9], transduction and amplification of host
gene fragments [10,11] and increase the variability of pro-
tein repertories [12-20]. Given this enormous potential as
a source of genetic novelty, considerable effort has been
devoted by the scientific community to the characteriza-
tion of new TEs in the plethora of new genomes and tran-
scriptomes available in public databases, particularly in
organisms for which the knowledge about TEs is scarce.
While some families of TEs are found across most taxa sur-
veyed, others appear to have a restricted host distribution;
the Mutator system in plants was an example of the latter.
This notion was recently dispelled by the identification
and extensive characterization of Mutator homologs in the
first non-plant species [21-24]. Moreover, consensus
sequences of new representatives of this TE family
obtained from a broad range of species have been
reported in Repbase Reports within the past few years:
CEMUDR1-2 from Caenoharbidtis elegans [25,26]; MuDR1-
2_TP in the diatom Thalassiosira pseudonana [27,28];
MuDr1-2_NV in the starlet sea anemone Nematostella vect-
ensis [29,30]; MuDR1x-2x_SM in the planarian Schmidtea
mediterranea [31,32] and MuDrlx-2x_AP in the insect
Acyrthosiphon pisum [33,34].

The Mutator (Mu) system was originally identified by Rob-
ertson [35] in maize as a highly mutagenic transposon sys-
tem. This system is composed of diverse families that
share ~220 bp terminal inverted repeats (TIRs) and create
a 9 bp host sequence duplication at the insertion site
[reviewed by [36]]. These elements can be either autono-
mous (MuDR) or nonautonomous (Mu). Transposition of
Mu elements is dependent of the autonomous MuDR ele-
ments. The MuDR element in maize is 4.9 kb long and
contains two open reading frames (ORFs): mudrA and
mudrB. The mudrA gene product, the MURA protein of
823 amino acids, probably a transposase, contains a cata-
lytic domain with a D34E motif (aspartic and glutamic
acids separated by 34 residues) and its expression is suffi-
cient for the somatic excision of the TE [37,38]. The trans-
posase encoded by mudrA shares weak but significant
similarity to those encoded by the IS256 group of prokary-
otic insertion sequences [21]. Deletions on mudrA disable
the Mutator transpositional activity [37]. The MURB pro-
tein is encoded by mudrB; while this protein's function
remains undetermined, it seems to be necessary for the
activity of the Mu system in maize [37,38]. Mutator-like
elements (MULEs) have been identified in a wide range of
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plant species, such as Arabidopsis [39-41], Oryza [e.g.,
[42,43]], Saccharum [44,45] and different grasses [46].
Interestingly, MULEs lack the mudrB gene [36]. In maize,
thale cress and rice MULEs are heterogeneous in sequence,
size and structure. In particular, some elements either
carry small imperfect TIRs or completely lack them
[39,40].

Recently, non-plant species have been reported to harbor
MULEs. Chalvet et al. [22] provided the first evidence for
the presence of an active MULE in the fungus Fusarium
oxysporum, the transposon Hop. It is 3,299 bp long, has
TIRs of 99 bp and 9 bp target site duplication (TSD),
encodes a putative transposase of 836 amino acids and
has no apparent sequence specificity at the insertion site.
The presence of related elements in other filamentous
fungi like Magnaporthe grisae, Neurospora crassa and
Aspergillus fumigatus has also been reported [22]. Neu-
véglise et al. [23] identified a new type of DNA trans-
posons, Mutyl, in the yeast Yarrowia lipolytica with 7,413
bp, imperfect TIRs of 22 bp, 9 to 10 bp TSD, and two ORFs
which potentially encode proteins of 459 and 1,178
amino acids. Whereas the first ORF shows no significant
homology to described proteins, the second one shows
similarity to a wide variety of MULE-encoded trans-
posases. More recently, Pritham et al. [24] characterized a
canonical copy of the Mutator-like element in a protist
genome, Entamoeba invadens. This element, named
EMULE-Ei1, is 2,882 bp long and displays structural fea-
tures typical of plant MULEs, such as TIRs of 187 bp and
a 9 bp flanking TSD. Moreover, it contains a single ORF
that putatively encodes a 456-aa protein that shows signif-
icant similarity to the Hop transposase from F. oxysporum.
In that study, homologous elements were observed in
three additional Entamoeba genomes, namely E. dispar, E.
hystolitica and E. moshkovskii [24].

Trichomonas vaginalis, an asexual flagellated protist [47], is
an extracellular obligate human parasite of the urogenital
tract [48] and a member of a deep-branching eukaryotic
lineage, the Parabasalids [49]. Its genome sequence and
annotation, published in 2007 by Carlton and collabora-
tors, revealed a putative set of ~60,000, mostly intronless,
protein-coding genes, endowing T. vaginalis with one of
the largest gene sets among eukaryotes [9]. Interestingly,
this genome was shown to be highly repetitive, with
repeats and TEs comprising about two-thirds of its ~160
Mb-long sequence. Until now, only DNA transposons
have been completely characterized in this species, includ-
ing Mariner [50], Polintons [51], and Mavericks [52].
Among the original repeats identified in the genome of T.
vaginalis were included four repeat consensus sequences
with a Mutator-like profile: R210 with 2,127 bp, R130a
with 1,129 bp, R119 with 2,954 bp, R165 with 2,410 bp
[9]. In this report, we characterize these four T. vaginalis
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Mutator-like elements (TvMULEs), which we renamed as
TvMULE1 (based on the R210 sequence), TvMULE2
(based on the R130a sequence, here revised regarding to
sequence and structure), TvMULE3 (based on R119) and
TvMULE4 (based on R165). We confirm the inclusion of
the four repeats into the Mutator superfamily based on
sequence, structural and phylogenetic analyses. While
TvMULE1 is a member of the MuDR clade predominantly
from plants, the other three TYMULEs represent a new and
quite distinct Mutator lineage, expanding the taxonomic
distribution and the range of functional motif of MULEs
among eukaryotes.

CAAAAtTATTTGAAtTTtCTtttATTTTTTT
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Results

Characterization of TYvMULEs: new T. vaginalis
transposons

The sequence and structure of four Mutator-like consensus
sequences [9] were analyzed in detail in the present study.
The manual inspection of a combination of sequence sim-
ilarity searches and consensus sequence building tech-
niques (described in Methods) and the presence of
putative, imperfect, terminal inverted repeats (TIRs)
resulted in the definition four new Mutator-like transpos-
able element families represented by the consensus
sequence of which we termed TvMULE1, TvMULE3 and
TvMULE4 (Figure 1) and TuMULE2 represented by the

AAAAAAATtctAGCAAtTTCAAATALTTTTG
2,096 2,127

2,077
TvMULE]
ORF 629 AA

5'TIR

GAGtagGtGACAAAagTGCA
1

3'TIR
TGCAacTTTGTCcCaatCTC
2521 2540

T

S'TIR

GagtAggggtAATTTTAGCTAAAAGTGACA

1,741
TvMULE?2
ORF 489 AA

3'TIR

TGTCACTTTTAGCTAAAATTtgggTTtgcC
2,925

TvMULE3

30
5'TIR

GAGtggGGGACAaACTcGCCCATTGTCACTTTTTcATT
1 38

253

ORF 557 AA

2,656

3'TIR

ATTtAAAAAGTGACAATGGGCtAGTcTGTCCCHttCTC
2,372 2,410

5'TIR

Figure |

1,629
TvMULE4
ORF 459 AA

3'TIR

Structure of the T. vaginalis MULEs. Putative terminal inverted repeats (TIRs) are denoted by black arrowheads at each
end of the elements. Bases that are variable between TIRs are in lowercase type. Dark gray boxes represent internal non-cod-
ing sequences. The internal region of each element (clear gray box) corresponds to an ORF that encodes putative MULEs-
related transposase domains. Location of a transposase zinc finger (double black lines) is also shown.
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canonical copy contained in the contig 95978 (position
24930-27469).

All insertions of the four families were identified in the
17,290 contigs that make up the current genome assembly
of T. vaginalis by BLASTN. A total of 61, 514, 666 and
1,204 matches revealed strong similarity to TvMULEI,
TvMULE2, TYMULE3 and TvMULE4, respectively (identity
>80% and E < e-20). All matches were extracted by BLAST
coordinates and all ORFs starting at the Met residue were
predicted, excepting TYMULE2, in which the predicted
ORF was only derived of the canonical copy. The four
TvMULE;s contain a single intronless gene. The more fre-
quent ORF of TUMULE1, which putatively encodes a 629-
aa protein (Figure 1), displayed highest similarity (43%)
to a Mutator transposase (Tpase) from A. thaliana (Table
1). On the other hand, the other three TUMULEs showed
similarity to three potential Mutator Tpases from the path-
ogenic yeast Candida albicans: the first of these (GenBank
gi # 68466572) is 568-aa residues long and is very similar
to the second C. albicans protein (GenBank gi #
68466277), which is 832-aa long; the third C. albicans
protein (GenBank gi # 68474652), is 668-aa long.
TvMULE2 matched the first C. albicans protein, and
TvMULE3 and TvMULE4 showed significant similarity to
the third protein with 40 and 43% similarity, respectively
(Table 1). While TUMULE1 have relatively small non-cod-
ing regions, these extend to several hundred base pairs in
TvMULE2, TvMULE3 and TvMULE4.

Within each of the four TUMULE families all copies were
found to be nearly identical in sequence (identity >99%).
This result confirms the low polymorphism obtained
from average pairwise differences between copies (n)
observed by Carlton et al. [9]. There, the 7 value was esti-
mated as 0.9% for TYMULE1, 0.7% for TYMULE2, 1.1%
for both TvMULE3 and TvMULE4. Within each family, the
sequences of the 5' and 3' TIRs are nearly identical. In

http://www.biomedcentral.com/1471-2164/10/330

addition, an alignment of these putative TIRs across
TvMULE families shows three positions in the 5' end and
six in the 3' end are nearly perfectly conserved (not
shown). The presence of polymorphism in the terminal
ends within each repeat family could indicate that they do
not act as the transposase recognition site, given that the
internal regions of different copies are more highly con-
served. Alternatively, it is possible that the binding is not
specific across the entire TIR, or that some of the muta-
tions that have accumulated since transposition actually
inactivates the respective copies.

TvMULE1 shares recognized MULE structural motifs.
Firstly, it has a well-conserved D34E integrase signature in
the putative active site, and three residues of the trans-
posase core conserved across a wide range of MULEs [36]
are also present (Figure 2A). This conserved region corre-
sponds to the ~130-aa domain identified by Eisen et al.
[21] containing a 25-aa signature sequence [D-x(3)-G-
(LIVMF)-x-(6)-(STAV)-(LIVMFFYW)-(PT)-x-(STAV) x-(2)-
(QR)-x-C-x(2)-H]. Secondly, a transposase zinc finger
domain at the C-terminal region was identified, which has
a nearly perfect CX,CX,HX, sC-motif (Figure 1 and Figure
2B). This motif is found in the nucleocapsid protein of ret-
roviruses, in several known nucleic acid binding proteins,
in the copia-like retrotransposons from tobacco [53], and
in Ty elements in yeast [54]. It has been proposed that this
motif plays a role in a transposase-transposon interaction
that takes place during transposition and/or regulation
[40].

The other three TvMULEs (TvMULE2, TvMULE3 and
TvMULE4) show amino acid residue contents that differ
markedly from that of TYMULEI and from those of
known plant MULEs. However, these elements exhibit sig-
nificant similarity to three C. albicans elements (Table 1).
This observation is readily apparent from the quite new
and distinct content of residues contained in two con-

Table I: Characteristics of 4 Mutator-like families in the T. vaginalis genome

Family Lenght? TIRsb ORFc First TE hit in BlastP searches against Genbank
(bp) (bp) (aa)
Descriptiond e % % Lengths
value IDe Similarityf (aa)
TvMULE| 2,127 31 629 11994228 Arabidopsis thaliana Mutator le-09 27 43 283
TvMULE2 2,540 20 489 68466572 Candida albicans Mutator 3e-03 24 44 166
TvMULE3 2,954 30 557 68474652 Candida albicans Mutator 3e-09 23 40 309
TvMULE4 2,410 38 459 68474652 Candida albicans Mutator 9e-12 25 43 235
aLength of consensus sequence, excepting TYMULE2 in which a canonical copy was characterized;
b Putative imperfect terminal inverted repeats;
¢ Length of the protein encoded by T. vaginalis TE, in amino acids (aa);
d GenBank accession number, species, TE name;
¢ Percent identity between T. vaginalis TE-encoded protein and hit in BlastP alignment;
fPercent similarity between T. vaginalis TE-encoded protein and hit in BlastP alignment;
g Length of query in the alignment produced by BlastP, in amino acids.
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MuDR PSR L LNGRINGHA L5 A TRV GHN I PECF GF F QAR TV DN I F MROPKKVEGDHTLL . . . HH. [FHEVF : 93
Zmays PSS ) ALNGRINGHACC AT eV GHN WP T GF F E AN TEN)| T)i F F HOSHEVGDLPLL . . FI. [NV F 193
Osativa  PIMCISEGCHIKTEYGGRIL TAV SMUPNDC TP vV EVASF VS| JE|LLETKSE\GIDNTYP . W IP.[WEKVF : 95
AtMu1 P F LEVKGY)LL TAW S Y PHNQI P ) i QS L EN)L | Fi¥ QO KKD \NLEDGSR . F LS. MEQEL : 95
Jittery D) TS THOSHMRF APF TV HHEMORYFFGAFL AWK IESVE | LFRTFLVLUGGKAFR . . . L k5. WRTTL 193
Athaliana F HLEGEHKGWIIL TS50 ANF WP F 7 D SNDD AN T F F TRMERTIMADSNTL . . . KW . GIERVF g : 93
Muty1 G HNTHEZH YR FNVIETASC GRS HIL IS RWD LD T)JE)CLDRIGKVF {QEYLIPDPG KEGHETSELNGSNLALW : 97
TVMULE1 & FLFCIKKGNLIIGTPAPNNERL IPiRF SV SN TITIED ML TENKSFUPPSRFE. | IL. [¥RESGFSCDHAF 193
Hop78 E : TETHEKHPLD IVEVIHACORTHCILIFIFLS IEEGD T ALQANRSVYEDHNIGLPS RCLACHN . [NSSCFGSALFLS =T
B 34
MuDR : KRQYTPHMEGELGEROSSYEE. ... ...
Hop78 : KAPPHMSPMHOOGIMMTSELS. ... ...
AtMu1 : GEITHSESWGEAG:NAL. .F.......
Muty1 : KAGPHOOQISVIQR ., ATSAHS. ... ...
TVMULE1 : DSQYS@T.®KHIELYGL..P®IHAIAVL
CCHC-motif : .....8.. 8. ...B...... & ......
Figure 2

Conserved domains in the Mutator protein MURA and its homologs are present in TYMULEI. A — Multiple
sequence alignment of the conserved transposase domain. This alignment includes the MURA transposase from the Zea mays
MuDR element (accession no. 540581), putative MURA-related transposases from the plants Zea mays (Zm-40034: accession
no. 23928448, Jittery: accession no.7673677), Arabidopsis thaliana (AtMu |: accession no. AC002983.1 and At-96881: accession
no. 34914922), Oryza sativa (Os-918808: accession no. 8777291), from the fungi Fusarium oxysporum (Hop-78: accession no.
30421204) and Yarrowia lipolytica (Mutyl: accession no. 50556866), and from the unicellular protozoan Trichomonas vaginalis
(TvMULEI: deposited in Repbase). B — Multiple sequence alignment of the zinc finger domain. Identical amino acids are shaded
in black, and similar amino acids are shaded in gray. The well-conserved D34E integrase signature in the active site of Mutator is
noted. The symbol (dark filled triangles) below of the alignment corresponds to other residues also well conserved across a
wide range of Mutator-like elements, previously described by Lisch [36].

served motifs shared by these six elements (Figure 3). The
inclusion of this extended group in the Mutator super-
family is supported by a variety of structural analyses.
First, the three C. albicans proteins show significant simi-
larity to MULEs such as Hop from F. oxysporum (GenBank
gi # 30421204) and a Cucumis melo MULE (GenBank gi #
46398239); in addition, one of them (GenBank gi #
68466572) contains a conserved Mutator-like transposase
domain corresponding to pfam00872 (COG3328 and
CDD85084), a hallmark of Tpases of the Mutator family.
Secondly, BLASTP generated significant pairwise align-
ments for all comparisons between these TYMULEs (2e-
37<E-value<2e-13), as well as between them and the C.

Motif 1 [ength: 27-aa]
. TCENLLES
K. TCENLLEC
QKAQMMSET

Calbicans_68466572 [12&8] TEWL
Calbicans_68466277 [445] ¥)ZHWL
Calbicans_68474652 [260] FRRFESZ

TVMULE2 [G44] B RALFf TEQWRETKE LYEGEG
TVvMULE3 [12%] FLEFSEYIONOWISHOERNTAAERDENL [2]
TvMULE4 [531] EliaapEfIDROWPHHLD LETENEGE [1]
Figure 3

albicans sequences (Table 1). Thirdly, a careful characteri-
zation of motifs across 41 Mutator elements, as well as in
these T. vaginalis and C. albicans repeats, revealed that the
latter encode an extended motif of 36 residues (motif 1)
identical to the 25-aa signature sequence of the MULE
transposase core previously mentioned [see Additional
file 1]. The high degree of sequence conservation of this
motif [see Additional file 1] in quite distinct branches of
the Mutator lineage suggests that it plays a role that is
essential to the fitness of the elements.

Finally, none of the four TvMULEs encodes a mudrB prod-
uct, similarly to what is observed in the A. thaliana and O.

Motif 2 [length: 41-aa]
TE O TESTREHT I
TFYIESTRQHTPI
TUVILENQFPHNERLIES
QT FLCEEMEERTI
FGGCTIFMEFIERF
QFPERPNLELME

Clustal alignment of two conserved motifs found in TvMULEs and in C. albicans homologous sequences. The
number of amino acid residues omitted, which flank and separate the motifs, is indicated in brackets. Residues with related
physical or chemical properties are shaded in black when present in all sequences and in gray if present in four out of six

sequences.
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sativa [40,41,43]. Even in plants, while mudrA sequences
are widespread in grasses, mudrB sequences seem to be
restricted to Zea [46].

Preferential insertion sites of TYMULEs

Among all matches with similarity to TYMULE1 (61) and
TvMULE2 (514), only 8% (five sequences) and 0.5%
(three sequences), respectively, correspond to complete
copies. Probably due to their longer size, which can not be
spanned by two PCR reads, matches to TUMULE3 (666)
and to TvMULE4 (1,204) represent only internal or end
regions of the elements; these observations reflect the frag-
mentary nature of the current assembly, which in turn is
caused by the highly repetitive character of the T. vaginalis
genome. Thus, the analyses of putative insertion site pref-
erences were performed with all insertions that contain at
least one end region.

The sequences flanking TUMULEI insertions exhibit a
high degree of nucleotide conservation in the first 25 posi-
tions (data not shown). Genomic fragments of 2,000 or
5,000-nt adjacent to the element were extracted to evalu-
ate the extent of such similarity in the regions flanking of
different copies. The extent of the similarity between
regions flanking TYMULE1 insertions depends on the cop-
ies of this family being compared. Interestingly, one pair
of TvMULE1 copies (contig 85938:11024-17138 and
contig 91860:9141-15539) appears to be nested within
another repeat. In fact, the similarity upstream and down-
stream of these copies extends to 1,246-bp and to 3,075-
bp, respectively, including putative 36-bp TIRs (5'-
GgGtcaTTATtGATTTTGTAATTITAATCGTcgTCGT-3', and
5'-ACGAtaATGATTAAATTACAAAATCEATAAcctCtC-3"),
suggesting an unknown repeat of approximately 4,300 bp
in length. This unknown repeat is itself flanked by two dif-
ferent TSDs (Table 2). Despite the fact that this full-length
nested configuration is observed only in the two genomic
regions mentioned above, multiple partial copies of
TvMULE1 that contain one end region are flanked by frag-
ments of this unknown repeat. Sequence similarity
searches of this novel repeat against consensus sequences
of Trichomonas and Entamoeba genera stored in Repbase
database, ~55 repeat families identified in the T. vaginalis
genome [9] and Genbank showed no significant matches.
Therefore this element remains unidentified. We hypoth-
esize that a copy of this repeat containing an insertion of
TvMULET1 has transposed in a recent past producing mul-
tiple nested copies. However, detailed empirical studies of
excision/transposition/insertion by transfection in new
lineages are required to corroborate this hypothesis.

TvMULE2, TYMULE3 and TvMULE4 are flanked by com-
pletely variable regions upstream and downstream of all
insertions (data not shown). Curiously, multiple TSDs
with distinct lengths are observed, a characteristic not
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Table 2: Putative TSDs flanking TYMULEs and the unknown
repeat

Family TSD

Length (bp) Sequence

TvMULE2 10 ATATATCGGC
TTTATCGCTG?
11 AATTGATGAAA
CCTTAATTCAA
CCATTTTGATA
TAATTCTCCAT
TTTCCCTGAAA
TGGTTTTATGA
GAAACAATTAA
12 TTAAATTACTTC
14 AATTAAAAAAATAT
TvMULE3 11 CTATTTAAAAG
TTTTTTGATAA
TTTAAGGTGTT
AAAAAATTTTGA
AATTTTTTCGAA
ATATATCTTTAA
ATTTTTGAAAAA
TATACATATATA
TTATTATTTTAA
TTTCTTTTTTAT
13 AAAAATTTTGAAA
ATTTTTTCTGGAT
AGATTTTTGAAAA
CTTATTTTTTGAA
TTTCAAAATTTTT
Unknown 8 TAGATTTT®
9 ATCAAAAAGe

TvMULE4 12

2Duplication upon the chosen canonical copy;
Duplication upon the insertion contained in the: bcontig 85938 and
ccontig91860.

found in MULE;s previously characterized (Table 2). Taken
at face value this would suggest an extreme flexibility in
their insertion sites.

Finally, as the genomic distribution of these repeats is
putatively the product of only self-mobilization, we
assessed the preferential insertion of these TUMULE:s rela-
tive to local GC content calculated in the first 100, 2,000
and 5,000-nt. The average GC content within the nearest
100-nt is 26.9% (se = 0.0) for TUMULE2, 27.7% (se = 0.4)
for TYMULE3 and 25.0% (se = 0.3) for TUMULE4. The
average GC content in the 2,000-nt and 5,000-nt flanking
regions is slightly higher, ranging between 31.3% and
31.8% + 0.0 for TYMULE2, 30.9% and 31.6% + 0.2% for
TvMULE3, 30.0% and 30.7% + 0.2% for TvMULE4,
respectively. This nucleotide composition is similar to
that of intergenic regions in the current assembly (28.8%)
and considerably lower than the GC content of T. vaginalis
genes (53.5%), suggesting either that these two TvMULE
families insert preferentially in non-active regions or that
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insertions into genes have been eliminated by selection.
This is not unexpected since almost all T. vaginalis genes
are intronless and TE insertions within coding regions are
frequently associated to deleterious effects [e.g., [55]].

Phylogenetic relationship of TvMULEs

Three major clades of eukaryotic elements have been
identified to date in the Mutator superfamily: (1) the
MuDR group, characteristic of plant genomes, contains
the original Mutator elements identified in maize, and its
relatives from Arabidopsis and rice, (2) the Hop/Jittery
group contains elements from a variety of host taxa
including plants and fungi, and (3) the EMULE clade,
which contains all elements identified in the genome of
Entamoeba species. Members of these three clades were
used to determine the phylogenetic placement of the T.
vaginalis MULEs in the Mutator superfamily, and the tree
was rooted with elements belonging to the IS256 clade of
bacterial transposons. Bayesian analyses showed strong
support for the monophyly of the eukaryotic Mutator
sequences relative to the bacterial 1S256 elements (Figure
4). The eukaryotic clade is present in 100% of the trees in
the posterior sample, a result that is confirmed by neigh-
bor-joining (NJ) analysis (97% bootstrap support). There
is also strong support (87% in NJ bootstrap and 78% in
bayesian analysis) for a clade containing the MuDR ele-
ments. The NJ analysis suggests the monophyly of the
Hop/Jittery clade but the support from Bayesian and NJ
bootstrap analyses is <50%. Finally, the EMULE
sequences form a strongly supported monophyletic clade
(74% in NJ bootstrap and 99% in bayesian analysis). The
elements from T. vaginalis are nested within the broad
clade of eukaryotic Mutator elements. TvMULE1 clusters
with an element from O. sativa in the MuDR clade. On the
other hand, TUMULE2, TYMULE3 and TvMULE4, together
with the C. albicans sequences, form a monophyletic clade
present in 100% of the trees in the posterior sample of the
bayesian analysis and in 85% neighbor-joining bootstrap
trees. All these findings lead us to conclude that the
TvMULEs/C. albicans clade represents a new and quite dis-
tinct branch in the Mutator superfamily, which we name
TvCaMULE:s.

The genetic distances within and between clades were cal-
culated in order to determine the heterogeneity of the
MULEs. First, the TvCaMULE members are more divergent
regarding on the number of amino acid substitution per
site (aa/site) among each other (aa/site= 1.84 + 0.17) than
the members of other clades (Hop/Jittery: aa/site= 1.53 +
0.06; MuDR: aa/site= 1.45 + 0.07; IS256: aa/site= 1.27 +
0.08; and EMULEs: aa/site= 1.04 + 0.09). However, this
higher divergence is due to difference between the mem-
bers of the two species (aa/site= 2.19 + 0.07) than
between C. albicans (aa/site= 1.43 + 0.7) and the TvMULE:s
(aa/site= 1.2 + 0.1) sequences. Second, a pairwise compar-
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ison between clades shows that TvCaMULEs are the most
distinct from any other clade (aa/site= 2.96 + 0.15) than
all other comparison pairs (aa/site= 2.5 + 0.06). These
data lead us to conclude that TvCaMULEs form a hetero-
geneous group and that they are distantly related to the
other MULEs analyzed.

Multiple conserved motifs in Mutator and 1S256
superfamilies

Forty eight Mutator and 1S256 transposon sequences were
used to search for sequence motifs common within this
superfamily. Twelve conserved motifs were identified,
with motifs 1, 4 and 8 present in all sequences [see Addi-
tional file 2 and Table 3]. Interestingly, only the elements
of the MuDR and Hop/Jittery clades present the D34E
active site integrase signature between motifs 4 and 8,
while the bacterial transposons show a range in the
number of intervening residues in this region (D38-40E)
[Table 3]. Some motifs are clade-specific, such as motifs 5
and 9 in the IS256 clade, which are similar to the Mutator-
like transposase domain, while others are more wide-
spread, such as motifs 7 and 10 harbored by plants and
fungi in the MuDR and Hop/Jittery clades.

Distribution and transcriptional activity of TVMULEs in
Trichomonads

The low degree of sequence polymorphism within
TvMULE families suggests a very recent expansion of
Mutator-like transposons in the T. vaginalis genome, either
due to TE-induced proliferation or to small-scale duplica-
tions of the host genome. To evaluate whether this expan-
sion occurred before or after the global expansion of T.
vaginalis, four T. vaginalis isolates obtained from different
geographical regions were analyzed for the presence of
TvMULE homologs (Table 4). PCR products from each
sample were obtained using primer pairs from each
canonical MULE family of T. vaginalis (Table 5). The spe-
cificity of these amplifications was confirmed by stringent
DNA hybridizations using as probe an internal fragment
of Tpase isolated of the T. vaginalis JT strain. The strong
hybridization signal in all lanes suggests the presence of
all TYMULE: in the four T. vaginalis strains tested (Figure
5A). Interestingly, homologs to the TMULEs occur in
other Trichomonad species, even though their distribu-
tion appears to be patchy. All non-T. vaginalis isolates
showed extremely weak or nearly imperceptible PCR
amplification (data not shown), possibly due to low copy
number and/or high sequence divergence in the primer
region. However, positive hybridization signals were still
detected against these amplicons in some of these species
(Figure 5A). In particular, Tetratrichomonas sp and T. galli-
nae, the two closest species to T. vaginalis examined, show
evidence of TUMULE1, TYMULE2 and TvMULE3, and of
TuvMULE4, respectively. On the contrary, the species more
distantly related to T. vaginalis [47] show a heterogeneous
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Table 3: Characterization of 48 MULEs analyzed in this study

Clades Analyzed sequences Conserved motifs

All clades Dispersed Clade-specific
1S256 8 12, 4 and 8¢ - 5dand 94
MuDR 12 12, 4 and 8b 7eand |0f -
Hopljittery 12 12, 4 and 8b 7eand 10f If
EMULEs 10 12,4 and 8 - 2f, 3fand 6f
TvCaMULEs 6 12,4 and 8 |of 12f
TOTAL 48 12

225-aa signature sequence described by Eisen et al. [19];
Active site residues found into motifs 4 and 8: PD34E and <D38-40E;

Motif similar to Mutator-like transposase domain corresponding to: 4 pfam00872 and ¢ pfam03 108;
fNo match between motif and putative conserved domains have been detected.

pattern. T. foetus, a parasite of the urogenital tract in cattle,
shows hybridization to each of the four repeats in at least
one of the strains sampled, and T. augusta, T. batrachorum,
and Monocercomonas sp show evidence of only TUMULE?2.
The patchy distribution among species and strains suggest
extensive divergence and/or loss of elements homologous
to TYMULEs among Trichomonads.

To verify if the TvMULEs are transcriptionally active,
polyA+ RNA was extracted and cDNAs synthesized from
one strain from T. vaginalis (JT) and six non-T. vaginalis
species and isolates (Table 4). Again, RT-PCR products
were obtained for each sample using the primer pairs of
each element and their homology to TYMULEs validated
by hybridization using the sequence from the JT strain of
T. vaginalis as probe. The presence of abundant mRNA for
the four TYMULEs was observed in the JT strain (Figure
5B), confirming that the four Mutator elements are active
transcriptionally in T. vaginalis. In contrast, the other spe-

Table 4: Trichomonad species and strains used in this study

cies show no evidence of transcripts of the expected size
(Figure 5B).

Discussion

Transposable elements are major players in the evolution
of eukaryote genomes. T. vaginalis, whose two-thirds of
the genome consists of repetitive sequences, is a fascinat-
ing species to study in this context, since several topics can
be explored: the discovery of new TEs, their structure and
origin, the dynamic of TEs among related species and geo-
graphical populations, and their comparison to those
characterized in other fully sequenced genomes. Mutator
elements are one of the most thoroughly studied plant TEs
[21,37,38,40-42,44,46,56-62]. For nearly three decades
after their initial discovery by Robertson [35] they were
thought to be present exclusively in plants. The first
homologous representatives were completely character-
ized in the early 2000's in fungi [22,23] and in the amoe-
bozoa [24]. We have conducted a comprehensive study of

Species Isolates Origin Host Hybridization
DNA cDNA
Trichomonas vaginalis JT Rio de Janeiro/Brazil Human v v
FMVI Minas Gerais/Brazil Human v
MR 100 Czec Republic! Human v
Mex Mexico Human v
Tetratrichomonas sp SPI Argentina Pigeon v
Tritrichomonas foetus K Rio de Janeiro/Brazil? Bovine v v
B2 Argentina Bovine (4 (4
Tritrichomonas augusta 30082 Czec Republic! Frog (4 (4
Tetratrichomonas gallinarum MR5 Czec Republic! Chicken v v
Trichomonas gallinae TGO09 Porto Alegre/Brazil Pigeon (4
Trichomitus bathracorum G43 New York City/USA Snake (4
Monocercomonas sp - Cuba Snake v
v/ Samples used in each hybridization experiments;
Isolated by: ! ). Kulda (Charles University in Prague); 2H. Guida (Embrapa).
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Table 5: List of oligonucleotide primers used in this study
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Primer Sequence Positions (bp) Expected length
(bp)

TvMULEI _F 5'-AAGCGAGCATGAACTGCATCA 229-249 696

TvMULEI_R 5'-TTCCGATCAAGGTCCGGCAATTA 902-924

TvMULE2_F 5-GCTGACTGTGCGCTAAACATTGCT 1055-1078 544

TvMULE2_R 5'-GCTCAACAATCTGATTACCTGCCC 1575-1598

TvMULE3_F 5'-GGGTATCAAAGAACAAGAGTCACC 1,286—1,309 630

TvMULE3_R 5-TCTCTTTCAGCGGCTGTCCATCTT 1,892-1,915

TvMULE4_F 5'-GGACAAACTCGCCCATTGTCACTT 8-3I 584

TvMULE4_R 5'-TCTTGACAGGTGGATGCTTCGCTA 568-591

TvMULE4_2F 5-TTCGCCTTTCTGGGAAGTACTGGT 485-508 520

TvMULE4_2R 3'-GTCACTGGCAAATTCGCGGAATCA 981-1,004

B tubulin_F 5'-ACACTCCTTCTCAACAAGCTCCGT 692-715 673

B tubulin_R 5'-AGGCTGTTGTGTTGCCGATGAATG 1341-1364

four new members of the Mutator superfamily in a new
taxonomic group, the Parabasalids, and in particular the
class Trichomonada, and conclude that three of the ele-
ments found are representatives of a new branch in the
evolutionary history of the Mutator superfamily.

This study shows that only TvMULET is a typical member
of the Mutator superfamily, since it shows significant sim-
ilarity to Mutator proteins with known transposase motifs
and harbors some of the hallmarks of MULEs. Interest-
ingly, TYMULE2, TvMULE3 and TvMULE4, in addition to
the presence of a conserved Mutator-like transposase
domain and a motif identical to the 25-aa signature
sequence of the MULE transposase core, also display new
and distinct conserved motifs. The presence of Mutator-
like elements in Trichomonads is not unrealistic, as the
evolutionary relatedness between the maize Mutator
autonomous elements and the bacterial 1S256 [21] shows
this superfamily's ability to invade hosts across large evo-
lutionary distances or to survive, by vertical transmission,
across the spectrum of life. New MULE families have
already been characterized in other early divergent eukary-
otes, such as in the first genomes analyzed from the genus
Entamoeba [24]. What is perhaps surprising is that it took
over two decades for elements of the Mutator superfamily
to be identified in eukaryotic taxa other than plants. Our
Southern blot experiments using TUMULE probes strongly
suggest their presence in other trichomonad species and
our in silico analyses allowed their identification in the C.
albicans genome.

Elements similar to our repeats TvMULE2, TYMULE3 and
TvMULE4 have been submitted to Repbase Reports,
namely MuDR-4_TV [63], MuDR-3_TV [64], MuDR-5_TV
[65], respectively. These repeats and their structures differ
somewhat from those found here described in one or
more of the following characteristics: (1) length of the ele-
ments and the peptides they encode; (2) length of TSDs;

and (3) copy number estimates. The differences could be
due to the methods employed to determine the canonical
consensus sequences.

The four TvMULEs each carry a putative transposase ORF,
which are smaller than those of known MULE Tpases but
seem, nevertheless, to be functional since independent
lines of evidence support their transpositional activity.
The level of sequence divergence between copies and their
respective consensus sequences (identity >99%) and the
presence of complete copies inserted in different scaffold
locations suggest that these families have undergone a
recent process of activation and amplification. In addi-
tion, the set of expressed mRNAs includes transcripts with
high sequence similarity to these repeats. Interestingly,
typical MULE TIRs, characteristically over 100 bp long and
the perfect inverted complement of each other, and which
are supposedly necessary for mobilization, were not iden-
tified in TUMULES. We hypothesize that these repeats rep-
resent of a novel type of non-TIR-MULESs, similar to those
identified in A. thaliana, which are able to transpose in the
absence of long TIRs [40].

The large number and mobility of TUMULEs, much like
those observed for other TEs already characterized in T.
vaginalis [9,50-52], raise puzzling questions. What are the
biological and epidemiological features that explain such
high level of recent transposon activity in T. vaginalis,
while these elements present a heterogeneous distribution
among other Trichomonads examined? Could these ele-
ments have been recently introduced into T. vaginalis and,
if so, where from? How do these TEs contribute to the
architecture and dynamics of this highly repetitive
genome? What in the T. vaginalis genetic background
makes this genome permissive to the high activity of these
DNA transposons, to the extent that they have accumu-
lated to hundreds and even thousands of copies per fam-

ily [9]2
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A fascinating hypothesis to explain the extraordinary
expansion of TEs in the genome of T. vaginalis was pro-
posed by Carlton and collaborators [9]. T. vaginalis, unlike
most other Trichomonads which are enteric, is a parasite
of the human urogenital tract. A large cell size is likely
advantageous in this species, since it increases its phago-
cytosis ability, decreases the probability of it being
ingested by other organisms and host macrophages, and
facilitates adhesion to vaginal epithelial cells. There is a
strong, and possibly causal, correlation between genome
size and cell size [66-68]. Therefore, an initial stochastic
expansion of TE families could have given rise to the vari-
ation upon which natural selection could act, favoring the
largest cells and, concomitantly, those with the largest TE
complement [9]. It is interesting to note that Tritri-
chomonas foetus, the only other vaginal trichomonad sur-
veyed, was the only other species in which all four
TuMULEs were detected.

The large copy number and extremely low polymorphism
of TUMULESs and other T. vaginalis repeats, as well as their
absence in T. tenax, a parasite of the bucal cavity and the
sister taxon to T. vaginalis, suggest a fast repeat expansion
that has taken place in a recent evolutionary past [9]. The
lack of homologs of the T. vaginalis repeats in T. tenax [9]
also raises the possibility that these elements have been
recently acquired through horizontal transfer, a phenom-
enon that is relatively more common than was once
believed, and which is possibly an essential step in the
life-cycle of successful class II transposable elements
[69,70]. Here we found evidence for the presence of some
TvMULE homologs in some of the species surveyed. In
particular, only TYMULE4 shows a strong hybridization
signal in T. gallinae, the closest species to T. vaginalis exam-
ined in this study, while homologs to the other three
TvMULE families are present in more distantly related spe-
cies. The possibility remains that these repeats could have
been lost from some species, or that the PCR primers used
did not amplify existing divergent homologous repeats,
an issue that can only be solved with an extensive
genomic survey of the family Trichomonadidae.

Transposable elements have undeniably played a major
role in the expansion of eukaryotic genomes, a phenome-
non well documented in plants [71], arthropods [72] and
vertebrates [73-76]. Rapid genome expansions due to
bursts of TE amplification, similar to what is observed in
T. vaginalis, have also been postulated for a variety of
organisms [77-81]. What sets T. vaginalis apart is the fact
that it is an asexual species, which, like all other tri-
chomonads, reproduces by longitudinal binary fission. It
has been argued that transposons are unable to persist in
the long term in clonal lineages because the mechanisms
that keep TE copy number in check in sexual species, and
that thereby prevent excessive mutational loads, are
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absent in asexual lineages [82]. In addition, once lost,
they cannot be reintroduced by sexually-mediated genetic
transfer [83]. Given the recency of the TE expansion in T.
vaginalis, their long-term effect on the survival of the spe-
cies is as yet unclear. It is possible that, with each TE fam-
ily expansion, this species is steadily proceeding to
extinction.

Conclusion

The remarkably recent common ancestry of each TE fam-
ily in the T. vaginalis genome is attested to by the high
copy number and nearly complete within-family
sequence similarity of these TUMULE;s, features that are
shared with the other ~55 repeat families identified in the
T. vaginalis genome. The structure of each repeat, inferred
from the consensus of all copies within a family, is there-
fore likely to reflect with high accuracy the ancestral
sequence of each original active element. This makes the
genome sequence of T. vaginalis is an ideal mining ground
for new transposable elements, which sequence and struc-
ture have not yet been adulterated by the accumulation of
inactivating mutations.

Methods

The consensus sequences of the newly characterized Muta-
tor-like elements from Trichomonas vaginalis described
here have been submitted to Repbase Reports http://

www.girinst.org.

In silico analyses

The draft genome sequence of the G3 strain of T. vaginalis
was obtained from the website of The Institute for
Genomic Research (TIGR) http://www.tigr.org/tdb/e2k1/
tvg/. This draft, based on ~7.2-fold coverage of the
genome, consists of 17,290 scaffolds, representing ~160
Mbp [9]. Sequence similarity searches using the four con-
sensus sequences of TMULEs as query against the T. vag-
inalis genome were performed using BLASTN [84], with
parameters E = e-20, V = 10,000 and B = 10,000. Signifi-
cant matches were required to be >200 bp long and dis-
play > 80% identity. We will refer to the repeat copies
found in the genomes according to the contig scaffold
name and the start and end position of the copy. The coor-
dinates of each BLASTN match were extracted using our
customized Perl scripts, which utilized some modules of
the BioPerl toolkit [85], and aligned with ClustalW [86]
with default parameters. When available, the regions
flanking each insertion were extracted for additional anal-
yses: i) logo sequences were built from the first 25 nt
upstream and downstream of each insertion using WebL-
ogo [87], ii) the extent of the similarity between inser-
tions, in regions upstream of the 5' end and downstream
of the 3' end, was evaluated by BLASTN, and iii) the "gua-
nine and cytosine" content (percent GC) was calculated
from the first 100, 2,000 and 5,000 flanking nucleotides
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using the program "geecee" of the EMBOSS package http:/
/emboss.sourceforge.net.

As T. vaginalis genes are mostly intronless all open reading
frames (ORFs) corresponding to protein coding genes
start with a methionine (Met) residue. The location of all
OREFs starting with a Met residue that were at least 100
amino acids in length was determined for all contigs that
contained the four TYMULEs, using the program "getorf"
of the EMBOSS package. Homologs to the most frequent
ORFs associated with each TE were detected by BLASTP
against the non-redundant protein database in GenBank.
Conserved domains were predicted with the « Conserved
domain search » toolbox from NCBI [88] or the MEME
package [89]. The putative occurrence of conserved termi-
nal inverted repeats (TIRs) was analyzed by BLAST 2
sequences [90] and manual inspection.

Phylogenetic Analyses

Additional sequences of Mutator elements and related TE
families from a variety of taxa, including plants, fungi,
protists and bacteria, were obtained from GenBank, Rep-
base Report, TIGR http://www.tigr.org/tdb/e2k1/ehal/
and the BLAST Server of the Sanger Institute http://
www.sanger.ac.uk/cgi-bin/blast/submitblast/
comp_Entamoeba. Highly conserved regions in 56 pro-
tein sequences of Mutator and IS256 were detected using
MEME, with the following parameters: number of differ-
ent motifs = 15; minimum and maximum motif width =
5 and 300 amino acids, respectively. Twelve motifs were
identified, of which motif 1 is conserved in all sequences,
motif 8 occurs with the second highest frequency followed
by motif 4 [see Additional file 2]|. These three motifs are
contiguous in the following orientation: motif 4 — motif
8 — motif 1. The sequences with motifs 4 and 8 were used
as reference for discovering homologous regions by man-
ual inspection in proteins where they were not identified
by MEME due to their higher sequence divergence. The
three motifs were found in 48 of the initial 56 sequences.
This region containing motifs 4, 8 and 1 was extracted and
aligned by CLUSTALW [86] with default parameters; the
alignment was refined manually [see Additional file 3].
Two methods were used to reconstruct the evolutionary
relationships among the sequences: i) neighbor-joining
(NJ) with the JIT substitution model, pairwise deletion
condition and the bootstrap analysis consisted of 1,000
replicates as implemented in MEGA4 [91], and (ii) a baye-
sian analysis, implemented in MrBayes v3.1.2 [92]. Model
settings for MrBayes were as follows: amino acid transi-
tion matrix was set to a mixture of models with fixed rate
matrices (Poisson, Jones, Dayhoff, Mtrev, Mtmam, Wag,
Rtrev, Cprev, Vt, and Blosum) of equal prior probabilities,
site rate variation described by a gamma distribution («
uniformly distributed between 0-200, with 4 rate catego-
ries), and a proportion of invariant sites uniformly distrib-

http://www.biomedcentral.com/1471-2164/10/330

uted between 0.0-1.0. Branch lengths were unconstrained
and described by an exponential distribution (10.0). Two
simultaneous runs of MrBayes, with 4 chains each, ran for
1,500,000 generations. Results were evaluated after a
burn-in period of 10% (150,000 generations) and conver-
gence was achieved (PSRF= 1.00) for all model parameters
estimated, including tree length (mean = 18.8), o =2.28
and the proportion of invariant sites (4%), the amino acid
model (Blosum), and the tree topology (see results).

Trichomonad species and Culture medium

The trichomonad species used in this study are listed in
Table 4. Cultures were maintained in TYM Diamond's
medium [93] as suggested by the American Type Culture
Collection (ATCC), and grown at 36.5°C until reaching 5
x 10¢cells. The samples were collected by low speed cen-
trifugation and washed two times in phosphate-buffered
saline (PBS, pH 7.2).

DNA amplification and sequencing

Amplification of each of the four TUMULEs was performed
with primer sets designed to amplify an internal region of
the transposase domain (Table 5). PCR was done in a vol-
ume of 25 pl with 0.5U of Taqg DNA polymerase in 1x
polymerase buffer, 10 uM of each primer, a 200 uM con-
centration of each ANTP and 1.5 mM MgCl, The solutions
were heated to 94°C for 2 min, and followed by 35 cycles
of denaturation (94°C for 1 min), annealing (60°C for 2
min), and extension (72 °C for 1 min), followed by a final
extension at 72°C for 10 min. PCR products with the
expected size were excised from 1% agarose gels, purified
using GFX™ PCR DNA and Gel Band Purification Kit (GE
Healthcare, Little Chalfont, UK), and cloned using TOPO
TA Cloning Kit (Invitrogen, Carlsbad, CA). To confirm the
identity of the PCR products from the T. vaginalis JT iso-
late, both strands of two clones for each transposon, cho-
sen at random, were sequenced using the BigDye
Terminator mix (Applied Biosystems, Foster City, CA) and
run on an ABI 377 sequencer (Applied Biosystems, Foster
City, CA). The clones were used as probes to confirm DNA
and cDNA PCR amplification of each TvMULE.

DNA and cDNA hybridization analyses

Genomic DNA was extracted from the eight trichomonad
species listed in Table 4 using DNAzol® reagent (Invitro-
gen, Carlsbad, CA), and PCRs run on each sample with
TuvMULE-specific primers. The occurrence of TYMULEs in
different species was confirmed by Southern blot of PCR
products using the detection system Gene Images CDP-Star
detection module (Amersham Biosciences, Little Chal-
font, UK), due to non-availability of total DNA content
sufficient for direct DNA gel blot. Cloned TvMULE trans-
posase fragments were labeled with the chemiolumines-
cent hybridization system Gene Images random-prime
labeling module (Amersham Biosciences, Little Chalfont,
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UK). PCR products were separated in 1% agarose gels and
transferred to Hybond N+ membranes (Amersham Bio-
sciences, Little Chalfont, UK). Blots were prehybridized 1
h at 60°C in 5x SSC, 5% dextran sulfate and 20-fold dilu-
tion of liquid block and hybridized overnight with the
probes of each TuMULEs. Blots were washed twice with
0.2x SSC, 0.5% SDS and exposed to autoradiographic film
for 20 minutes at room temperature.

In order to identify transcriptional activity, PolyA+ RNA
was isolated from total RNA of each species listed in Table
4 using TRIzol reagent (Invitrogen, Carlsbad, CA). 5 pg
polyA+ RNA was used for cDNA synthesis using High
Capacity cDNA Reverse Transcription kit (Applied Biosys-
tems, Foster City, CA) with random primers and Oligo
d(T)12 (Gene Link™, Hawthorne, NY) at low stringency
(37°C). RT-PCR products of each cDNA sample were elec-
trophoresed on 1% agarose gels, and the fragments were
transferred onto Hybond N+ membranes. Prehybridiza-
tion, hybridization, washing and detection were per-
formed as for DNA hybridization.

Abbreviations
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Sequence logo. The vertical axis has a maximum value of 4 and is propor-
tional to the level of sequence conservation at each position. Identical res-
idues or those sharing similar physical or chemical properties are shown in
black if present in all sequences, and in gray if present in the majority of
the sequences. Each sequence name contains the species or TE (if previ-
ously assigned) name, the gi accession number and the coordinates of res-
idues included in the alignment.

Click here for file
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2164-10-330-S1.pdf]

Additional file 2

Summary of 12 motifs identified by MEME in 56 proteins of Trans-
posase from Mutator and 18256 superfamily. The protein length is
shown in the bar scale, except those for which the length is annotated on
the right.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
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Additional file 3

Clustal alignment of the domain found in the transposases from the
Mutator - 18256 superfamily. Five main clades and the region of the
three conserved motifs are shown.
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