
Bioimage informatics

FLINO: a new method for immunofluorescence

bioimage normalization

John Graf 1,*, Sanghee Cho1, Elizabeth McDonough1, Alex Corwin1,

Anup Sood1, Andreas Lindner2, Manuela Salvucci2, Xanthi Stachtea3,

Sandra Van Schaeybroeck3, Philip D. Dunne3, Pierre Laurent-Puig4,

Daniel Longley3, Jochen H. M. Prehn2 and Fiona Ginty1,*

1Department of Biology & Applied Physics, GE Research, Niskayuna, NY 12309, USA, 2Department of Physiology and Medical Physics,

Centre of Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, 123 St. Stephen’s

Green, Dublin 2, Ireland, 3Department of Oncology, Centre for Cancer Research & Cell Biology, Queen’s University Belfast, 97 Lisburn

Road, Belfast, BT9 7AE, Northern Ireland, UK and 4Department of Biology, Hôpital Européen Georges-Pompidou, Assistance Publique -
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Abstract

Motivation: Multiplexed immunofluorescence bioimaging of single-cells and their spatial organization in tissue
holds great promise to the development of future precision diagnostics and therapeutics. Current multiplexing pipe-
lines typically involve multiple rounds of immunofluorescence staining across multiple tissue slides. This introduces
experimental batch effects that can hide underlying biological signal. It is important to have robust algorithms that
can correct for the batch effects while not introducing biases into the data. Performance of data normalization meth-
ods can vary among different assay pipelines. To evaluate differences, it is critical to have a ground truth dataset
that is representative of the assay.

Results: A new immunoFLuorescence Image NOrmalization method is presented and evaluated against alternative
methods and workflows. Multiround immunofluorescence staining of the same tissue with the nuclear dye DAPI
was used to represent virtual slides and a ground truth. DAPI was restained on a given tissue slide producing mul-
tiple images of the same underlying structure but undergoing multiple representative tissue handling steps. This
ground truth dataset was used to evaluate and compare multiple normalization methods including median, quantile,
smooth quantile, median ratio normalization and trimmed mean of the M-values. These methods were applied in
both an unbiased grid object and segmented cell object workflow to 24 multiplexed biomarkers. An upper quartile
normalization of grid objects in log space was found to obtain almost equivalent performance to directly normalizing
segmented cell objects by the middle quantile. The developed grid-based technique was then applied with on-slide
controls for evaluation. Using five or fewer controls per slide can introduce biases into the data. Ten or more on-
slide controls were able to robustly correct for batch effects.

Availability and implementation: The data underlying this article along with the FLINO R-scripts used to perform the
evaluation of image normalizations methods and workflows can be downloaded from https://github.com/GE-Bio/
FLINO.

Contact: graf@ge.com or ginty@research.ge.com

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Revealing true biology from experimental error and noise has always
been a challenge. It is especially challenging for high content data gener-
ated from microarrays (Johnson, 2007; Leek, 2012; Zhang, 2018),
RNA-sequencing and more recently, multiplexed immunofluorescence
(MxIF) bioimaging, where tissue sections are repeatedly stained and/or
imaged, followed by single-cell segmentation and generation of millions
of data-points for spatial cell biomarker analysis (Gerdes et al., 2013;
Kennedy-Darling et al., 2021). Evolving standards in RNA sequencing
now allow robust batch correction and comparison across studies
(Anders and Huber, 2010; Birmingham, 2009; Espin-Perez, 2018;
Maza, 2016, Evans, 2018; Mortazavi, 2008; Robinson and Oshlack,
2010). Such standards do not yet exist for MxIF bioimaging and the
field is quickly evolving with novel methods being proposed (Andrews
and Rutherford, 2016; Chang, 2020; Van Eycke, 2017), but there are
limited comparisons of methods (Ahmed Raza, 2016; Caicedo, 2017)
and evaluation in context of a biological ground truth.

Generating MxIF bioimages is a complex multiple step process.
Experimental variability, can arise from the tissue slide preparation,
including initial histological processing and antigen retrieval.
Furthermore, multiround immunofluorescence staining and imaging of
tissue slides can introduce additional biases including tissue loss, de-
formation, tissue autofluorescence, nonspecific staining and sample deg-
radation over time due to handling. Preanalytical conditions such as
storage temperature, decalcification and time to formalin fixation can
result in protein, RNA and DNA degradation (Bass et al., 2014).
Depending on sample dimensions, the duration of sample fixation in
formalin can lead to under- or over-fixation, which can affect protein
integrity and result in reduced sensitivity (Forest, 2019; Magaki, 2019;
van Seijen, 2019). Engel and Moore (2011) identified 15 preanalytic
variables (fixation delay, fixative type, fixative concentration, pH and
buffer, time in fixative, reagents and conditions of dehydration, clearing
reagent and temperature, paraffin-embedding temperature and dur-
ation, and condition of slide drying and storage) that can impact an
immunohistochemistry test. Particularly in the last 10 years, there is an
increasing amount of control over these preanalytical factors in the clin-
ical and research setting (Engel et al., 2014), but older samples (>10–
20 years), important where long-term outcome of patients is desirable,
may have been processed under more variable conditions, as well as
undergoing aging and oxidation over time.

Typically tissue analysis is conducted as single sections on slides, or
multiple patient cores (�50 to 250) spread across one or more tissue
microarrays. To avoid signal bias, an ideal study design includes ran-
dom distribution of patient samples in batches (if working with a large
number of single sections), or randomly distributed patient cores across
multiple slides. Control tissue sections or cell lines are also highly desir-
able to ensure technical robustness and potentially improve quantitation
but are often not used. Methods have been developed that attempt to
identify negative control cells from within a sample for each marker
and use their intensity levels to determine the background signal to be
used to remove intraimage variation (Chang et al., 2020).

One requirement when comparing normalization methods and
workflows is the need for a ground truth dataset. One approach is
to generate and use simulated data images with a known ground
truth to judge and compare methods and workflows (Svoboda,
2009; Ulman, 2016; Watabe, 2015; Wiesmann, 2013, 2017;
Wiesner, 2019). A drawback of the simulated data approaches is the
reliance on a theoretical error model. Selecting an error model that
represents the batch and processing errors of the sample preparation
and bioimaging pipeline is not trivial. Some experimental errors are
systematic while others are random. Therefore, one must select and
tune a theoretical error model to properly model both systematic
and random error contributions observed in the actual assay.

A multiyear retrospective study on biomarkers of recurrence in
stages II and III colorectal cancer using tissue samples from multiple
sites provided the impetus to evaluate both historical and new meth-
ods of normalization. In previous studies, we have routinely applied
a median normalization method to correct MxIF bioimages. The
method is robust, fast and simple to implement, but had not previ-
ously been benchmarked against other methods. In this article, we
performed a benchmarking analysis that compared it with

alternative normalization methods and workflows. We first
assembled a list of normalization methods from the literature
(Bullard, 2010; Hicks, 2018; Maza, 2013; Robinson and Oshlack,
2010; Tarazona, 2011, 2015). Next, we devised an approach that
allowed us to test and evaluate each normalization method against
the same ground truth for a fair apple-to-apple comparison. Finally,
we performed testing of the methods and workflows across different
scenarios including 24 biomarkers that were multiplexed across
three tissue microarray slides, and including slides with and without
control samples. Our findings show the performance of each and
suggest the power of a new grid-based object workflow
[immunoFLuorescence Image NOrmalization (FLINO)] to reliably
normalize MxIF bioimages.

2 Materials and methods

2.1 Overview of bioimage normalization workflows
Translating raw immunofluorescent bioimages into quantitative

biological features is a multistep process that typically involves a
normalization step to correct for systematic errors (i.e. batch effect)
and offsets between images between and of the same slide. Figure 1
presents the bioimaging workflow steps including the preprocessing
of raw images, aggregating pixels from the images into objects, fil-
tering objects on quality metrics, normalizing objects across slides,
correcting the images and finally segmenting the corrected images
into biological relevant features for downstream analysis. Raw
image preprocessing includes field-of-view (FOV) illumination cor-
rection, distortion correction, image registration across multiple
rounds of staining and imaging and autofluorescence removal. Each
of these preprocessing steps can introduce systematic errors into the
slide images above those that originate from the tissue slide prepar-
ation, staining and microscope imaging process steps.

Two normalization workflows are illustrated in Figure 1 that are
conducted after the raw MxIF images have undergone preprocess-
ing: a segmented object workflow and a grid-based object workflow.
Both workflows begin by aggregating individual pixels into objects.
The intensity value for an object is defined as the mean of the pixel
intensities contained within the object. The segmented object nor-
malization workflow uses one or more image channels (e.g. nuclear
staining intensity such as DAPI) to delineate objects and consequen-
tially classify pixels as either belonging to a specific object or exter-
nal to all objects (i.e. background). The grid-based approach
aggregates all image pixels into grid objects defined by a regularly
spaced grid. The grid size can range from the size of one pixel up to
aggregating all pixels of the entire image into one grid.

The grid-based object workflow is unbiased and does not ex-
clude bioimage regions unlike the segmented object workflow.
Immunofluorescence staining of antigen targets are distributed
according to actual protein expression and not necessarily limited to
segmented objects. Another major difference is that the step of nor-
malizing the bioimages across the staining channels occurs prior to

Fig. 1. Overview of the workflows for normalizing bioimages and intensities of bio-

logical features across virtual slides
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segmenting pixels into cell objects for the grid-based object work-
flow. A third difference between the two workflows is that the num-
ber of segmented objects per bioimage may vary due to tissue and

cell density variations while the grid-based object workflow will
have a constant number of objects across all bioimages.

An evaluation step is conducted at the end of the two normaliza-
tion workflows (right side in Fig. 1). This step is the primary object-

ive of our benchmarking effort in evaluating and comparing
multiple normalization methods. We developed an approach for this
evaluation step that utilized virtual slides based on real DAPI stain-

ing and imaging data along with a metric to quantify the error. This
allowed us to judge each method and normalization workflow

against an empirical ground truth versus a theoretically derived one.
DAPI was selected as the marker to evaluate the normalization
workflows because DAPI staining of a tissue slide is repeatedly

refreshed and reimaged in each round of the MxIF workflow. DAPI
is a very useful marker and is used for image registration and to ac-
cess if the same underlying nuclear structures are present throughout

all rounds of staining and imaging. The nuclear structures that DAPI
stains become the empirical ground truth and each round of DAPI

staining and imaging becomes a virtual slide.

2.2 Tissue samples and generation of bioimages
Full details on the tissue samples and generation of bioimages
including each round of staining and imaging within the MxIF

workflow (Supplementary Tables S1 and S2) is available in
Supplementary Material, but briefly: Tissue samples from deidenti-
fied stage III colorectal cancer (CRC) patients were obtained from

Beaumont Hospital/RCSI, Dublin, Ireland, Queen’s University
Belfast, Northern Ireland and Paris Descartes University, Paris,
France. Three tissue microarray (TMA) blocks were constructed

comprising of 79 patient tumor cores and 6 formalin-fixed, paraffin-
embedded cell pellets (i.e. cell lines). Formalin-fixed, paraffin-

embedded cell pellets of cell lines (HeLa, HCT116 XIAP-KO,
MCF7, JURKAT) were included in the three TMAs. The TMA slides
underwent multiplexed immunofluorescence (MxIF) microscopy at

GE Global Research. A detailed description of the multiplexed mi-
croscopy technique and single-cell analysis has been described previ-

ously (Gerdes, 2013). The platform used herein (Cell DIVETM,
Leica Microsystem) allows for an iterative staining, imaging (on a
IN Cell 2200) and a chemical dye inactivation workflow for over 60

biomarkers on a single tissue section with automated calibration
scripts providing objective centration and focus, blank glass subtrac-

tion, distortion correction and field flattening. Postprocessing of the
images includes autofluorescence subtraction, registration with
baseline DAPI and region stitching. The TMAs were stained with 24

biomarkers (iterative staining steps with two biomarkers stained per
round), including apoptosis pathway markers, BAK, BAX, BCL2,
Bclxl, SMAC, XIAP, APAF, Caspases and MCL1; Immune cell/re-

sponse markers: CD3, CD4, CD8, CD45, FOXP3, PD1, HLA1;
Epithelial cell markers: PCK26, NaKATPase, cytoplasmic S6 and

functional markers: CA9, Glut 1 and Ki67 (see Supplementary
Table S1 for more details). All antibodies underwent extensive valid-
ation prior to multiplexing (workflow described in supplementary

data of Gerdes et al. (2013) and Berens et al. (2019), starting with
evaluation of staining sensitivity and specificity of the primary–sec-

ondary clones compared to isotype controls in a multi-tissue array
containing 15 cancer types (MTU481, Pantomics, CA). This was fol-
lowed by simulation of the dye inactivation process for up to 10

times and evaluation of staining performance, and finally direct con-
jugation of each antibody which is necessary for the multiplexed

staining process and avoidance of cross-reactivity issues. Staining
patterns for all biomarkers was compared and verified against
known positive and negative controls or cell types, data from the

Human Protein Atlas and/or prior staining data by the research
team. DAPI is refreshed and imaged in each staining/imaging round
and used for image registration.

2.3 Normalization methods
We assembled a list of normalization methods and workflows from
the literature that are summarized in Table 1 and described in
greater detail in Supplementary Material and Supplementary Table
S3. Median normalization is defined (Equation 1) as an additive
transformation shifting the intensity of all objects within an image
to a global median without changing the spread in the intensity dis-
tribution of objects within the image. For example, the normalized
intensity of object j found in image k (Inorm

k;j ) is equal to the raw in-
tensity of object j in image k (Iraw

k;j ) shifted by the differences in the
median intensity for all objects across all images (Median Irawð Þ)
minus the median intensity of all objects within image k
(Median Iraw

k

� �
).

Inorm
k;j ¼ Iraw

k;j þ Median Irawð Þ �Median Iraw
k

� �h i
(1)

The quantile normalization methods (e.g. Q50, Q75) scale the
raw intensity values by means of a multiplicative transformation
(Equation 2). The normalized intensity of object j found in image k
is equal to the raw intensity of object j multiplied by the ratio of the
quantile intensity for all objects across all images (Quantile Irawð Þ)
divided by the quantile intensity of all objects within image k
(Quantile Iraw

k

� �
Þ:

Inorm
k;j ¼ Iraw

k;j

Quantile Irawð Þ
Quantile Iraw

k

� � (2)

We implemented both the median and quantile normalization
methods as a function in R because of their simplicity. For all other
normalization methods listed in Table 1 including Smooth Quantile
Normalization, Median Ratio Normalization and Trimmed Mean
of the M-values, we downloaded their implementation in R pack-
ages from Bioconductor.org that included: qsmooth (Hicks, 2018),
fCI (Tang, 2016) and NOISeq (Tarazona, 2011, 2015).

2.4 Virtual slides and ground truth definition
To benchmark multiple normalization methods, we defined a metric to
quantify the differences between a set of evaluation objects across a ser-
ies of virtual slides. We utilized 14 rounds of DAPI restaining and
imaging of the same physical TMA slide to represent our ground truth.
We abstracted the individual rounds of DAPI staining and imaging to
represent virtual slides. Each virtual TMA slide is the exact same 85
physical samples that have undergone a set of experimental conditions
that introduce both random variation and systematic offsets between
the virtual slides. Some of the systematic offsets introduced by lab tech-
nicians were known and electronically recorded. For example, the ex-
posure time for the DAPI imaging was changed in a known amount
between the virtual slides (rounds of imaging). The exposure time was
either 20, 50 or 100 milliseconds for specific virtual slides which intro-
duces known systematic offsets between the virtual slide images.
Supplementary Table S2 presents the details for each virtual slide. A se-
cond known batch effect was the time of consecutive processing of the
physical TMA slide; this was electronically captured via time stamps.
The last virtual slide was stained and imaged 43 days after the staining
and imaging of the first virtual slide. The time interval between staining
of each virtual slide was not equivalent and ranged up to a maximum
of 14 days. There are other batch effects that occurred in the empirical-
ly derived virtual slide data. For example, the DAPI stain on the physic-
al slide is refreshed for each round with several changes in the chemical
lot of DAPI solution used over the course of the 14 staining rounds.

Evaluation objects (EO) were defined and used to compute the
differences across the virtual slides. The virtual slides are the same
physical slide and thus contain the same physical samples, and con-
sequently contain the same evaluation objects. The exact same
evaluation objects were used to quantify and compare the perform-
ance for all methods and for both the segmented object and grid-
based object workflows.

Overall, there were 297 430 nuclei objects generated by seg-
menting the DAPI images from the first TMA slide. A subset of
these can be selected to become evaluation objects by prefiltering
objects of lower quality prior to normalization. First, we filtered
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out the smallest and largest segmented nuclei objects. The area of
the DAPI segmented nuclei objects ranged from 62 to 14 500 pix-
els2 (Supplementary Table S4). The 10% and 90% quantiles from
the distribution of all nuclei object areas were selected as the toler-
ances to filter by object size. Next, we filtered out objects that
were not of sufficient image quality. Image correlation metrics
(Bello, 2008) that measure alignment of a cell object’s pixels be-
tween rounds of successive DAPI staining was used to characterize
an object’s image quality. Objects with less than 90% correlation
across all 14 rounds of DAPI staining and imaging were filtered
out. Filtering for both size and image quality resulted in 144 315
ground truth evaluation objects being selected out of all 297 430
nuclei objects.

2.5 Metrics to quantify and compare methods and

workflows
We utilized the coefficient of variation (CV) as a metric to quantify
the error in the intensity value for an individual evaluation object
across the multiple rounds of staining and imaging (i.e. virtual
slides). The intensity of an evaluation object is the mean of image
pixel intensities contained within each evaluation object’s bounda-
ries. We define EO[i, k] to be the intensity for the ith evaluation ob-
ject for the kth virtual slide. The coefficient of variation for the ith
evaluation object EO-CV(i) is defined (equation 3) to equal to the
standard deviation (rÞ of the intensity distribution for the ith evalu-
ation object across the Ns virtual slides divided by the mean (l) of
the same distribution.

EO� CVðiÞ ¼ r
l

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNs

k¼1 EO i; k½ � � lð Þ2

Ns

s
l ¼

PNs

k¼1 EO i;k½ �
Ns

ð3Þ

Each evaluation object represents the same physical nuclei there-
fore the variance in the intensity is a result of systematic offset
errors and random measurement noise. The EO-CV metric quan-
tifies the variance in the intensity value of the evaluation object
across the virtual slides that includes both contributions from sys-
tematic errors that in principle can be eliminated by a normaliza-
tion method and random errors that cannot. A perfect
normalization method would remove all experimental batch
effects and the CV for the evaluation object would approach a
limiting value that is dependent only upon the standard deviation
of the measurement noise relative to the true intensity of the ob-
ject and the number of slides being normalized. Under the condi-
tion of normalizing an infinite number of slides, the CV limit is
the standard deviation of the measurement noise divided by the
object’s true intensity value.

The mean of the EO-CV(i) distribution (MEO-CV) across
all evaluation objects (NE ¼ 144 315) is what we used to quantify
the performance of a normalization method under a given test
scenario.

MEO� CV ¼
PNE

i¼1 EO� CVðiÞ
NE

(4)

2.6 Test scenarios to evaluate normalization methods

and workflows
We applied each normalization method and then computed its
MEO-CV metric for each of 29 test scenarios. Each test scenario
involved correcting the images from a specified subset of the 14 vir-
tual slides. Details of each test scenario are presented in
Supplementary Table S6. We applied both biased selection as well as
random selection to define the virtual slide subsets for the test scen-
arios. For example, we forced the creation of test cases correcting
virtual slides across and within known imaging exposure times. We
created test cases that considered correcting virtual slides that were
stained and imaged consecutively over a short period of time and
other cases that were generated over weeks of time. Finally, we
forced the cases of correcting 2, 3, 10 and 14 virtual slides. We also
used random selection to generate some of the test cases at correct-
ing 2 and 3 virtual slides.

3 Results

3.1 Comparing normalization methods in a segmented

object workflow
We began our evaluation by first comparing the performance of
each normalization method to correct the systematic error (i.e.
batch effects) across the virtual slide images. We used all 297

Table 1. List of normalization methods that were evaluated

Normalization Method

� Median normalization

� Q50 and Q75: 50% and 75% quantile normalization

� SQUA: smooth quantile normalization (Hicks, 2018)

� UQUA: upper quartile normalization (Bullard, 2010)

� MRN: median ratio normalization (Maza, 2013)

� TMM: trimmed mean of the M-values (Robinson and Oshlack, 2010; Tarazona, 2011, 2015)

Fig. 2. Performance of normalization methods for DAPI-segmented nuclei objects.

(A) The bar chart presents the performance of six normalizations across 29 test

scenarios relative to the uncorrected case (left most bar). The horizontal red dashed

line in the bar chart located at 0.0738 is achieved by the TMM method when

applied in log space (right most bar). The height of each bar represents the median

of the MEO-CVs across the 29-test scenarios. Within each bar, there is a vertical

line segment that represents the range in the 29 test values. The mean of the test

cases is represented by a thicker horizontal line segment that is near the height of

each bar. The two inset line plots (B, C) present 14 lines each representing a differ-

ent virtual slide. The y axis is the median of the evaluation objects within each of

the 85 TMA sample positions. The upper line plot (B) presents the uncorrected data,

and the lower line plot (C) presents the data after normalizing using the 50%

Quantile (Q50) method in log space. The horizontal dashed lines represent the glo-

bal median intensity of all evaluation objects across all sample positions and virtual

slides pre (B) and post (C) normalization, respectively
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430 nuclei objects for the segmented object normalization work-
flow. Unless otherwise noted, we ran 29 test scenarios
(Supplementary Table S6) for each normalization method in
which 2, 3, 10 or 14 virtual slides were corrected. Figure 2A
presents the performance and comparison of multiple normaliza-
tion methods (see Supplementary Fig. S3 and Supplementary
Table S7 for results of all normalization comparisons). We found
all six normalization methods reduced the slide-to-slide error
(ANOVA P-value < 1E�16) for the evaluation objects as quanti-
fied by the MEO-CVs across the 29 test scenarios. All methods
performed better in log space versus absolute space except for
the SQUA method (Supplementary Table S7). The trimmed mean
of the M-values (TMM) and median ratio normalization (MRN)
methods applied in log space performed the best reducing the
slide-to-slide error by approximately 10-fold and were found not
to be statistically different from each other (Wilcoxon rank sum
test with Bonferroni correction P-value ¼ 0.93). Figure 2B and C
presents one example of a test scenario involving the correction
of 14 virtual slides before and after normalization respectively.
The full distributions of DAPI intensities for the segmented nu-
clei objects pre- (Fig. 2B) and post- (Fig. 2C) normalization is
presented in Supplementary Figure S4.

3.2 Impact of filtering objects prior to image

normalization
We next evaluated the approach of filtering low image quality cell
objects prior to inputting them into the bioimage normalization
method. Our hypothesis was that by prefiltering objects of lower
image quality prior to normalization would subsequently improve
the slide-to-slide error correction. Surprisingly, we learned that the
best performance in error correction was achieved by using all 297
430 nuclei objects when performing normalization (Supplementary
Fig. S5). The image quality metric we used for filtering was the
object’s pixel correlation across all 14 rounds of DAPI staining and
imaging. If the correlation of pixels is low, then there is either blur-
ring, tissue movement, or even tissue loss that has occurred across
the imaging rounds. Moderate to low quality objects still provide
good information when correcting errors and offsets. For example,
very slight tissue movement or very slight image blurring can lead to
a reduction in an object’s pixel correlation and thus its assessed
imaging quality. However, the object’s mean intensity value com-
puted as the mean of the pixel values within the object’s boundaries,
can remain relatively constant. Therefore, it may be a blurry object,
but its intensity value is still informative from the perspective of nor-
malizing bioimages.

3.3 Evaluating a grid-based object workflow to

normalize bioimages
We evaluated a grid-based object normalization approach to deter-
mine if it could achieve the same level of performance to normaliz-
ing segmented objects (e.g. nuclei) directly. We started by first
understanding how the grid size impacted the normalization per-
formance. Evaluations were conducted on grid sizes that ranged
from an entire FOV (2560 � 2160 pixels2) down to a square grid
size of 16 (15 � 15 pixels2). The median area for the nuclei seg-
mented objects is 203 pixels (Supplementary Table S4) which is ap-
proximately equal to the area of a grid size of 16 (Supplementary
Table S5). We found that a grid size of 32 produced the best per-
formance, achieving a median value of 0.0741 for the MEO-CVs
across the 29-test scenarios (Supplementary Fig. S6A). A grid size of
32 had a 9.2% improvement versus using the whole image
(Wilcoxon rank sum test with Bonferroni correction P-value ¼
4.7E�05). Furthermore, using a grid size of 32 had only a slight re-
duction of 0.4% in the MEO-CVs versus the TMM method applied
directly to the nuclei objects (0.0741 versus 0.0738, P-value ¼
0.092). Thus, the unbiased grid-based approach can achieve similar
performance (see Supplementary Fig. S7 comparing distributions) as
the TMM method applied directly to the segmented nuclei objects.

Supplementary Figure S6B presents the quantile normalization
using quantiles that ranged from 50% up to 100% (Q50 to Q100).

The 75% quantile (Q75) achieved the best performance. The Q50
method had a 42% loss in performance as did the MRN and TMM
methods when applied to the grid objects. In contrast, when normaliz-
ing segmented nuclei objects directly, the Q50, MRN and TMM meth-
ods achieved the best performance (Fig. 2A, Supplementary Fig. S3).

3.4 Using on-slide controls to normalize bioimages
We next wanted to evaluate the use of on-slide tissue and cell-line con-
trol samples. To assess their use in normalization, we conducted a ser-
ies of virtual slide normalization simulations that used different
numbers of control samples to correct either two or three virtual
TMA slides. There were 27 test scenarios in all. For each of these we
performed random selections of control samples from each virtual
TMA slide. As illustrated in Figure 3A, the randomly selected control
samples for each virtual slide were constrained such that a randomly
selected sample used as a control on one virtual TMA slide could not
be selected and used as a control on any other virtual slide.

Figure 3B presents the results and shows that ten or more
on-slide controls are required for robust normalization. Relying on
five or less control samples can be detrimental. In other words, by
relying on only a few controls there is an unacceptable probability
that the error in the data will increase after normalization relative to
the original uncorrected data. Even with five controls, the probabil-
ity that the controls would be of limited value in reducing the batch
effects between slides is still relatively high as indicated by the range
observed in our simulations (Fig. 3B). Using ten to twenty controls
reduces the range to a more acceptable level but comes with the cost
of reducing the number of available positions for experimental sam-
ples within the TMA. Our simulations show that by using 5 control
samples, the median of MEO-CVs that is achieved across the 270
(27 � 10) test simulation runs was 0.134 which is 36% higher in
error than when using 20 control samples.

3.5 Demonstration of grid-based object normalization

performance
We applied the grid-object normalization workflow to 24 multi-
plexed biomarkers imaged on each of three TMA slides. As an ex-
emplar, Figure 4 presents the median image intensity for the staining
of the BCL2 associated X, apoptosis regulator (BAX) protein across

Fig. 3. The effect of control sample number on error correction of TMA slide

images. A limited number (1, 2, 3, 4, 10 or 20) of control samples and their images

were used to normalize virtual TMA slide images. Each normalization was per-

formed 10 times in which TMA samples were randomly selected and used as con-

trols for normalization. The random selection of control samples for each virtual

slide was constrained such that a randomly selected sample used as a control on one

virtual TMA slide could not be selected and used as a control on any other virtual

slide. An example is illustrated (A) in which five control samples are randomly

selected from three virtual TMA slides. The bar chart (B) presents the performance

of applying the Q75 normalization method in log space to the grid objects of size 32

from the control samples on each virtual slide. After normalizing the images, the

evaluation of nuclei objects across all 85 samples from the virtual TMA slides was

used to compute the MEO CVs. The computed performance was based on 27 test-

ing scenarios that involved either 2 or 3 virtual slides. The ‘None’ case (left most

bar) is the uncorrected data with a median value of 0.728. This value is slightly dif-

ferent than the uncorrected data presented in Figure 2 that included two additional

test scenarios. The horizontal red dashed line is located at 0.0738 in the bar chart
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85 samples that includes both CRC tissues and cell lines. The BAX
staining intensity for slide A3 (Fig. 4A) is distinctly lower than the
corresponding slides A1 and A2 for the uncorrected images of each
of the four cell lines. BAX is a member of the Bcl-2 protein family
and is proapoptotic (Oltvai, 1993). A decrease in BAX staining may
indicate less sensitivity to apoptosis when comparing different cell
lines. However, each individual cell line sample on each physical
slide is from the same paraffin-embedded cell pellet. Furthermore, a
reduction in BAX protein levels is unlikely to occur proportionally
across four cell lines under physiological culture growing conditions.
This reduction in BAX intensity for slide A3 versus the other two
slides is purely an experimental artifact (i.e. slide to slide batch ef-
fect). To prevent false biological discoveries, it is critical to remove
this artifact from the data prior to downstream analysis. We applied
the grid-based object normalization workflow with grids of 32 pix-
els in size and the Q75 method applied in log space. The normalized
data presented in Figure 4A shows approximately equivalent BAX
staining intensity across the three slides and the relative proportions
across the four cell lines is now constant across the three slides.
Figure 4B presents the uncorrected and normalized images of the
BAX staining across the three slides for the HeLa cell line.
Supplementary Table S10 summarizes the performance of the grid-
based object normalization workflow assessed by four cell lines
across 24 independent fluorescently labelled antibody markers that
were analyzed on the same slides. We finally applied Uniform
Manifold Approximation and Projection (UMAP) to visualize the
high-dimensional data before and after normalization. The UMAP
plots (Supplementary Fig. S8) clearly show a batch effect between
the three slides with serial tissue slices prior to normalization which
is then eliminated after the grid normalization method is applied.
This provides a clear demonstration of the ability of the grid-based
object normalization workflow to reduce the batch effects for fluo-
rescently labelled antibody markers in addition to DAPI in real data.

4 Discussion

The main goal of our work was to both evaluate published normal-
ization methods and test a new normalization method for correction

of experimental errors and batch variation between multiplexed im-
munofluorescence bioimages. The biggest initial challenge we faced
was simply defining a ground truth to judge all the methods against.

Without a ground truth, the value of any comparative analysis
becomes limited. We generated a ground truth dataset from multi-

round staining and imaging of the same marker in the same tissue
with each round representing a ‘virtual slide’ image. These virtual
slides consist of the same physical tissue, include actual batch proc-

essing errors and noise, and serve as the ground truth necessary to
compare multiple methods and workflows.

Our virtual slide ground truth approach does have its limitations
when it comes to approximating batch effects in epitope-antibody

staining and imaging. For example, there may be significant differ-
ences between antibody permeability arising from differences in
slide section thickness, access to binding sites and difference in bind-

ing affinities, or off target binding and background staining. These
potential limitations of our virtual slide approach still need to be
further studied and understood. Nevertheless, we are encouraged by

our results at applying the grid-object normalization workflow to 24
independent fluorescently labelled antibody markers.

We examined the unbiased grid-based object workflow to nor-
malize images prior to segmenting the bioimages into cell objects.

When compared to the workflow of normalizing segmented cell
objects directly, we found the differences in performance (0.4%) to
be statistically insignificant (P-value > 0.05). With the performance

being almost equivalent, the grid-based object workflow has the
additional advantage of performing normalization of the bioimages

across the staining channels prior to segmenting pixels into cell
objects. This can improve global intensity thresholding for segmen-
tation, identifying cell type classification and performing unsuper-

vised clustering based on cell marker intensity levels.
We found that filtering of objects prior to bioimage normaliza-

tion did not improve performance in error correction. Most normal-
ization methods that we evaluated (TMM, MRN, median, Q50,
Q75) are robust to the presence of outlier and experimental artifact

object values. In a situation where you have potentially lower qual-
ity information which can be randomly distributed across both high

and low values, the use of the median tends not to be impacted by
the presence of outlier data.

This use of quality control samples becomes increasingly import-
ant to normalization approaches when the slides cannot be bal-
anced. Unbalanced situations can occur if there are significant mean

differences between slides such as tissue type, tissue morphology,
cell type, cell density, cancer stage and other factors impacting pro-

tein expression. In that case, it may be more appropriate to redesign
the TMA slides to be more balanced for types of samples. For the
case of balanced TMA slides, we found that normalizing across all

samples achieves improved performance relative to normalizing
based on a small number of quality control tissues or cell lines.

Suboptimal performance (36% loss) was achieved with five controls
per slide. We found that relying on only one or two controls on a
slide had an unacceptable probability of amplifying errors upon nor-

malization. Consequently, the normalized data were further from
the ground truth than the original uncorrected data. Using ten to
twenty controls per slide improved the performance but with a cost

of having a portion of the TMA being devoted to control samples.
However, one further benefit of having a larger number of control

samples available is the ability to set aside some of them to validate
if the normalization process itself is introducing biases into the data.
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