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Abstract: The airway epithelium of children with asthma is characterized by aberrant repair that may
be therapeutically modifiable. The development of epithelial-targeting therapeutics that enhance
airway repair could provide a novel treatment avenue for childhood asthma. Drug discovery efforts
utilizing high-throughput live cell imaging of patient-derived airway epithelial culture-based wound
repair assays can be used to identify compounds that modulate airway repair in childhood asthma.
Manual cell tracking has been used to determine cell trajectories and wound closure rates, but
is time consuming, subject to bias, and infeasible for high-throughput experiments. We therefore
developed software, EPIC, that automatically tracks low-resolution low-framerate cells using artificial
intelligence, analyzes high-throughput drug screening experiments and produces multiple wound
repair metrics and publication-ready figures. Additionally, unlike available cell trackers that perform
cell segmentation, EPIC tracks cells using bounding boxes and thus has simpler and faster training
data generation requirements for researchers working with other cell types. EPIC outperformed
publicly available software in our wound repair datasets by achieving human-level cell tracking
accuracy in a fraction of the time. We also showed that EPIC is not limited to airway epithelial
repair for children with asthma but can be applied in other cellular contexts by outperforming the
same software in the Cell Tracking with Mitosis Detection Challenge (CTMC) dataset. The CTMC
is the only established cell tracking benchmark dataset that is designed for cell trackers utilizing
bounding boxes. We expect our open-source and easy-to-use software to enable high-throughput
drug screening targeting airway epithelial repair for children with asthma.

Keywords: asthma; wound repair; artificial intelligence; deep learning; cell tracking; cell detection;
cell migration; bioinformatics; image analysis; computational biology

1. Introduction

Frequent exposure to pathogens, allergens and pollutants results in damage of the
epithelial cell layer lining the airways [1]. Following an injury resulting in the disruption of
the epithelium, cells at the wound site, referred to as leading edge cells, migrate to heal the
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injured epithelium and restore the physical cellular barrier [1,2]. However, in patients with
asthma, airway epithelial cells fail to restore epithelial integrity following injury, resulting
in further damage and inflammation. Furthermore, dysregulated epithelial repair in chil-
dren even with mild asthma may contribute to the persistence of asthma into adulthood [3].
Accordingly, the identification of therapeutic treatments that restore the repair properties of
wounded epithelial cells by screening and assessing the efficacy of different novel or repur-
posed drugs is essential. High-throughput drug discovery and repurposing experiments
focusing on enhancing airway wound healing will constitute a precision-medicine approach
to asthma treatment. Such an approach will target the underlying disease processes and
reduce disease burden at the early stages of childhood asthma.

Various in vitro assays can be used to study wound repair mechanisms [4] and screen
therapeutics that modulate cell migration and repair [5]. The in vitro scratch assay is
widely used to assess wound repair outcomes and is scalable for high-throughput screening
purposes [6–8]. While the method is primarily used to quantitatively assess the migration
characteristics of cell populations, it has been extended to include the analysis of individual
cell trajectories using time lapse live cell microscopy [5,9,10]. Cell trajectories are currently
obtained by manually tracking a number of leading edge cells (commonly 20) across
multiple time lapse image frames generated using the extended in vitro scratch assay [5].
Cell migration metrics, such as velocity and directionality, are then quantified from the cell
trajectories and used to assess wound repair outcomes, such as the acceleration or delaying
of cell migration for wound healing, due to an administered drug.

Manual cell tracking is laborious, slow, subject to bias [11,12] and cannot be feasibly
used to analyze the large volumes of data generated in high-throughput drug screening
experiments. While automated cell tracking solutions exist [13–15], many require cells to
be fluorescently labelled [10,16,17], which can cause undesirable changes to cell behavior
or even result in cell death [17]. Many solutions are also not truly fully automated, which is
infeasible for high-throughput experiments. For example, fully automated tracking without
first manually selecting the cells to track is presented as a convenience primarily for fluo-
rescent cells in [11] and suggested mainly for relatively easy use cases in [18]. Additionally,
some solutions do not publicly release the software [19,20] and most do not include the
capacity to automatically perform useful wound repair analyses, such as automatic cell
migration metric quantification [19,21–24]. In contrast, if this capacity is included, the
solution is hindered by one or more of the previously mentioned limitations [25].

Automated cell trackers generally operate by first outlining the exact shapes of, or
segmenting, cells in images before tracking their movements across multiple frames [15]. Cell
segmentation is commonly performed using traditional segmentation algorithms [26], such as
intensity thresholding [17,27]. However, such methods often struggle to resolve individual
cells [16], especially in images with high cell density [28] such as wound repair images.
Additionally, optimal segmentation parameter selection is difficult and time consuming [29,30].
Instead, artificial intelligence (AI), or more precisely deep learning (DL)-based, segmentation
methods [31], which are increasingly utilized by many cell trackers, better identify individual
cells and require minimal runtime parameter finetuning [16,24,32,33]. However, to achieve
such performance these systems must be trained using images containing many cells that
have been manually segmented. Specifically, to obtain the training data, the exact outline
of hundreds of cells must be carefully drawn in multiple images (Supplementary Figure
S1, Additional File S1), which is time consuming and often challenging for users [34,35].
Alternatively, AI-based methods that do not rely on stringent object segmentation but
instead use rectangular bounding boxes to enclose objects for detection [36] require training
data that are easier and faster to generate [34,35]. Specifically, obtaining the training data
only requires two clicks of a mouse to specify the upper-leftmost and lower-rightmost
corners of a bounding box for each cell in the dataset (Supplementary Figure S1, Additional
File S1). Most mainstream object trackers use bounding boxes to detect objects [37–39],
such as pedestrians and cars. For example, ByteTrack [40] accurately tracks detected
objects by first associating high score bounding boxes across frames followed by low
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score ones. TransMOT [41] is a computationally efficient tracker that models the spatial
temporal relationships of objects detected using bounding boxes. On the other hand, cell
trackers are overwhelmingly segmentation dependent, thereby restricting end users. For
example, while a recent cell tracking algorithm (CellTrack R-CNN) could generate and
utilize bounding boxes, a trained segmentation model (Mask R-CNN [42]) was still required
to track cells [43].

Importantly, most automated trackers rely on algorithms that do not presuppose that
image sequences have low resolution (contain objects smaller than 32 by 32 px [44]) and
low framerate (have longer than 25 min frame intervals [19]). With a higher framerate,
objects are imaged very frequently across time and are displaced by only a few pixels in
adjacent frames and are thus easier to track [45–47]. Whereas with a lower framerate, the
movements of cells, especially those exhibiting drug-accelerated migration, are often larger
than distances to nearby cells, thus making tracking harder [19]. In addition, low-resolution
cells are harder to detect [44]. Existing solutions do not target challenging use cases with
both low resolution and low framerate [22,23,48–50]. Hence, existing solutions do not
guarantee reliable cell tracking accuracy.

Here, we present EPIC, a fully automated cell tracking software solution that over-
comes all the previously mentioned limitations (EPIC is available at: https://github.
com/AlphonsG/EPIC-BBox-Cell-Tracking, accessed on 9 February 2022). EPIC uses state-
of-the-art AI-based Vision Transformers [51], which we have previously applied to cell
image analysis tasks [52], to accurately detect unstained cells using bounding boxes for
decreased labor and time necessary for training data generation compared to widely used
segmentation-based approaches. We developed a custom object tracking algorithm for high
accuracy tracking in low-resolution and low-framerate image sequences. After completing
cell tracking, EPIC automatically generates reports with several cell migration metrics and
publication-ready figures. We evaluated EPIC using an airway epithelial cell wound repair
dataset generated under high-throughput drug screening experimental conditions. EPIC
produced cell migration metrics that were comparable to the current gold standard method,
manual cell tracking, and outperformed publicly available automated trackers tested on
the same dataset. We also showed that EPIC is not limited to airway epithelial repair
for children with asthma but can be applied in other cellular contexts. Specifically, EPIC
also outperformed the same automated trackers on the recent Cell Tracking with Mitosis
Detection Challenge (CTMC) dataset [36], the only established cell tracking benchmark
dataset, which is challenging and diverse with 14 different cell lines, that is designed for
cell trackers utilizing bounding boxes. We expect our open-source and easy-to-use software
to enable high-throughput drug screening targeting airway epithelial repair for children
with asthma.

2. Materials and Methods
2.1. Datasets
2.1.1. Wound Repair Dataset

We generated a wound repair dataset under high-throughput drug screening experi-
mental conditions. We obtained human telomerase reverse transcriptase modified airway
epithelial cells (NuLi-1) [53] from the American Type Culture Collection (ATCC, Manassas,
VA, USA) and cultured cells as previously described [54] using bronchial epithelial basal
medium (BEBM™, Lonza, Basel, Switzerland) supplemented with SingleQuot growth
additives (Lonza, Basel, Switzerland). We utilized an established in vitro scratch assay to
assess epithelial cell repair responses to wounding as previously described [5]. Briefly,
we established monolayer cell cultures in IncuCyte® ImageLock 96-well plates (Essen
Bioscience Inc., Ann Arbor, WI, USA) in culture media lacking epidermal growth factor. We
wounded confluent monolayer cultures using the IncuCyte® 96-well WoundMaker Tool (Es-
sen Bioscience, Ann Arbor, WI, USA) [5]. We then treated subsets of cell cultures with either
a specific Akt inhibitor (10 µM MK2206; Sigma-Aldrich, St Louis, MI, USA) to inhibit cell
migration, or ROCK inhibitor (10 µM Y27632; Sigma-Aldrich, St Louis, MI, USA) to acceler-
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ate cell migration post wounding. Multiple time lapse 1620 by 1176 px image sequences of
wounded cells were captured with a magnification of 1.33 µm/px at 30-min intervals over
10.5 h (22 frames) using IncuCyte® ZOOM (Essen Bioscience, Ann Arbor, WI, USA) [5]. We
refer to image sequences containing Akt-inhibited, untreated and ROCK-inhibited cells as
types of experiments: delayed, control and accelerated, respectively.

2.1.2. CTMC Dataset

Unlike the long-existing Cell Tracking Challenge [55], the recently and publicly re-
leased CTMC dataset [36] is the only established cell tracking benchmark dataset that is
designed for cell trackers utilizing bounding boxes for cell detection instead of performing
cell segmentation. Hence, we were able to use the CTMC dataset as an independent valida-
tion dataset for EPIC. It consists of 86 diverse image sequences/videos for 14 different cell
lines from animals, such as humans and rabbits, and features various cell types, such as
myoblasts, fibroblasts and epithelial cells. The 320 by 400 px videos were collected over
300 to 4440 s (depending on the video) using the Nikon TE2000 Differential Interference
Contrast imaging modality at 30 second intervals and at an approximate resolution of
0.35 µm/px and fully annotated with bounding boxes.

2.2. Algorithm

We trained a state-of-the-art AI system based on Vision Transformers to detect low-
resolution airway epithelial cell nuclei and whole cells in our wound repair dataset and
the CTMC dataset, respectively, using bounding boxes. We then developed a custom
algorithm capable of tracking cells at low resolution and low framerate. The algorithm
extracts two appearance and four motion features from cells detected in every frame of
an image sequence. The extracted features are used to link cells with the same identity
across frames with a custom multi-stage tracklet association and tracklet cleaving strategy
based on combinatorial optimization [56–58]. We also developed a custom algorithm that
can automatically identify the leading edges in wound repair images by analyzing the
cell densities across the image plane. Full method details are given in the Supplementary
Materials (Supplementary Methods, Additional File S1).

2.3. Performance Evaluation

We compared EPIC’s cell tracking performance in our wound repair dataset to manual
cell tracking, as previously described [5]. We also compared EPIC’s cell tracking perfor-
mance in our wound repair and the CTMC dataset to that of Viterbi [59] (offered as part
of the Baxter Algorithms package [60]) and DeepSORT [61], the best performing publicly
available automated trackers of their category benchmarked by Anjum and Gurari in
the CTMC [36]. Full details of our comparisons and statistical inference are given in the
Supplementary Materials (Supplementary Methods, Additional File S1).

3. Results and Discussion
3.1. Dataset Comparison

Our wound repair dataset was 380% lower resolution (1.33 µm/px) than the CTMC
dataset (0.35 µm/px). Furthermore, all cells in our dataset were classified as small objects
(<32 by 32 bounding box area) [44]. The CTMC dataset also contained cells under the small
object category, as well the medium (>32 by 32 and <96 by 96 bounding box area) and large
object (>96 by 96 bounding box area) categories [44]. Our dataset had over 65 times lower
framerate (only 0.03 frames/min) than the CTMC dataset (2 frames/min) (Figure 1a,b). The
average density in the CTMC dataset was approximately 13, at most ~28, cells per frame [36].
Conversely, each of our experiments had more than 70 times as many cells per frame, with
over 1000 cells per frame (Figure 1c). These statistics reinforce the low-resolution, low-
framerate and high-density nature of our wound repair dataset as is characteristic of data
generated in high-throughput drug screening wound repair experiments.
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Figure 1. CTMC and wound repair dataset comparison. (A,B): A cell detected in the CTMC (A) and
wound repair (B) dataset in two consecutive frames (left and right panels). Due to higher framerate,
the cell displacement in panel (A) is almost unnoticeable compared to the cell in panel (B) captured
at low framerate, which moved far away. (C): Equal sized image crops showing the difference in cell
density between the CTMC (left) and wound repair dataset (right).

3.2. Wound Repair Dataset
3.2.1. Cell Detection

The training of the cell detection model was completed in ~30 min. The model achieved
average precision and recall values of 87% and 91%, respectively. These metrics can be
interpreted as the model correctly detecting ~90% of cells in each image. Figure 2 shows the
detection performance on a full-sized wound repair image where most cells were detected
as evidenced by the many bounding boxes (Figure 2, middle panel). These bounding
boxes were well localized (Figure 2), which is notable given that the low-resolution and
high-density cells are classified as small objects and are hence challenging to detect [44]. Im-
portantly, the model was able to ignore cell debris (Figure 2, red arrow in inset), reinforcing
EPIC’s ability to robustly learn the appearances of cells.
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Figure 2. EPIC cell detection in a low-resolution and high-density wound repair image of the control
experiment type. Left panel: unlabeled raw image, middle panel: same image with cell detections
marked with blue bounding boxes, and right panel: enlarged region of middle panel showing accurate
cell detections (blue boxes) and a large unlabeled region of cell debris (indicated by red arrow).

3.2.2. Cell Tracking

As shown in Table 1, EPIC tracked over a hundred detected cells from the 1st to the
22nd frame without fragmentation in each of the nine total tested delayed, control and
accelerated experiments (with three technical replicates per experiment type). From those
cell tracks, we randomly sampled 20 leading edge cell tracks per experiment for wound
repair analysis as is standard in the literature [5].
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Table 1. A summary of the number of cells tracked from the 1st to the 22nd frame without fragmenta-
tion by EPIC, DeepSORT and Viterbi.

EPIC DeepSORT Viterbi

Experiment
(Replicate)

Total Cell
Tracks

Sampled Cell
Tracks

Total Cell
Tracks

Sampled Cell
Tracks

Total Cell
Tracks

Sampled Cell
Tracks

Accelerated (A) 127 20 0 0 2046 20

Accelerated (B) 236 20 0 0 2008 20

Accelerated (C) 211 20 0 0 2019 20

Control (A) 783 20 0 0 0 0

Control (B) 539 20 0 0 37 4

Control (C) 586 20 0 0 0 0

Delayed (A) 146 20 0 0 1883 20

Delayed (B) 725 20 0 0 2726 20

Delayed (C) 1006 20 0 0 13 2

In contrast, DeepSORT failed to track any cells from the 1st to the 22nd frame without
fragmentation in the same experiments, and with no cells tracked in the initial frames, no
leading edge cell tracks could be defined and hence sampled for wound repair analysis
(Table 1).

Viterbi had the most variable cell tracking performance in the same experiments,
tracking anywhere from 0 to 2726 cells from the 1st to the 22nd frame without fragmentation
depending on the experiment (Table 1). We noted that experiments with many (≥1883) or
few (≤37) cell tracks (Table 1, Column 6) corresponded to experiments with lower (≤2283)
or higher (≥3238) average numbers of cells per frame (as detected by EPIC), respectively.
We posit that Viterbi’s non-AI-based image segmentation algorithm struggled to resolve
the low-resolution high-density cells, a previously mentioned limitation of the approach,
resulting in reduced numbers of generated cell tracks compared to experiments with lower
cell density. Nevertheless, we were able to sample the 20 leading edge cell tracks for wound
repair analysis in five of the experiments. Viterbi only generated 37 and 13 cell tracks in the
control B and delayed C experiments among which there were only four and two leading
edge cell tracks, respectively, that could be sampled for wound repair analysis. Viterbi
failed to generate any cell tracks in the remaining control A and C experiments (Table 1).

Wound Repair Analysis
The sampled leading edge cell tracks that were generated by EPIC were largely similar

to 20 randomly selected and manually tracked leading edge cells in the corresponding
experiments, while sampled leading edge cell tracks generated by Viterbi were largely
dissimilar to those manual cell tracks (Figure 3). Unlike Viterbi, both manual cell tracking
and EPIC generated visibly shorter tracks for delayed experiments (Figure 3, top row) and
longer tracks for accelerated experiments (Figure 3, bottom row) as compared to control
(Figure 3, middle row), indicating that overall Viterbi cell tracks did not resemble the
migration patterns expected of leading edge cells.

We used the manually and automatically generated leading edge cell tracks sampled
from the nine total tested delayed, control and accelerated experiments to compute six cell
migration metrics: Euclidean distance, accumulated distance, velocity, directionality, Y-
forward migration index and end point angle. Cell migration metrics produced by manual
cell tracking and EPIC were similar and both were different from metrics produced by
Viterbi (Figure 4). The cell migration metrics of EPIC, Viterbi and manual cell tracking are
shown in Figure 4 and Supplementary Table S3 (Additional File S1).
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Statistical comparison of the cell migration metrics produced by EPIC cell tracks
indicated that there were no statistically significant differences to those produced by
manual cell tracking for all metrics (Figure 5; Supplementary Tables S4 and S5, Additional
File S1). On the other hand, we obtained mostly highly statistically significant differences
when comparing Viterbi and manual cell tracks, indicating vast inaccuracies in metrics
produced by Viterbi (Figure 5; Supplementary Tables S4 and S6, Additional File S1).
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Figure 5. Comparison of the cell migration metrics produced by EPIC and Viterbi to manual cell
tracking. Each symbol represents a p-value for pairwise comparisons of the sampled cell tracks from
EPIC and manual cell tracking (blue filled) and Viterbi and manual cell tracking (black empty) for the
delayed, control and accelerated experiments. We performed pairwise comparisons using two-sample
Wilcoxon–Mann–Whitney tests. The statistical significance level was set to p < 0.05 (indicated by
the dashed grey line). The solid grey line indicates y = 0. Metrics are shown in the following order
and are abbreviated for clarity in the figure: Euclidean distance, accumulated distance, velocity,
directionality, Y-forward migration index and end point angle.

We found that wound repair analysis outcomes of untreated and drug-treated cells
according to EPIC were equivalent to those of the current gold standard method, manual
cell tracking, while generating at least 20 leading edge cell tracks across the 22 image frames
without any user labor required. In contrast, Viterbi did not consistently track at least 20
leading edge cells across 22 frames. Additionally, Viterbi produced wound repair outcomes
contradicting the expectations for untreated and drug-treated cells, and many of Viterbi
cell tracks were visually incorrect. For instance, closer inspection revealed that, unlike
EPIC (Supplementary Figure S5, Additional Files S1 and S2), many of Viterbi cell tracks did
not correspond to real cells (Supplementary Figure S5, Additional Files S1 and S3). These
results reinforce the challenging nature of the low-resolution, low-framerate and high cell
density wound repair dataset even for well-established automated trackers.

3.2.3. Automated Leading Edge Identification (EPIC)

EPIC automatically identified the leading edges of the wound in all experiments
(Figure 6). By visual inspection, automatically detected leading edges were well localized
even in the presence of significant cell debris. Additionally, we have shown that manual
cell tracks sampled with respect to manually defined leading edges are comparable to cell
tracks generated by EPIC and sampled with respect to automatically defined leading edges,
reinforcing the accuracy of automated leading edge identification (Figure 6).
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frame of a control experiment.

3.2.4. Runtimes

EPIC detected and tracked thousands of cells in all the nine experiments in ~20 min
(Table 2). In contrast, Viterbi and DeepSORT processed the same experiments in ~3 h and
~30 h, respectively (Table 2).

Table 2. Total runtimes for EPIC, DeepSORT and Viterbi in the 9 experiments.

EPIC DeepSORT Viterbi

Total Running Time 20 min 30 h 3 h

The tracking of hundreds of small objects in an image sequence is a challenging task
outside the intended use cases of most existing trackers. Accordingly, EPIC’s efficient
design and performance enhancements, such as advanced multicore processing, resulted
in magnitudes faster processing times than Viterbi and DeepSORT. We anticipate Viterbi
and DeepSORT’s long processing times to render these methods infeasible for use in
high-throughput drug screening pipelines involving thousands of experiments. Although
manual cell tracking is infeasible for high-throughput drug screening, the 20 cells from
each delayed or control experiment were manually tracked within 10 min. Cells from each
accelerated experiment were manually tracked within 30 min due to increased difficulty
tracking fast-moving cells at the low framerate. The total manual tracking time for all
experiments (180 cells) was 2.5 h.

3.3. CTMC Dataset

EPIC outperformed Viterbi and DeepSORT in cell tracking accuracy on the CTMC
dataset (Supplementary Materials, Additional Files S1 and S4). Therefore, in addition to
accurately tracking hundreds of detected cells in our wound repair dataset, EPIC also
accurately detected and tracked cells in the CTMC dataset, which featured a higher fram-
erate, higher resolution, 14 different cell lines and cells with extended cytoplasm. The
sustained cell tracking accuracy of EPIC and its outperformance of other automated tools in
the distinctly different and challenging dataset indicates robust underlying detection and
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tracking methods, and a system that is not limited to airway epithelial repair for children
with asthma but can be applied in other cellular contexts.

3.4. Software Features and Report

We utilized object orientated software design principles, such as the Factory Method
creational software design pattern, to allow developers to easily substitute custom object
detectors and even tracking algorithms into EPIC to better suit other use cases, allowing
for a highly flexible system. For researchers using EPIC ‘out-of-the-box’, it is a cross
platform application that is simple to use through a command line or graphical user
interface. Through the available commands, users can perform object detection, tracking
and analysis of time lapse images in common formats, such as TIFF and JPEG. EPIC
also automatically performs tracking and migration analyses of all cells in wound repair
experiments. Generated cell tracks can be exported in multiple formats, such as ImageJ
Manual Tracking File [62] and MOTChallenge [63] formats, for further external analyses.
Importantly, EPIC generates a HTML report containing cell migration metrics, publication-
ready figures such as cell trajectory plots, images and videos visualizing cell detections
and tracks, and statistics such as the number of detected cells per frame (Additional File
S5). Overall, EPIC can easily integrate into drug screening pipelines ‘out-of-the-box’ and is
straightforward to use for non-programmers.

4. Conclusions

EPIC automatically tracked unstained cells (including drug-treated and untreated
control) as accurately as manual cell tracking in a challenging low-resolution, low-framerate
and high cell density dataset at higher volume and speed. This is unlike tested publicly
available automated trackers, which underperformed on such a challenging dataset and
hence cannot be reliably used for high-throughput wound repair analyses. EPIC also
outperformed the same trackers on the diverse and challenging CTMC dataset, which
includes 14 different cell lines, reinforcing that EPIC is not limited to airway epithelial repair
for children with asthma but can be applied in other cellular contexts. EPIC tracks cells
detected using state-of-the-art AI-based Vision Transformers and bounding boxes with a
custom tracking algorithm. This results in highly accurate cell tracking with decreased labor
and time necessary for training data generation compared to widely used segmentation-
based approaches. We expect our open-source and easy-to-use software to enable high-
throughput drug screening targeting airway epithelial repair for children with asthma.
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