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Abstract: Hypertension is the leading risk factor for premature death worldwide. The identification
of modifiable causes of hypertension remains an imperative task. We aimed to investigate associations
between 79 proteins implicated in cardiovascular disease and longitudinal blood pressure (BP)
changes in three Swedish prospective cohorts. In a discovery phase, we investigated associations
between baseline circulating protein levels assessed with a proximity extension assay and BP stage
progression at follow-up 5 years later among persons without BP-lowering drugs at baseline in two
independent community-based cohorts from the Prospective Investigation of the Vasculature in
Uppsala Seniors study (PIVUS) and the Uppsala Longitudinal Study of Adult Men (ULSAM). We used
an independent cohort, the Malmö Diet and Cancer Study (MDC), for replication. The primary
outcome of BP stage progression was defined as per the 2017 AHA/ACC (American Heart Association/

American College of Cardiology) Guideline BP categories. We also investigated associations of protein
levels with changes in BP on a continuous scale, and meta-analyzed all three cohorts. Levels of
renin were associated with BP stage progression with a 5% false discovery rate (FDR) in the ULSAM
(n = 238) and PIVUS (n = 566) cohorts, but we could not replicate this association in the MDC cohort
(n = 2659). The association in the discovery cohorts was modest, with an odds ratio for BP stage
progression over 5 years of 1.33 (95% confidence interval 1.14 to 1.56) per standard deviation of
baseline renin. In conclusion, we could not find any novel robust associations with longitudinal BP
increase in a proximity extension assay-based proteomics investigation in three cohorts.
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1. Introduction

Hypertension is a major cause of cardiovascular disease and the leading risk factor for global disease
burden [1]. Given the immense public health burden, identification of modifiable causes of hypertension
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is imperative. Genetic variation is estimated to explain 20–40% of the variation in blood pressure
(BP) in the population [2,3]. Numerous physiological alterations have been described in hypertensive
individuals, including endothelial dysfunction [4,5], vascular hypertrophy [6,7], cardiac ventricular
hypertrophy [8,9], neurohormonal and enhanced sympathetic tone [10,11], abnormalities of renal
sodium handling [12,13], reduced fibrinolytic potential [14–16], systemic inflammation [17–23], and
enhanced oxidative stress [24]. Some of these factors may be involved in hypertension pathophysiology,
but the additional predictive ability of novel biomarkers for hypertension beyond readily available
clinical information has been limited [25]. Some circulating biomarkers, such as C-reactive protein
(CRP) [19,25–29], plasminogen activator inhibitor-1 [16,25], and aldosterone [30], have been associated
with incident hypertension, but results have been conflicting [31–33].

Recent technological progress has made the simultaneous measurement of multiple proteins
possible, as recently illustrated using a panel of proteins targeted towards cardiovascular disease [34,35].
We hypothesized that these proteins are important also for BP progression. We aimed to explore
associations of 92 proteins involved in cardiovascular disease with subsequent BP progression using
three population-based cohorts.

2. Materials and Methods

2.1. Samples

2.1.1. The Prospective Investigation of the Vasculature in Uppsala Seniors Study (PIVUS)

Between 2001 and 2004, all 70-year-old men and women living in Uppsala, Sweden, were eligible
for the PIVUS study [36,37]. Among the 2025 individuals who were invited (random selection), 1016
(507 women and 499 men) took part in the investigation (50.1%). A second examination cycle of PIVUS
was performed in 2006–2009 when the participants were 75 years old. Of the 964 invited participants,
827 (86%) agreed to the study. In all, the present study sample comprised those 566 individuals
who were not under anti-hypertensive treatment at baseline and who provided useful data from the
proteomic assay at baseline, data on BP at baseline and at follow-up, and covariates.

2.1.2. Uppsala Longitudinal Study of Adult Men (ULSAM)

The ULSAM study was initiated in 1970. All 50-year-old men born between 1920 and 1924 and
living in Uppsala, Sweden were invited to a health survey focusing on identifying cardiovascular
risk factors [38,39]. The participants were thereafter invited to examinations at age 60, 70, 77, 82, and
88 years. The present study used the fourth examination cycle as the baseline, when the participants
were about 77 years old (1998–2001). Of the 1398 invited men, 838 (60%) participated; 172 were
excluded due to lack of plasma for proteomics analysis, and thus 786 were analyzed using the
proteomics assay. We used the fifth examination cycle (2003–2005) as a follow-up examination when
participants were approximately 82 years old. Among 952 men living in Uppsala, 530 men (56%)
participated in this examination. The study sample consisted of 238 men after excluding individuals
under antihypertensive treatment, those with missing data on covariates, and those with missing BP
measurements at any of the examinations.

2.1.3. The Malmö Diet and Cancer Study (MDC)

The MDC is a prospective population-based study performed between March 1991 and October
1996 designed to elucidate the correlation between diet and other lifestyle factors on the risk of
developing cancer [40]. All men born between 1923 and 1945 and women born between 1923 and 1950
living in the city of Malmö were invited to this study. BPs, proteomics analyses and other cardiovascular
risk factors were measured in a random subsample of 6103 persons at baseline, which comprised the
present study sample. A follow-up examination with measurements of BPs was performed on average
16 years later with the same strategy as the PIVUS and ULSAM. A total of 3734 subjects participated
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(76% of eligible population). Individuals with antihypertensive treatment at baseline, (n = 507), missing
BP measurement/s at baseline or follow-up (n = 42), and missing protein biomarker measurement/s
(n = 553) were excluded. The remaining 2659 participants were included in the replication sample [41].

2.2. Ethical Considerations

All participants in all cohorts gave written informed consent and the ethics committees of the
host universities approved the study protocols (Dnr. 251/90 and 97/329 for the ULSAM; Dnr. 00419,
2005/M-079 for the PIVUS, and LU51/90, LU 2011/537, LU 2012/762 for the MDC). All studies were
conducted according to the Declaration of Helsinki.

2.3. Baseline and Follow-Up Investigations

After an overnight fast, all participants were examined in the early morning. No medication or
smoking was allowed after midnight. The subjects were asked to complete a questionnaire surveying
smoking behavior, previous medical history, and current regular medication. Height, weight, and
body mass index (weight (kg)/height2 (m), BMI) were measured under standardized conditions.
Waist circumference was measured at the umbilical level. BP was measured by a calibrated mercury
sphygmomanometer. In the ULSAM cohort, a nurse or physician measured BP twice in the right
arm to the nearest even number after a 10-min rest in the supine position, and a mean value was
calculated. In the PIVUS, BP was measured to the nearest 1 mmHg after at least 30 min of rest in a
supine position, and the average of three recordings was used. In the MDC cohort, supine systolic and
diastolic BP were measured after 10 minutes of rest using a mercury sphygmomanometer. Fasting
blood glucose and lipids were measured by standard techniques [42]. In the PIVUS, serum cystatin
C was measured by latex-enhanced reagent (N Latex Cystatin C, Dade Behring, Deerfield, IL, USA)
with a Behring BN ProSpec analyzer (Dade Behring). Estimated glomerular filtration rate (eGFR)
was calculated from serum cystatin C concentrations (milligrams per liter) by the following formula:
y = 77.24 ×cystatin C−1.2623 [43]. In the MDC, eGFR was calculated from the MDRD (Modification of
Diet in Renal Disease) formula. For patients taking pharmaceutical BP-lowering treatment at follow-up,
BP values were imputed by adding 10 mmHg to the systolic BP and 5 mmHg to the diastolic BP [44].
Diabetes mellitus was defined as plasma glucose ≥7.0 mmol/L, or use of oral hypoglycemic agents or
insulin. The primary outcome was BP stage progression, defined as per 2017 AHA/ACC Guideline BP
categories between baseline and follow-up, as in previous studies [45–47], and change in continuous
systolic blood pressure (SBP) and diastolic blood pressure (DBP) between baseline and follow-up.

2.4. Proteomic Profiling

Venous blood samples were drawn in the morning after an overnight fast and stored at −70 ◦C.
EDTA-preserved plasma samples were assessed with the Proseek Multiplex 96× 96 proximity extension
assay using the Cardiovascular I panel (Olink Bioscience, Uppsala, Sweden) in the three cohorts.
The highly specific assay simultaneously measured 92 proteins (Table S1) using two specific antibodies
per protein which pairwise bind to each protein, creating a polymerase chain reaction (PCR) sequence
from attached oligonucleotide strands when both antibodies are bound to the target protein’s surface.
Each sample contains two incubations, one extension, and one detection control used to determine
the lower detection limit and normalize the measurements. The values obtained correlate to the
concentration of the target protein, without giving absolute concentration values [48]. The resulting
relative values were log2-transformed for subsequent analysis, and each protein level was normalized
by plate by setting the mean to zero and standard deviation to one within each plate and storage time
(correction based on the observed values and predicted values from a spline model). Mean intra-assay
and interassay coefficients of variation were 8% and 15%, respectively [49]. Normalized protein
expression (NPX) values were generated from quantitative PCR quantification cycle (Cq) values, where
higher Cq corresponds to lower protein abundance. Cq values (log2 scale) were corrected for technical
variation by an interplate control, and lower limits of detection (LOD) were determined through a



J. Clin. Med. 2019, 8, 1585 4 of 13

negative control (NPX = Olink negative control – (4Cqsample – 4interplate control)). Values below
the LOD were imputed as LOD/2 and normalized for plate. Quality control included removal of
proteins with >15% samples below the LOD, and subjects with a high proportion of missing protein
values (>5% missing in the PIVUS, and >2% missing in the ULSAM) were excluded. In addition, only
proteins passing QC in both discovery cohorts were included. The final data set included 79 proteins;
the excluded 13 proteins are listed in Table S1.

2.5. Sample Size Estimation

We have used simulated data based on correlations from our own and reported data for a
conservative power calculation. We applied a mixed effects ordinal regression model using a
Benjamini–Hochberg correction for multiple testing (with a false discovery rate-cutoff of 5%). Under
these assumptions, 800 individuals would give us an 80% power to detect proteins with odds ratio of
or larger 1.30 (online Supplementary Material).

2.6. Statistical Analysis

The study design is described in Figure 1. All baseline continuous variables are presented as
mean standard deviation and categorical variables as n (%). For the first analysis phase, the PIVUS
and ULSAM cohorts were used as the discovery sample and the MDC cohort was used for replication.
For discovery, the associations between the 79 proteins (each in a separate model) with BP change
were investigated using mixed-effects ordered logistic regression models (for BP stage progression)
and mixed effects linear regression (for change in continuous SBP and DBP), adjusting for age and sex
(fixed effects), and cohort (random intercept). Associations significant at a false discovery rate (FDR)
<5% were investigated in the replication sample, adjusting for the same factors. FDR was calculated
according to the original version of Benjamini and Hochberg from 1995 [50]. The rationale for this
conservative significance threshold was that we wanted to find a reasonable balance between false
positive and false negative findings. A nominal p-value of <0.05 was considered as a valid replication
in the MDC [51,52].

In the next phase, we pre-specified using a one-step individual data meta-analysis of all three
cohorts in order to provide the best estimates of the associations. In this dataset, we ranked the proteins
by ascending p-value, with bootstrapped confidence intervals around the ranks.

Non-linear associations between proteins and BP stage progression were investigated using
restricted cubic splines with four knots.

In the final phase, we sought to investigate the causality of any findings using
multivariable-adjusted models and instrumental variables analyses. The choice of variables for
the multivariable-adjusted models was based on a causal diagram assisted by the DAGitty, version
2.3 [53] (Figure S1), and the models ultimately included the covariates age, sex, baseline BP, body
mass index, waist circumference, smoking, diabetes mellitus, low-density lipoprotein, fasting glucose,
estimated glomerular filtration rate, and statin use, all assessed at baseline. We aimed to use
Mendelian randomization techniques, to assess potential causal associations between biomarkers and
BP stage progression.

All the statistical methods were performed using Stata (version 15, College Station, TX, USA).
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Figure 1. Study flowchart. PIVUS: Prospective Investigation of the Vasculature in Uppsala Seniors
study; ULSAM: Uppsala Longitudinal Study of Adult Men; MDC: Malmö Diet and Cancer Study;
AHA/ACC: American Heart Association/ American College of Cardiology; FDR: false discovery rate;
DAG: DAGitty.

3. Results

Baseline characteristics of the PIVUS (n = 556, mean age 70.2 ± 0.2 years), ULSAM (n = 238,
mean age 77.6 ± 0.7 years), and MDC (n = 2659, mean age 56.2 ± 5.7 years) samples are shown in
Table 1. The mean follow-up time was 5.1 ± 0.1 years in the PIVUS, 4.1 ± 0.6 years in the ULSAM,
and 16.7 ± 1.5 years in the MDC. During follow-up, 234 (29.1%) of the 804 participants in the two
discovery cohorts experienced a ≥1 blood pressure stage progression.
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Table 1. Baseline characteristics of participants in the PIVUS, ULSAM, and MDC cohorts.

PIVUS† (n = 566) ULSAM†† (n = 238) MDC††† (n = 2659)

Age (years) 70.2 (0.2) 77.6 (0.7) 56.2 (5.7)
Women, n (%) 285 (50.4) 0 (0.0) 1640 (61.7)
Smoker, n (%) 55 (9.7) 16 (6.7) 498 (18.7)

Systolic blood pressure at baseline (mmHg) 144.9 (21.1) 146.8 (19.3) 136.8 (17.2)
Diastolic blood pressure at baseline (mmHg) 77.0 (9.9) 78.9 (9.3) 85.1 (8.6)
Systolic blood pressure at follow-up (mmHg) 148.8 (19.8) 145.4 (16.5) 147.4 (20.1)
Diastolic blood pressure at follow-up (mmHg) 76.5 (9.5) 81.0 (9.2) 85.2 (10.5)

Body mass index (kg/m2) 26.5 (4.0) 25.6 (3.0) 25.2 (3.5)
Waist circumference (cm) 89.5 (11.1) 93.0 (9.6) 81.5 (11.9)
Diabetes mellitus, n (%) 35 (6.2) 16 (6.7) 119 (4.5)

Total cholesterol (mmol/L) 5.5 (1.0) 5.5 (1.0) 6.1 (1.1)
Low-density lipoprotein cholesterol (mmol/L) 3.4 (0.9) 3.6 (0.8) 4.1 (1.0)
High-density lipoprotein cholesterol (mmol/L) 1.6 (0.4) 1.4 (0.3) 1.4 (0.4)

Triglycerides (mmol/L) 1.2 (0.6) 1.3 (0.7) 1.2 (0.6)
Fasting glucose (mmol/L) 5.8 (1.3) 5.7 (1.4) 5.5 (0.9)

Estimated glomerular filtration rate (ml/min/1.73 m2) 71.6 (14.9) 78.4 (14.5) 83.9 (14.1)
Statin treatment, n (%) 68 (12.0) 27 (11.3) 31 (1.2)

Baseline examination starting year 2001 1998 1991
Anti-hypertensive treatment during follow-up, n (%) 163 (28.8) 65 (27.3) 1354 (50.9)

Length of follow-up (years) 5.1 (0.1) 4.1 (0.6) 16.7 (1.5)

Continuous variables are presented as mean standard deviation and categorical variables as n (%). In patients receiving anti-hypertensive drugs used at follow-up, we added 10 mmHg to
their systolic blood pressure and 5 mmHg to their diastolic blood pressure. †PIVUS, Prospective Investigation of the Vasculature in Uppsala Seniors. ††ULSAM, Uppsala Longitudinal
Study in Adult Men. †††MDC, Malmö Diet and Cancer Study.
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3.1. Discovery–Validation Phase

Relating the 79 proteins to BP stage progression one by one in the discovery sample adjusting for
age and sex using a FDR of 5% (corresponding to p <6.3E-4; Figure 2), only renin was significantly
associated with BP stage progression (OR 1.33, 95% CI 1.14 to 1.56 per SD; Table 2; Table S2). In the
replication sample, the association was attenuated and not statistically significant (odds ratio (OR)
1.07, 95% confidence interval (95% CI) 0.97 to 1.19 per SD; Table 2).

Figure 2. Associations between 79 proteins and blood pressure progression in the Prospective
Investigation of the Vasculature in Uppsala Seniors (PIVUS) Study and the Uppsala Longitudinal Study
of Adult Men (ULSAM) study. Data are odds ratios (ORs) and 95% confidence intervals (95% CIs).

Table 2. Associations of renin and blood pressure progression in the discovery sample (PIVUS and
ULSAM) and replication sample (MDC).

OR (95% CI) p-Value

Discovery sample (PIVUS and ULSAM) 1.33 (1.14 to1.56) <0.001
Replication sample (MDC) 1.07 (0.97 to 1.19) 0.199

Meta-analysis of all three cohorts 1.08 (1.01 to 1.15) 0.030

OR: odds ratio. Associations of baseline renin normalized protein expression (NPX) value (per SD) with blood
pressure stage progression at follow-up examination, using mixed ordered model adjusting for age and sex (fixed
effects) and cohort (random effect).

3.2. Best Estimates Phase

In a meta-analysis of all three cohorts, renin was significantly associated with BP stage progression
(OR 1.08, 95% CI 1.01 to 1.15 per SD; Table 2). Investigating associations with change in continuous BPs
in all three cohorts, higher baseline renin was associated with higher BP at follow-up (β = 0.69, 95% CI
0.36 to 1.03 for SBP difference, β = 0.43, 95% CI −0.02 to 0.89 for DBP difference; Table 3). Ranking
proteins by p-value, renin was the top hit, with a wide bootstrapped confidence interval (1, 95% CI 1 to
17; Figure S2). The cubic spline analysis did not indicate deviation from linearity (Figure S3).
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Table 3. Associations of renin at baseline with blood pressure change between baseline and follow-up.

SBP DBP

Linear Mixed
Regression

Linear Mixed
Regression

β-Coefficient 95% CI β-Coefficient 95% CI

Discovery sample (PIVUS and ULSAM) 1.94 0.65 to 3.23 0.84 0.11 to 1.58
Replication sample (MDC) −0.52 −1.62 to 0.58 0.48 −0.14 to 1.10

Meta-analysis of all three cohorts 0.69 0.36 to 1.03 0.43 −0.02 to 0.89

SBP: systolic blood pressure; DBP: diastolic blood pressure. β-coefficients express the associations of baseline renin
NPX value (per SD) with change in blood pressure between the baseline and follow-up examination, using mixed
linear model adjusting for age and sex (fixed effects) and cohort (random effect). CI: confidence interval.

3.3. Causality Phase

Although no proteins passed the conservative discovery-validation approach, we attempted
to study the potential for a causal but weak association between renin and BP progression. In a
meta-analysis of all three cohorts, renin was significantly associated with BP progression in a causal
diagram-derived multivariable-adjusted model (OR 1.05, 95% CI 1.01 to 1.08 per SD; Table S3).

We investigated the potential for a Mendelian randomization analysis, but no adequate genetic
instruments for renin [54,55] could be identified for instrumental analysis because of power deficit [56,57]
(online Supplementary Material).

4. Discussion

4.1. Principal Observations

In this study, a multiplexed proximity extension assay was used to investigate associations between
a large number of circulating cardiovascular disease related proteins and BP progression, in three
prospective community samples of 3463 elderly individuals. Using a conservative discovery-validation
approach, renin was associated with risk of BP progression in the discovery sample, but not in the
replication sample.

4.2. Previous Proteomics Studies in Hypertension

Hypertension is a major cardiovascular risk factor with a multifactorial pathogenesis, including
genetic and environmental factors. As the technology becomes more sophisticated and available,
proteomics analyses may prove useful to help unravel the pathophysiology of hypertension. Urinary
proteomics studies have been done, describing urinary nephrin-1 to be associated with salt-sensitive
hypertension [58]. Other groups have studied pre-eclampsia- and pregnancy-induced hypertension,
which share a number of features with essential hypertension, using urinary proteomics approaches [59].

Studies evaluating the association between circulating proteomics and BP progression are rare.
Two previous cross-sectional studies have used mass spectrometry based proteomics to discriminate
between hypertensive and normotensive individuals [60,61]. Xu et al. studied serum from 47 patients
with essential hypertension and 47 healthy controls, and identified differences between those groups
in multiple proteins [60]. Gajjala et al. used a similar design to investigate 118 hypertensive persons
and 85 controls [61]. Both studies are limited by their cross-sectional design, small sample sizes and
lack of replication.

4.3. Previously Studied Proteins Related to Hypertension

Some of the individual proteins that we investigated in this study have previously been evaluated
in relation to incident hypertension, such as interleukin-6 [27,31,32] and tumor necrosis factor
receptor-2 [32]. In the present study, these biomarkers were not associated with BP progression.
Some previously investigated biomarkers (CRP, N-terminal pro-brain natriuretic peptide (NT-pro-BNP))
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were not included in the present analysis. Previous observations regarding CRP [19,25–29] and
NT-pro-BNP [62,63] are inconsistent.

Both high and low circulating levels of renin may be associated with hypertension. High renin
hypertensive individuals are often considered to have vasoconstriction-dependent hypertension [64],
with an increased peripheral resistance, whereas hypertension due to primary hyperaldosteronism
may be associated with low renin levels [65]. Renin levels in hypertension seem to differ with age [66],
and the discovery and validation cohorts differed in age by decades. Evidence for a causal role of
renin in hypertension comes from clinical trials of aliskiren, a direct renin inhibitor. Aliskiren has been
demonstrated to lower BP [67], but its role in clinical use is unclear.

4.4. Strengths and Limitations

Strengths of this study include the longitudinal study design with 5 to 17 years of follow-up,
the exhaustive information of study participants, the use of a modern technology proteomics chip
based on proximity extension assay that allows for analyses of plasma samples with numerous selected
proteins in the same time, and the validation of our results in an independent cohort.

Limitations include differences in age distribution, eGFR formula, and follow-up time in the
discovery and validation samples. Plasma renin falls by 17% per decade of age [68–70], and elderly
people were studied in the PIVUS and ULSAM cohorts and younger people in the MDC cohort. On the
other hand, the homogeneity in age and other features within each cohort provide decisive strengths
by decreasing confounding. Second, the healthy cohort effect and competing risk from death may
be in play because only participants surviving to their second BP measurement at the end of follow
up were included; hence individuals with the most rapid BP increases and worst prognosis may
have been excluded from the study. Third, the plasma samples had been preserved for more than
10 years, which may have affected the protein levels. However, all samples were stored at −70 ◦C
with only a few freeze–thaw cycles. Previous studies have demonstrated that there is a minor effect of
storage time on the protein abundance level [71], so storage time was normalized in the QC process.
Further, no adequate genetic instrument could be used for Mendelian randomization analyses. Other
limitations include that the protein panel was assembled with candidate proteins previously associated
with cardiovascular pathology, with other criteria including concentration limits of the analytes and
accessibility of antibodies. Thus, it is not an untargeted proteomics panel; truly untargeted proteomics
investigations are still in the future. The scale of the protein assay cannot be converted to absolute
concentrations for relevant cutoff values or biomarkers comparison with other studies. Therefore,
the application of the proximity extension protein assay in clinical settings merits additional study.

5. Conclusions

Exploring a novel proximity extension assay-based proteomics approach, we did not observe any
novel replicable associations with longitudinal BP increase.
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List of 92 proteins measured by proximity extension assay. The 13 proteins that failed quality control metrics were
excluded from the analysis as indicated in the fourth column, Table S2: The association between proteins and
blood pressure progression in the PIVUS and ULSAM cohorts, Table S3: The association between renin and blood
pressure progression in the PIVUS, ULSAM and MDC cohorts combined.
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