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Mutant matrilin-3 (V194D) forms non-native disulphide bonded aggregates in the rER of chondrocytes from cell
and mouse models of multiple epiphyseal dysplasia (MED). Intracellular retention of mutant matrilin-3 causes
endoplasmic reticulum (ER) stress and induces an unfolded protein response (UPR) including the upregulation
of two genes recently implicated in ER stress: Armetand Creld2. Nothing is known about the role of Armet and
Creld2in human genetic diseases. In this study, we used a variety of cell and mouse models of chondrodysplasia
to determine the genotype-specific expression profiles of Armet and Creld2. We also studied their interactions
with various mutant proteins and investigated their potential roles as protein disulphide isomerases (PDIs).
Armet and Creld2 were up-regulated in cell and/or mouse models of chondrodysplasias caused by mutations
in Matn3 and Col10a1, but not Comp. Intriguingly, both Armet and Creld2 were also secreted into the ECM of
these disease models following ER stress. Armet and Creld2 interacted with mutant matrilin-3, but not with
COMP, thereby validating the genotype-specific expression. Substrate-trapping experiments confirmed
Creld2 processed PDI-like activity, thus identifying a putative functional role. Finally, alanine substitution of
the two terminal cysteine residues from the A-domain of V194D matrilin-3 prevented aggregation, promoted
mutant protein secretion and reduced the levels of Armet and Creld2 in a cell culture model. We demonstrate
that Armet and Creld2 are genotype-specific ER stress response proteins with substrate specificities,
and that aggregation of mutant matrilin-3 is a key disease trigger in MED that could be exploited as a potential
therapeutic target.

INTRODUCTION

The chondrodysplasias are a clinically and genetically hetero-
geneous group of skeletal diseases (chondrodysplasias) that
encompass over 300 different phenotypes (1). Although the clinical
presentation varies from mild to lethal they are often characterized
by abnormal endochondral ossification that results in disproportion-
ate short stature. Mutations within the genes encoding a variety of
cartilage extracellular matrix (ECM) structural proteins can result
in numerous chondrodysplasias. These include -cartilage

oligomeric matrix protein (COMP), matrilin-3 (MATN3) and
type IX collagen, which result in pseudoachondroplasia
(PSACH: OMIN 177170) and multiple epiphyseal dysplasia
(MED: OMIN 132400, 600204, 607078 and 614135) (2); and
type X collagen that causes metaphyseal chondrodysplasia
type Schmid (MCDS: OMIN 156500) (3).

The majority of disease-associated mutations in these genes
cause misfolding of the respective proteins and their subsequent
retention within the endoplasmic reticulum (ER) (4,5). Mutant
protein retention results in ER stress and can lead to an UPR,
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whereby ER-resident proteins that are involved in protein
folding are up-regulated to aid in folding and protecting the
cells from stress (6,7). Other consequences of the UPR include
protein degradation via ER-associated degradation (ERAD), at-
tenuation of protein synthesis and eventually apoptosis if the
misfolded protein and ER stress persist (6,8,9). Mutant protein
accumulation in the ER and its subsequent degradation have
beenrecognized as a key pathological feature in a range of differ-
ent diseases, including several neurological disorders and dia-
betes. More recently, ER stress has been demonstrated in
several mouse models of human chondrodysplasias, including
PSACH-MED (10-13) and MCDS (14-16).

Matrilin-3 is the third member of the matrilin family of modular
proteins and consists of a single von-Willebrand factor A-like
domain (A-domain), four EGF-like motifs and a C-terminal
coiled-coil oligomerization domain (17). The A-domain is
arranged into a classical Rossman fold and contains a single
intra-chain disulphide bond. To date, all MED causing mutations
in matrilin-3 are located within the single A-domain and primar-
ily affect residues that comprise the central 3-sheet (2,18—21).
A murine model of MED with the Matn3 V194D mutation devel-
ops a progressive short-limb dysplasia resulting from decreased
chondrocyte proliferation and dysregulated apoptosis. Mutant
matrilin-3 is retained within the rER of chondrocytes, which
leads to an UPR characterized by the upregulation of the ER-resi-
dent chaperones BiP and GRP94 (10). Microarray studies further
confirmed the upregulation of numerous genes associated with
ER stress and a conventional transcriptional UPR (12), including
several members of the protein disulphide isomerase family
A (PDIAs), specifically PDIA3, -4 and -6. The PDIAs are
members of the thioredoxin superfamily of enzymes that can
catalyse thiol-disulphide oxidation, reduction and isomerization
and are critical for correct disulphide bond formation and/or re-
arrangement if incorrect (non-native) bonds are formed (22,23).
There are at least 19 members of the PDIA family, and these
multi-domain proteins contain at least one domain that is hom-
ologous to thioredoxin. Many of these thioredoxin domains
contain a pair of active site cysteine residues (CXXC) that can
shuttle between the disulphide and dithiol forms (22,24).

Interestingly, among the most highly up-regulated genes
in Matn3 V194D chondrocytes were Armet (arginine-rich,
mutated in early stage tumours) and Creld?2 (cysteine-rich with
EGF-like domains 2); two genes that have only recently been
implicated in ER stress and UPR following a variety of physio-
logical and pathological triggers (25—27).

Armet, also known as MANF (Mesencephalic Astrocyte
derived Neurotrophic Factor), was identified as a gene
up-regulated by various forms of ER stress in different cell lines
and by cerebral ischaemia in rat (26—28). The expression of
Armet was not only similar to that of the molecular chaperone
BiP/GRP78, but the upregulation of Armet was also shown to
be mediated by an ERSE-II element, which is frequently found
in the promoters of ER chaperone genes (27). Furthermore, the
over-expression of Armet in HeLa cells inhibited cell proliferation
and ER stress-induced cell death (26). Interestingly, two import-
ant disease mechanisms in the Matn3 V194D mouse include a re-
duction in chondrocyte proliferation and dysregulated apoptosis
(10,12), suggesting an influence of Armet in the initiation and/
or progression of MED.
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Creld2 was recognized as an ER stress-inducible gene through
microarray analysis of Neuro2a cells treated with thapsigargin.
Furthermore, it has also been shown to contain a typical ER
stress response element (ERSE) in its promoter region, which
is positively regulated by ATF6 (25). Creld2 has been reported
to mediate the intracellular trafficking of nicotinic acetylcholine
receptor (nAChR) a4 and (32 subunits and is believed to be
involved in the folding and assembly of a432 nAChRs within
the ER, perhaps indicating a more general role for Creld2 in
protein folding and trafficking through the ER (29).

Despite these recent descriptions, the precise roles of Creld2
and Armet remain poorly understood in human biology and
genetic diseases. This current study aimed at determining the
genotype-specific expression profiles of Armet and Creld2,
while also investigating their interactions with mutant proteins.

RESULTS

Armet and Creld2 are up-regulated in cell and murine
models of MED caused by matrilin-3 V194D

To establish the relative levels of Armet and Creld2 proteins in
Matn3 V194D mutant cartilage, sodium dodecyl sulphate-
polyacrylamide gel electrophoresis (SDS—PAGE) and western
blotting were performed on the intracellular proteins of chondro-
cytes isolated from the cartilage of new born and 5-day-old
mice. Western blotting confirmed that the protein levels of both
Armet and Creld2 were increased in the chondrocytes of Matn3
V194D mice compared with wild-type controls at birth and 5
days of age (Fig. 1A, 5 days and Supplementary Material,
Fig. S1, new born). Densitometry established that Armet was sig-
nificantly up-regulated ~2-fold at birth (not shown) and ~4-fold
in 5-day-old mice (Fig. 1B; **P < 0.01). Similarly, Creld2 was
up-regulated ~2-fold in newborn (not shown) and ~3-fold in
5-day-old mutant mice (Fig. 1B; **P < 0.01). These data verified
a time-dependent increase in the protein levels of Armet and
Creld2, which corresponded to the gradual accumulation of
mutant matrilin-3 as previously reported (10,12).

We have previously shown in cell culture models of MED
that wild-type matrilin-3, either full-length protein or the single
A-domain, is efficiently secreted into the culture media,
whereas matrilin-3 containing MED mutations is retained intra-
cellular (30). We therefore investigated whether the relative
levels of Armet and Creld2 would also be increased in CHO and
HEK-293 cell culture models expressing the p.V194D MED mu-
tation. SDS—PAGE and western blotting demonstrated that both
Armet and Creld2 were consistently increased in both the cell
lines (Fig. 1C), thus confirming that the cell culture models
of MED re-capitulated this characteristic pathological feature of
the murine model and also demonstrating that the upregulation
of Armet and Creld2, in response to mutant matrilin-3 expression,
was not chondrocyte specific. Furthermore, immunofiuorescent
analyses confirmed that Armet (Fig. 1D) and Creld2 (not shown)
were co-localized with mutant matrilin-3 in the ER.

Armet and Creld2 are increased and secreted proteins
in the growth plates of V194D matrilin-3 mice

Immunohistochemistry (IHC) was used to confirm that Armet
and Creld2 were up-regulated in the growth plates of mutant
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Figure 1. Armet and Creld2 are increased in V194D matrilin-3 mouse chondro-
cytes, cell culture models and growth plate cartilage. (A) Chondrocytes were iso-
lated from the rib cartilage of 5-day-old Matn3 V194D [m/m] and wild-type (WT/
WT) mice. Total protein from 1 x 10° cells was analysed by SDS—PAGE and
western blotting using antibodies against Armet (~18kDa) and Creld2
(~45 kDa). Equal protein loading was verified by Ponceau staining and three
litters per genotype (~5—10 mice pooled per litter) were analysed in three separ-
ate experiments. (B) Western blots were scanned and analysed by densitometry
which demonstrated that there was a ~4-fold increase in Armet and a ~2-fold
increase in Creld2 (independent #-test, **P < 0.01). (C) Cell lysate samples
from CHO and HEK-293 cells expressing wild-type and V194D matrilin-3
were analysed by SDS—PAGE and western blotting and increased amounts of
Armet and Creld2 were detectable in lysates from cells expressing the V194D
mutation in both the full-length (FLM3) and single A-domain forms. Equal
protein loading was verified by Ponceau staining. (D) Dual-labelling immuno-
fluorescence microscopy confirmed that V194D matrilin-3 (green) and Armet
(red) co-localized as an intracellular protein accretion (yellow/orange); DAPI
was used to identify cell nuclei. (E) IHC using Armet and Creld2 antibodies on
the tibia growth plates from 3-week-old wild-type (WT) and V194D mutant
mice (mm). Chondrocytes in all zones of the mutant growth plate showed
increased levels of intracellular staining for both Armet and Creld2. Interestingly,
staining was also observed in the ECM of'tibia growth plate cartilage. Scale bar is
100 pwm; kDa = kilodaltons.

mice and also to establish their precise localization within this
tissue. IHC of growth plates from Matn3 V194D mice confirmed
that Armet was up-regulated and accumulated within chondrocytes
of the growth plate (Fig. 1E) and around the secondary centre
of ossification from 1 week of age (Supplementary Material,
Fig. S2). This observation was similar to the pattern of mutant
matrilin-3 retention as described previously (10,12). Surprising-
ly, Armet was also secreted into the ECM of growth plate cartil-
age of mutant mice but not wild-type controls. The increased
expression of Armet and its secretion into the ECM was observed
from birth (Fig. 1E and supplementary Material, Fig. S3). Simi-
larly, IHC of growth plates from Matn3 V194D mice showed that
Creld2 accumulated within chondrocytes and its secretion into
the ECM of mutant cartilage was detectable from 1 week of
age (Fig. 1E and Supplementary Material, Fig. S4). These IHC
data therefore support the western blotting experiments, con-
firming that the relative levels of Armet and Creld2 are increased
within the chondrocytes of mutant mice. The accumulation of
both proteins appeared to increase over time and peaked at ~1
week for Armet, while the relative levels of Creld2 remained
comparatively high over the full-time period studied.

Armet and Creld2 are not increased in murine models
of Comp-associated PSACH-MED but are increased
in Coll0al MCDS

Although our studies indicated that the upregulation of Armet
and Creld2 in response to the expression of Matn3 V194D was
not chondrocyte specific, we wished to determine whether
their upregulation was gene product and/or mutation specific.
We therefore used IHC and SDS—PAGE western blotting to
study three additional mouse models of ER stress-induced chon-
drodysplasia; mild PSACH resulting from a mutation in the
C-terminal globular domain of COMP (Comp T585M) (11),
severe PSACH resulting from a common in-frame deletion in
the type III repeat of COMP (Comp D469del) (13) and MCDS
resulting from a NC1 mutation in type X collagen (Coll0al
N617 K) (14).

We first examined the growth plates from 1-week-old Comp
T585M and Comp D469del mice by IHC and the relative
levels of Armet and Creld2 remained unchanged in both
mutant mice compared with their wild-type controls (Fig. 2A
and Supplementary Material, Fig. S5). To confirm that there was
no increase in Armet or Creld2 in the chondrocytes of these
PSACH-MED models, SDS—PAGE and western blotting were
performed on the intracellular proteins extracted from chondro-
cytes isolated from the cartilage of 5-day-old mice (Fig. 2B).
Finally, we examined a mouse model of MCDS resulting from a
mutation in the NC1 domain of type X collagen (Coll0Oal
N617 K), and demonstrated that the relative levels of both
Armet and Creld2 were increased within the chondrocytes and
ECM of the hypertrophic zone (Fig. 2C). Due to the restricted ex-
pression of type X collagen in hypertrophic chondrocytes, we were
unable to confirm this observation by SDS—PAGE and western
blotting, but the upregulation of Armet and Creld2 mRNA in
Coll0al N617K hypertrophic chondrocytes has recently been
confirmed by microarray and in situ in a separate study (31).

Overall, these data demonstrate that the upregulation of
Armet and Creld2 is not specific to Matn3 V194D, but is also a
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Figure 2. Creld2 and Armet are not up-regulated in mouse models of
COMP-related PSACH-MED, but are increased in a model of MCDS. (A) IHC
using Armet and Creld2 antibodies on tibia growth plates from 3-week-old
Comp T585M (T585M), Comp D469del (D469) and matched wild-type (WT)
mice. No increase in staining was observed for Armet or Creld2 in either
mutant (mm) mouse model compared with wild-type (WT). (B) Chondrocytes
were isolated from the cartilage of 5-day-old Comp T585M (T585M), Comp
D469del (D469) and wild-type (WT) mice. Total protein from 1 x 10° cells
was loaded per lane and analysed by SDS—PAGE and western blotting. No de-
tectable differences in the levels of Creld2 and Armet were observed in cell
extracts from mutant mice (T585M and D469) compared with wild-type (WT)
controls. Equal protein loading was verified by Ponceau staining. (C) IHC on
tibia growth plates from 3-week-old Co/l/0al N617K (N617K) mice demon-
strated both intracellular and ECM staining in the hypertrophic zone of growth
plate cartilage. Scale bar is 100 pwm; kDa = kilodaltons.

response to CollOal N617K expression, whereas two mutant
forms of COMP (T585M and D469del) do not induce increased
expression.

Matrilin-3 interacts with Armet and Creld2 in a complex
with other chaperones and foldases

We used co-immunoprecipitation to investigate whether both
the full-length and A-domain forms of matrilin-3 could interact
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with Armet and Creld2, while ERp72/PDIA4, a well character-
ized PDI known to interact with various mutant forms of the
matrilin-3 A-domain (30), was included as a control. These
experiments confirmed that full-length mutant matrilin-3 inter-
acted with Armet, Creld2 and ERp72/PDIA4; while the use of
mutant A-domain alone refined the site of these interactions to
this specific region (Fig. 3A).

Proteomic interrogation by liquid chromatography-mass spec-
trometry (LC-MS)/MS of the Flag-precipitated protein com-
plexes revealed that a number of different chaperones and
foldases were also present in both the wild-type and mutant
matrilin-3 protein complexes (Table 1). These included BiP/
GRP78, GRPY94, PDI (PDIALI, -3, -4 and -6) and peptidylprolyl
isomerases A and B; however, there were clearly more peptides
detected for PDIA4, PDIA6, BiP/GRP78 and GRP94 in the
mutant protein samples. Finally, the only protein that was
almost entirely absent from wild-type matrilin-3 complexes,
but was present in significant quantities in mutant protein com-
plexes of both the A-domain and full-length matrilin-3, was
hypoxia up-regulated protein 1 (HYOU1/ORP150/GRP170),
which is a protein implicated in ER stress and several human
diseases (32).

Armet and Creld2 are not present in a complex with COMP
and other chaperones

Following co-immunoprecipitation, we did not detect any inter-
actions between COMP (wild type or D469del) and either Armet
or Creld2 (Fig. 3B). LC-MS/MS of the GFP-precipitated protein
complexes confirmed that wild-type COMP formed complexes
with a variety of chaperones and foldases including PDIAs
(PDIA1 and -4), BiP/GRP78, GRP94 and peptidylprolyl isomer-
ase B (PPIB) (Table 1). However, unlike Matn3 V194D there
were no quantitative differences in the proteomic portrait of
D469del mutant COMP compared with wild-type, with the pos-
sible exception of hypoxia up-regulated protein 1 (HYOU1),
which was only detected in mutant COMP samples.

Increased expression of Armet and Creld2 is associated with
a specific increase in PDIs in Matn3 and Coll0al disease
models

We have previously shown by microarray analysis that a UPR is
initiated through the expression of Matn3 V194D (12). Interest-
ingly, of the 20 most significantly up-regulated genes, three were
members of the PDIA protein family, namely Pdia3/Erp57,
Pdia4/Erp72 and Pdia6/P5, while PDI was shown to be up-
regulated by western blotting. These expression data are there-
fore consistent with the proteomic profile of the co-precipitated
mutant protein complexes.

In order to gain insight into why Armet and Creld2 were
only increased in the murine models of Matn3-MED and
Coll0al-MCDS, and not the Comp models of PSACH-MED,
we compared the relative expression levels of Armet, Creld?2
and members of the PDIA protein family in chondrocytes
from the following mouse models; Matn3 V194D (12), Comp
D469del (13), Comp T585M (K Pirog personal communication)
and Coll0al N617K (31) (Table 2). It is noteworthy that
there was a consistent and significant upregulation of several
PDIAs in the Matn3 V194D and Coll0al N617K mutant mice,
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Figure 3. Armet and Creld2 interact in a complex with matrilin-3, but not with COMP. (A) Cell lysate proteins of HEK293 cells transfected with wild-type (WT) and
V194D matrilin-3 expression constructs (FLAG-tagged full-length (FLM3) and the single A-domain) were immunoprecipitated with ANTI-FLAG affinity gel. SDS—
PAGE and western blotting demonstrated that ERp72, Creld2 and Armet were co-precipitated with mutant matrilin-3 alone and that these interactions could be
mediated by the A-domain (right panel). GAPDH confirmed equal loading and cell lysates from untransfected HEK 293 cells was used as a control. (B) Cell
lysate proteins of HT 1080 cells transfected with GFP alone or GFP-tagged wild-type COMP (WT COMP) and D469del mutant COMP (D469) expression constructs
were immunoprecipitated with anti-GFP-sepharose beads. SDS—PAGE and western blotting did not identify any interactions between COMP and Armet or Creld2
(right panel). GAPDH confirmed equal loading and cell lysates from untransfected HT1080 cells was used as a control. Key: FLM3 = full-length matrilin-3;
A-domain = A-domain alone comprising residues 77—263 of matrilin-3; kDa = kilodaltons.

whereas there was no such upregulation in the Comp D469del
and Comp T585M mice. These expression data and the co-
immunoprecipitation studies (Fig. 3) led us to consider
whether Armet and/or Creld2 possessed PDI-like activities.

Creld2 possesses putative PDI-like activity whereas
Armet does not

Armet has recently been proposed to be a putative PDIA due to
the presence of a CXXC motifin the C-terminal domain (22,33),
which is a common feature of thiol/disulphide oxidoreductases
(22). Similarly, Creld2 has a number of CXXC motifs, which

may indicate that it also possesses isomerase activity. In order
to investigate this potential function, we generated a series of
Armet and Creld2 substrate-trapping mutants similar to those
previously generated for other PDIAs (e.g. ERp72, ERp57,
ERp46 and PDI), which have all previously been validated and
characterized in depth (34). Following sequence alignment com-
parisons between Creld2, Armet and PDI, we identified potential
amino- and carboxyl-terminal CXXC motifs (Supplementary
Material, Fig. S6). For each substrate-trapping construct, we
used in vitro mutagenesis to convert the second cysteine of
each selected CXXC motif into alanine, thereby generating
eight constructs, which included wild-type and double N- and
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Table 1. Summary of the results of spectral counting from FLAG and GFP-precipitated complexes of matrilin-3 and COMP, respectively
Gene Type 293 WT FLM3 V194D FLM3 WT A-domain V194D A-domain 1080 WT COMP D469del COMP
PDIA1 PDI 0/0 4/6 8/7 6/3 8/8 0/0 7/8 6/5
PDIA3 PDI 0/0 3/0 4/0 3/0 6/7 0/0 0/0 0/0
PDIA4 PDI 0/0 3/3 22/24 5/3 13/7 0/0 8/5 9/11
PDIA6 PDI 0/4 9/4 11/10 8/5 10/10 0/0 0/0 0/0
PPIA PPI 0/3 2/2 0/0 0/2 3/0 0/3 0/2 0/0
PPIB PPI 0/0 4/3 4/7 5/0 5/5 0/0 3/3 7/5
GRP78 Chaperone 3/8 14/16 50/46 14/8 52/43 0/10 26/20 27/29
GRP9%4 Chaperone 0/4 9/3 32/20 9/6 22/19 4/2 19/23 21/15
ORPI150 Chaperone 0/0 0/0 10/12 2/0 10/10 0/0 0/0 4/2
DNAJC3 Co-Chaperone 0/0 0/0 0/2 0/0 3/0 0/0 0/0 0/0
DNAIJCI10 Co-Chaperone 0/0 0/0 2/3 0/0 2/3 0/0 0/0 0/0
MATN3 ECM protein 0/7 15/12 26/28 37/9 24/15 - - -
COMP ECM protein - - - - 0/0 26/18 32/12

Total protein pools following FLAG and GFP precipitation were analysed by LC-MS/MS and the data evaluated using Mascot against the UniProt human database and
validated with Scaffold using peptide/protein confidence values of 0.95 and 0.99, respectively. Positively identified proteins were defined as those having a number of
matched peptide spectra >2. Two biological replicates were used in all experiments and the number of matched spectra from each experiment is shown separated with

a forward slash (/).

Key: 293 = untransfected HEK293 cells; 1080 = untransfected HT1080 cells; WT =

wild type; V194D = mutant matrilin-3; D469del = mutant COMP; FLM3 = full-

length matrilin-3; A-domain = matrilin-3 A-domain alone; PDI = protein disulphide isomerase; PPI = peptidylprolyl isomerase; ECM = extracellular matrix protein.

C-terminal mutants (Supplementary Material, Fig. S7). HT1080
cells were then transfected with wild-type or mutant (N-CXXA,
C-CXXA and N/C-CXXA) constructs and selection with G418
allowed stable cell lines to be established. Once confluent, and
following treatment with NEM to prevent post-lysis thiol ex-
change, the total cell lysate proteins were separated by SDS—
PAGE and proteins were detected by western blotting with an
anti-V5 antibody. We also included as a positive control in this
experiment the previously characterized ERp72 substrate-
trapping mutant as an example of the typical profile that would
be expected from a confirmed PDI (34). In this definitive
study, the authors showed unequivocally that substrate-trapping
mutants of ERp57 (PDIA3), PDI (PDIA1), PS (PDIA6), ERp18
(PDIAG6), ERp72 (PDIA4) and ERp46 (PDIA1S) all formed
higher order mixed disulphides, whereas the repsective wild-
type proteins did not (34). We therefore included in our experi-
ments only the substrate-trapping mutant form of ERp72 (and
not the wild-type protein) as a visual example for the formation
of higher order mixed disulphides.

All the three substrate-trapping mutants of Armet (N-CXXA,
C-CXXA and N/C-CXXA) had a similar profile to the wild type
(under both reducing and non-reducing conditions), which sug-
gested that no higher order mixed disulphides had been formed
with substrate proteins (Fig. 4A), whereas the ERp72 substrate-
trapping mutant clearly showed the formation of mixed disul-
phide complexes (Fig. 4B), which were consistent with the pre-
viously published profile (34). Similar to ERp72, the mutation of
putative active sites in Creld2 allowed the formation of a number
of higher order complexes containing Creld2-V5 (Fig. 4C, left
panel). These complexes were disrupted following reduction
by dithiothreitol (DTT), confirming that mixed disulphide
bonds had formed (Fig. 4C, right panel). Furthermore, there
was specificity in which CXXC motif was mediating the interac-
tion(s). For example, only the N-CXXA and N/C-CXXA pro-
teins formed high-molecular weight mixed disulphides,
indicating that it was the amino-terminal CXXC motif that pos-
sessed the isomerase activity. To identify the individual

Table 2. PDIs are up-regulated in mouse models of Matn3 MED and Col10al
MCDS but not Comp PSACH-MED

Gene and/or proteinname V194D d5 D469deld5 T585Md5 N617K
NB
Creld2 5.77 - 1.30 7.66
Armet/MANF 4.29 —1.33 1.24 2.99
PDIA1/PAHB 1.57 - —1.03(ns) 2.49
PDIA2/PDIP 1.42 (ns) - 1.02 (ns) -
PDIA3/ERp57/GRP58 2.03 1.12 1.24 2.05
PDIA4/ERp72 3.16 1.76 (ns) 1.22 16.37
PDIAS/PDIR 1.34 1.07 —1.09(ns) 1.62 (ns)
PDIAG6/P5 3.18 —1.09 1.27 4.97

Selected gene expression profiles of chondrocytes from 5-day-old (or new born
for Coll0al)wild-type and the mutant mice genotypes Matn3 V194D (12), Comp
D469del (13), Comp T585M (unpublished) and Col10al N617K (31) were
compared. Gene expression levels were previously determined by microarray
analysis as described in relevant papers. The relative expression levels of Armet,
Creld2 and PDIAs1-6 are represented as fold change (mutant versus wild type),
and all values are significant unless otherwise stated (ns = not significant).
Significant upregulation was determined by PPLR values of >0.95.

Key: d5 = 5-day-old; NB = new born.

substrates forming mixed disulphide complexes with Creld2,
we performed LC-MS/MS after affinity isolation of the protein
complexes using anti-V5 agarose beads (Fig. 4D and Table 3).
This analysis, which was performed in HT1080 cells, identified
laminin-5 B3 (LAMB3), collagen «ol(VI) and a3(VI),
thrombospondin-1 and integrin «-3 as potential substrates,
while BiP/GRP78, GRP94 and PDIAI, -3 and -6 were also
present within these complexes.

N-CXXA Creld2 substrate-trapping mutant shows
specificity for mutant matrilin-3

Since HT 1080 cells do not express cartilage structural proteins,
we wished to test directly whether Armet or Creld2 substrate-
trapping mutants could capture mutant matrilin-3. As expected
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Figure 4. Creld2 processes putative PDI-like activity, whereas Armet does not. Total cell lysate proteins from HT1080 cells stably transfected with Armet-V5,
Creld2-V5 or ERp72-V5 substrate-trapping mutants were separated by SDS—PAGE and analysed by western blotting with an anti-V5 antibody. (A) There was no
evidence of higher order mixed disulphides formed between putative substrate proteins and either wild-type Armet (WT) or the individual substrate-trapping
mutants (N/C-CXXA, C-CXXA and N-CXXA). (B) In comparison, the control ERp72 substrate-trapping mutant (C-CXXA) demonstrated the formation of
mixed disulphides with substrate proteins. (C) Both the N-CXXA and N/C-CXXA substrate-trapping mutants of Creld2 formed high-molecular weight mixed dis-
ulphides (left panel) that were resolved on reduction (right panel). In contrast, wild-type Creld2 (WT) and the C-CXXA trapping mutant did not form higher molecular
weight aggregates with putative substrate proteins. (D) V5 co-immunoprecipitated proteins from the various Creld2 substrate-trapping cell lines were resolved by
SDS—PAGE and viewed by silver staining or instant blue (insert). Total protein pools >50 kDa were excised from each lane of the instant blue gel for liquid chro-
matography-mass spectrometry/MS analysis. Key: N/C-CXXA = amino and carboxyl terminal double substrate-trapping mutant; C-CXXA = carboxyl terminal
substrate-trapping mutant; N-CXXA = amino terminal substrate-trapping mutant; WT = wild- type Armet or Creld2; HT1080 = untransfected HT1080 cells;
lysate = total protein lysate prior to V5 co-immunoprecipitation; R = reduced protein samples; NR = non-reduced protein samples; kDa = kilodaltons.

co-transfection of the Armet HT1080 substrate-trapping cell
lines with WT and V194D matrilin-3 expression constructs
(Fig. 5A; left panel) failed to identify any mixed disulphides
(Fig. 5A; right panel), thereby confirming that Armet most
likely formed non-covalent interactions with matrilin-3 protein-
folding complexes (see Fig. 3A). In contrast, the N-CXXA and
N/C-CXXA substrate-trapping mutants of Creld2 were able
to capture full-length mutant matrilin-3 (Fig. 5B; left panel)

that existed as heterogeneous higher order mixed disulphide
complexes under non-reducing conditions (Fig. 5B; right
panel). This finding was consistent with the previous experiment
(Fig. 4C) and confirmed the location of the isomerase activity of
Creld2 to the amino terminal CXXC motif. However, we also
noted that the C-CXXA mutant was able to interact to a small
extent with mutant matrilin-3, suggesting that there may be
some limited activity at this CXXA site of Creld2.
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Table 3. Creld2 is part of mixed disulphide complexes with structural proteins, chaperones and PDIs

Protein Type HT1080 Creld2 WT Creld2 N-CXXA Creld2 C-CXXA Creld2 N/C-CXXA
BiP Chaperone 0/0 4/0/6 16/17/19 3/0/9 17/16/17
GRP9% Chaperone 0/0 0/0/3 0/11/3 0/0/2 8/8/9
HSP90B Chaperone 4/0 4/0/4 10/5/10 0/0/4 17/5/17
HSPAS8 Chaperone 0/0 6/0/3 7/13/9 2/0/4 14/5/14
SERPINHI Chaperone 0/0 0/0/0 2/6/2 0/0/0 4/3/3
PDIA1 PDI 0/0 3/0/0 3/6/4 0/0/4 7/6/5
PDIA3 PDI 0/0 0/0/0 3/6/5 0/0/7 12/11/8
PDIA4 PDI 0/0 0/0/0 0/3/0 0/0/0 7/4/4
LAMB3 ECM protein 0/0 0/0/0 11/15/22 2/0/14 14/13/17
al(VI) chain ECM protein 0/0 0/0/0 7/9/15 0/0/0 9/5/5
a3(VI) chain ECM protein 0/0 0/0/0 3/9/22 0/0/14 19/15/12
TSP1 ECM protein 0/0 0/0/0 14/11/23 0/0/5 6/0/7
Integrin alpha-3 Receptor 0/0 0/0/0 6/4/14 0/0/0 9/6/10
Pyruvate kinase isozymes M1/M2 Glycolytic enzyme 0/0 0/0/9 10/11/13 0/0/5 11/5/16

A summary of the proteins identified by spectral counting from V5-precipitated complexes of the Creld2 substrate-trapping mutants. Total protein pools were analysed
by LC-MS/MS and the data analysed using Mascot against the UniProt human database and validated with Scaffold using peptide/protein confidence values of 0.95 and
0.99, respectively. Positively identified proteins were defined as those having a number of matched peptide spectra greater than two. Three biological replicates were
used in all experiments and the number of spectra from each experiment is separated with a forward slash (/).

Key: N/C-CXXA = amino and carboxyl terminal double substrate-trapping mutant; C-CXXA = carboxyl terminal substrate-trapping mutant; N-CXXA = amino
terminal substrate-trapping mutant; WT = wild-type Creld2; HT1080 = untransfected HT1080 cells; PDI = protein disulphide isomerase; PPI = peptidylprolyl

isomerase; ECM = extracellular matrix.

Substitution of the two terminal cysteine residues from the
A-domain of V194D matrilin-3 prevents aggregation,
promotes mutant protein secretion and reduces the levels of
Creld2 and Armet

The expression of V194D matrilin-3 consistently results in ag-
gregation through non-native disulphide bonds and intracellular
retention in cell and mouse models of MED (Fig. 6A and B, re-
spectively) (12,30,35). Moreover, this aggregation is mediated
through the mutant A-domains alone (Fig. 6A; right panel) and
can be resolved to a single molecular form on reduction
(21,30) (and not shown). We therefore tested the hypothesis
that alanine substitution of the two terminal cysteine residues
(Cys77 and Cys263) from the A-domain of V194D matrilin-3
would reduce mutant protein aggregation, promote the secretion
ofaproportion of V194D matrilin-3 and influence the expression
of PDIs.

The removal of both cysteine residues prevented the forma-
tion of V194D matrilin-3 higher order disulphide-bonded aggre-
gates (Fig. 6C), but did not prevent the folding and secretion of
wild-type matrilin-3 A-domain. Moreover, this genetic manipu-
lation also promoted to some extent the secretion of V194D
matrilin-3 (Fig. 6D) and selectively reduced the protein levels
of ERp72, Creld2 and Armet, but not GRP78 and GRP94
(Fig. 6E).

DISCUSSION

This study demonstrates for the first time the genotype-specific
upregulation and secretion of Armet and Creld2 in various cell
and mouse models of genetic skeletal diseases. Moreover, we
have demonstrated that both Armet and Creld2 have substrate spe-
cificity in their binding to structural proteins and that Creld2
possess PDI-like activity. This is the first study to identify a poten-
tial role for both Armet and Creld2 and to confirm that they are key
markers in human ER stress-related diseases. Finally, we present

data that the aggregation of mutant matrilin-3 through non-native
disulphide bonds between the A-domains is a key disease trigger
that promotes specialization of the UPR toolbox (36).

Perhaps surprisingly, we observed that both Armet and Creld2
were present within the cartilage ECM of mutant mouse growth
plates, confirming that these proteins can be secreted under
certain pathological conditions. Many ER resident proteins are
prevented from being secreted via an ER retention motif
(KDEL) at their extreme C-terminus, which binds with high af-
finity to KDEL receptors (KDEL-R) located in the intermediate
compartment or in the cis-Golgi (37). Interestingly, both Armet
and Creld2 contain putative ER retention motifs at their
C-terminus (RTDL and REDL, respectively) (38), suggesting
that these proteins might remain resident in the ER. However,
while previous reports have shown that both Armet and Creld2
are primarily retained within the ER or Golgi, they can also be
secreted into cell culture media under certain experimental con-
ditions (25,26,39). For example, these proteins can be secreted if
the putative ER retention signals are disrupted, either by deletion
or having a peptide tag engineered at the C-terminus (26,27,39).
In other experiments, the ER retention motif has not been dis-
rupted but cells have been subjected to ER stress by chemical
agents such as tunicamycin or by culturing cells in serum-free
medium. Overall, these studies have suggested that Armet and
Creld2 can be secreted in vitro during different ER stress condi-
tions. Since Armet and Creld2 are only detectable at significant
levels in the ECM of Matn3 V194D and Col10al N617K mutant
growth plates and not in wild-type controls, our study demon-
strates for the first time that both proteins are up-regulated and
secreted during ER stress in gene-targeted disease models.
This observation is consistent with the hypothesis that under
normal physiological conditions, Armet and Creld2 are able to
bind to the KDEL-R and remain within the ER (40); however,
it is believed that KDEL-variants bind with lower affinity than
KDEL itself (38). During ER stress, the relative levels of
Armet and Creld2 are increased, along with other UPR-related
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Figure 5. N-CXXA Creld2 substrate-trapping mutant shows specificity for mutant matrilin-3. Wild-type Armet-V5 and Creld2-V5 (WT) and the various substrate-
trapping (N/C-CXXA, C-CXXA and N-CXXA) cell lines were co-transfected with wild-type (WT M3) or V194D mutant (V194D) matrilin-3 expression constructs.
(A) Reducing SDS—PAGE and western blotting (anti-FLAG) on total cell lysate proteins confirmed the co-expression of WT and V194D matrilin-3 in all Armet cell
lines (left panel: WT Armet and the various substrate-trapping lines). However, non-reducing SDS—PAGE and western blotting for Armet (anti-V5) did not detect any
higher order mixed disulphides in all substrate-trapping and wild-type cell lines (right panel). (B) Co-immunoprecipitation with V5 followed by reducing SDS—-PAGE
and western blotting for Creld2 (anti-V5) and matrilin-3 (anti-FLAG) confirmed interactions between full-length V194D matrilin-3 and only the N/C-CXXA and
N-CXXA substrate-trapping cell lines (left panel). When these samples were run under non-reducing conditions, the presence of matrilin-3 (anti-FLAG) containing
higher order mixed disulphide complexes was demonstrated (right panel). Total cell lysate proteins from HT 1080 cells (either untransfected or transfected with WT
Creld2) were used controls. Key: WT M3 = wild-type matilin-3; V194D = V194D mutant matrilin-3; N/C-CXXA = amino and carboxyl terminal double substrate-
trapping mutant; C-CXXA = carboxyl terminal substrate-trapping mutant; N-CXXA = amino terminal substrate-trapping mutant; WT = wild-type Armet or

Creld2; HT1080 = untransfected HT1080 cells; kDa = kilodaltons.

proteins such as BiP and GRP94, while the relative expression of
the three mammalian KDEL receptors (KDELR1-3) are not
increased (41). Indeed, microarray analysis confirmed that the
relative levels of Kdelrl, Kdelr2 and Kdelr3 in V194D mutant
compared with control chondrocytes were —1.22, 1.43 and
1.28, respectively (not shown). Therefore, upon activation of
the UPR proteins such as BiP, which contain perfect ER retention
motifs that have higher affinity for the KDEL receptor, would
compete with proteins which contain a motif that has a lower
binding affinity, thereby allowing the latter proteins to escape
the ER and ultimately be secreted. The interesting observation
that Armet and Creld2 are secreted under conditions of increased
ER stress suggests the possibility that they may be exploited as
soluble extracellular biomarkers of ER stress-related diseases
that are gene product and/or mutation specific.
Substrate-trapping experiments demonstrated that Creld2
possesses PDI-like activity and in addition to matrilin-3, we

also identified laminin-5 3, collagen VI and thrombospondin-1
(TSP1) as potential substrates. All three proteins have numerous
intramolecular disulphide bonds. Indeed, the a1(VI) and a3(VI)
chains contain up to three and seven VW A domains, respectively
(42), which are very similar in structure to the one found in
matrilin-3, while laminin-5 B3 has numerous intermolecular di-
sulphide bonds in various domains and also forms disulphide
bonded trimers with the a3 and y2 chains. TSP1 is the archetypal
member of the TSP protein family, which includes COMP
(TSP5), but has additional domains not shared with COMP
such as the type 1 repeats and procollagen homology domain.
Mutations in the VWA domains of type VI collagen result in
Bethlem and Ulrich muscular dystrophies (42), while mutations
in LAMB3 cause junctional epidermolysis bullosa (both Herlitz
and non-Herlitz type) (43). In both diseases, ER stress and an
UPR have not been investigated as potential mechanisms, al-
though mutations in type VI collagen have been shown to
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Figure 6. Mutant matrilin-3 forms non-native disulphide bonded aggregates that can be resolved by deletion of the A-domain terminal cysteine residues. SDS—PAGE
and western blot analysis confirmed the intracellular retention and aggregation over time (¢ = day 0 or day 3 following confluency after transfection) of V194D mutant
matrilin-3 (V194D) in the cell lysate of (A) cellular models or (B) isolated mouse chondrocytes. (A; left panel) demonstrates that only wild-type (WT) matrilin-3 is
secreted into the culture medium predominately as a tetramer, whereas as V194D mutant matrilin-3 (V194D) is retained initially as various oligomeric forms (¢ = 0),
but these aggregate over time (# = 3) to form high-molecular weight aggregates. (A; right panel) confirms that aggregation is mediated through the A-domain by the
presence of various oligomeric forms (1x to 5x). V194D and R121W are typical M4 TN3-MED mutations, whereas E252K is a known polymorphism and is comparable
to wild type (WT). (C) In vitro substitution of the terminal cysteine residues of the A-domain (V194D_no cys) resolved mutant protein aggregation (V194D) and did
notaffect oligomerization of either the wild-type (WT_no cys) or mutant proteins when analysed by non-reducing SDS—PAGE and western blotting (anti-FLAG). (D)
Substitution of the terminal cysteine residues with alanine promoted secretion of the mutant V194D protein (V194D-no cys) as visualized by reducing SDS—PAGE.
Furthermore, (E) there was also selective reduction in the levels of ERp72, Creld2, and Armet, but not GRP78 or GRP94. Ponceau staining (not shown) and GAPDH
were used as loading controls. Key: WT = wild-type matrilin-3; V194D = mutant matrilin-3; V194D_no cys & WT_no cys = matrilin-3 with cysteine residues 77
and 263 replaced with alanine (mutant and wild-type respectively); 293 = cell lysate from untransfected HEK293 cells; agg = non-native disulphide bonded aggre-
gates of mutant matrilin-3; q = tetramer, # = trimer, d = dimer and m = monomers of matrilin-3; ns = non-specific band; kDa = kilodaltons. All gels show full-
length matrilin-3 unless stated otherwise and the number of replicates in (E) is indicated.

cause impaired secretion and mutant protein retention (44,45). The co-immunoprecipitation experiments were also consist-
The role of ER stress and UPR specialization in these connective  ent with the recently published interaction map of endoplasmic
tissues diseases, and in particular whether ARMET and Creld2 reticulum chaperones and foldases (36). For example, we
are up-regulated, warrants further investigation in order to delin-  noted that matrilin-3 formed ER multi-protein complexes with
eate a range of different phenotypes that may share a common BiP/GRP78, GRP94, selected PDIAs and PPIs. Indeed, the
disease trigger. PPIB (cyclophilin B) multi-protein composite containing
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PDIA1, PDIA4/ERp72, PDIA6/P5, BiP/GRP78 and GRP94 was
found with matrilin-3 A-domain complexes (Table 1), while the
calnexin cycle components (CANX and CALR) were absent,
which supports the separation of these two systems in this
disecase model (36). Moreover, there were increased levels of
these proteins in mutant matrilin-3 complexes, which was con-
sistent with our previous gene expression studies (Table 2).
Wild-type COMP also showed preference for the PPIB multi-
protein complex, but in contrast there was no increase in these
components with D469del mutant COMP, confirming our previ-
ous finding of a lack of transcriptional UPR with this mutation
(13). Finally, the interesting observation that HYOU1 was
almost exclusively associated with mutant V194D matrilin-3,
and to a lesser extent D469del COMP, highlights an important
role for this protein in binding to mutant protein substrates and
its cytoprotective role warrants further investigation in MED
disease models (32).

Overall, our data suggest that the upregulation of Armet and
Creld2 with the PPIB ER-folding complex may not simply be
a consequence of UPR activation but could be part of a specia-
lized UPR that is tailored for certain misfolded proteins that
expose an unpaired cysteine residue. Indeed, Armet has recently
been suggested to facilitate the formation of cysteine bridges and
protein folding in the ER during neurodegenerative diseases
(33), while a C96Y mutation in insulin leads to the disruption
of intramolecular disulphide bonds (46), and the expression of
this mutation in pancreatic cell lines leads to induction of
Armet and Creld? along with various PDIAs (47).

The upregulation of various PDIAs in the Matn3 V194D
mutant chondrocytes might be expected since mutant matrilin-3
forms misfolded aggregates, both in vivo and in vitro, which dis-
sociate upon reduction, indicating that these complexes form via
non-native disulphide bonds. Furthermore, mutant matrilin-3
A-domains have also been shown to directly interact with
PDIA4/ERp72 in a cell culture model of MED (30). Similarly,
although expected to form stable type X collagen homotrimers,
certain mutant forms of type X collagen have been shown to form
an unusual dimer, which also dissociates upon reduction (48).
The formation of this mutant type X collagen dimer, via a non-
native disulphide bond, is believed to result from a dramatic con-
formational change since the sulfhydryl group in the NCI1
domain is not solvent-exposed in the correctly folded al(X)
trimer. Finally, several mutant forms of type X collagen have
been shown to co-immunoprecipitate with PDI (49); however,
additional experimentation is required to define the role of
Armet and Creld2 in MCDS.

Conversely, there is no evidence to support non-native disul-
phide bond formation and protein aggregation due to mutations
in COMP. For example, cell culture studies on COMP with
p-D469del, p.D472Y or p.D475N mutations confirmed impaired
secretion of the mutant protein, but also demonstrated that both
retained and secreted mutant COMP forms pentameric mole-
cules similar to the wild-type protein (50—52). Overall, these
studies demonstrate that specific mutations in the type III
repeat region of COMP do not affect its ability to form penta-
mers, suggesting that these mutations do not cause a dramatic
conformational change of the protein that might leave unpaired
cysteine residues.

We hypothesized that the formation of non-native disulphide
bonded aggregates of mutant V194D matrilin-3 was the direct

result of delayed or incomplete folding of the central (3-sheet
of the A-domain that results in prolonged exposure of the thiol
groups of the two terminal cysteine residues (Cys77 and
Cys263). This in turn promotes the formation of intermolecular
disulphide bonds between matrilin-3 oligomers that cause
mutant protein aggregation and render these complexes resistant
to retro-translocation and ERAD. To test this hypothesis, we
engineered expression constructs in which the two terminal
cysteines were replaced by alanine residues. In the first instance,
this proof-of-principle experiment demonstrated that removal of
Cys77 and Cys263 did not disrupt to any great extent the folding
and secretion of wild-type matrilin-3. This result in itself was not
surprising since some VWFA domains and related integrin
I-domains do not possess these terminal cysteine residues (53).
In contrast, we saw a dramatic effect on the aggregation and se-
cretion of mutant matrilin-3. For example, deletion of Cys77 and
Cys263 completely abolished the formation of disulphide-
bonded high-molecular weight aggregates and promoted the se-
cretion of a proportion of V194D matrilin-3. Moreover, this
resulted in a reduction of specific chaperones and foldases in-
cluding Armet, Creld2 and ERp72, thus confirming their direct
role in mediating disulphide bond formation in this disease
model.

In conclusion, this study has discovered that the aggregation
of mutant matrilin-3 is a key disease trigger in this form
of MED, and that the prevention of this protein accretion, by
either enhancing the folding with corrector-molecules (54,55)
or preventing non-native disulphide bond formation by blocking
the unpaired cysteine residues (56), offers novel therapeutic
targets for further validation.

MATERIALS AND METHODS
Transgenic mice models of human genetic skeletal diseases

Matn3 V194D, Comp T585M mice, Comp D469del mice and
Coll0al N617K mice were generated as previously described
(10,11,13,14). Mice homozygous for the respective mutations
were compared with their wild-type counterparts for these
studies.

Matrilin-3 and COMP cellular models of PSACH-MED

Complementary DNAs encoding full-length matrilin-3 (FLM3)
and the A-domain alone (both wild type and p.V194D) had pre-
viously been cloned into pCMV-Tag4 (FLM3) and pSecTag2A
(A-domain) vectors with C-terminal C-MYC or FLAG epitope
tags, respectively, and used to establish stable CHO cell lines
(30). These cDNAs were also subcloned into the expression
vector pCEP4 and transfected into HEK 293 cells as described
previously (21). Expression constructs encoding wild-type
COMP and the D469del mutation had previously been cloned
into pEGFP-N3 with a C-terminal GFP tag and transfected into
HT1080 cells (13). Mutation of the terminal cysteines (Cys77
and Cys263) to alanine residues in the A-domain of full-length
matrilin-3 expression constructs (WT and p.V194D) was per-
formed by PCR-based in vitro mutagenesis similar to the ap-
proach previously used to introduce MED mutations (21).
CHO, HEK 293 and HT 1080 cells were cultured as previously
described with Dulbecco’s Modified Eagle’s medium



supplemented with 10% FBS (Fisher Scientific), 2 mm
L-glutamine (Sigma), 100 U/ml penicillin and 100 mg/ml
streptomycin (Biowhittaker), non-essential amino acids and
vitamins (Sigma) and antibiotics appropriate to the expression
vectors (13,21,30). All cells were incubated at 37°C in humidi-
fied air containing 5% CO,. CHO and HEK 293 cells were
lysed by incubation in RIPA lysis buffer (10 mm Tris, pH 7.4,
150 mm NacCl, 1% sodium deoxycholate, 0.1% SDS) on ice for
15 min. The cell extract was removed, centrifuged at 13 600g
for 5 min and the supernatant removed for analysis.

Isolation of total mouse chondrocyte protein

Chondrocytes were isolated from the rib cartilage of pooled
litters of 5-day-old mice as described previously (12). Briefly,
rib cages were dissected from wild-type (WT) and mutant
(mm) mice and treated with 2 mg/ml type 1A collagenase
(Sigma) for 1 h. The costal cartilage was then dissected from
the rib cage and other connective tissues were removed. The
clean cartilage was further treated with collagenase for 3 h,
and the collagenase digest passed through a cell strainer
(70 wm) and centrifuged for 5 min at 560g to pellet the released
chondrocytes. The cell pellet was washed twice with PBS and
resuspended in 5 ml PBS. Chondrocyte numbers were deter-
mined using a haemocytometer and aliquots of I x 10’ cells pre-
pared. Cell pellets were collected by centrifugation and
resuspended in 5X SDS loading buffer.

SDS—-PAGE and western blotting of mouse and cell line
protein extract

Twenty micrograms of total cell lysate (CHO or HEK293) or
mouse chondrocyte protein extract were separated by SDS—
PAGE on 4-12% Bis-Tris gels (Invitrogen). Proteins were
transferred to nitrocellulose membranes for western blot ana-
lysis. Ponceau staining and/or GAPDH were used to confirm
the equal loading of protein prior to probing with antibodies spe-
cific to Armet, GAPDH (Abcam), Creld2, GRP78, GRP9%4,
ERp72 (all Santa Cruz Biotechnology), matrilin-3 (R&D),
COMP (Genetex) and FLAG (Sigma). Protein bands were visua-
lized by enhanced chemiluminescence (Perkin-Elmer Inc) and
quantified using AIDA densitometry software. For the Armet
and Creld2 blots using chondrocyte protein extracts, the ‘cell
protein aliquots’ from three different biological replicates
were analysed in triplicate and quantified for each genotype.
Analysis of cell lysates from CHO and HEK293 cells was per-
formed in triplicate on one isolate.

Immunohistochemical analysis of growth plate cartilage

Limbs from male mice were prepared for IHC as described pre-
viously (10). Sections were blocked with goat serum (Dako
Cytomation) in PBS/1% bovine serum albumin (BSA) and incu-
bated for 1 h with primary antibodies specific to Armet or
Creld2. Sections were then incubated with the appropriate
secondary antibody (biotinylated anti-rabbit IgG, Dako Cytoma-
tion) in PBS/1% BSA, followed by incubation with ABC-
complex/HRP reagent (Vector laboratories Ltd.) for 30 min.
Sections were developed using 3,3’-diaminobenzidine (Dako
Cytomation), counterstained with methyl green, dehydrated in
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EtOH, cleared in xylene and mounted in Vectamount. The sec-
tions were imaged using a Zeiss Axiovision microscope.

Immunocytochemical analysis of MED cell culture models

Fixed cells were permeabilized with 0.2% Triton/PBS for 8 min,
washed in PBS, blocked with 2% donkey serum/PBS and incu-
bated with primary antibodies against either matrilin-3 or
Armet for 1 h. Cells were then washed with PBS, incubated
with the secondary antibody (Alexa Fluor 555 or Fluor 488; Invi-
trogen) and washed in PBS before mounting in Vectashield
medium with DAPI (Vector) and imaged.

Co-immunoprecipitation of interacting proteins

Co-immunoprecipitation was carried out on HEK-293 cell
lysates transfected with matrilin-3 constructs using ANTI-
FLAG® M2 affinity gel (Sigma Aldrich, Dorset UK) or
on HT1080 cells transfected with COMP constructs using
ANTI-GFP sepharose beads (Abcam). Prior to immunoprecipi-
tation, the cells were treated with dithiobis[succinimidyl propi-
onate] to stabilize protein complexes as previously described
(30). Cell lysates were prepared by incubation in lysis buffer
(50 mm Tris—HCI, pH 7.4, 1% Triton X-100, 150 mm NacCl,
1 mm EDTA). Following removal of the cell monolayer and cen-
trifugation at 13 600g, 500 g of cell lysate was incubated with
ANTI-FLAG® M2 affinity gel or ANTI-GFP sepharose beads as
per manufacturer’s instructions. The resin was collected and
washed three times in tris-buffered saline (50 mm Tris—HCI,
pH 7.4, 150 mm NaCl), before proteins were eluted with 0.1 m
glycine HCI, pH 3.5 for SDS—PAGE and western blotting.

Mass spectrometry (MS) analysis of protein precipitates

Total protein pools were excised from each lane of an SDS—
PAGE gel (run as described above) before being dehydrated,
reduced, alkylated and washed. Samples were then digested
with trypsin overnight at 37°C and analysed by LC-MS/MS
using a NanoAcquity LC (Waters, Manchester, UK) coupled
to a LTQ Velos (Thermo Fisher Scientific, Waltham, MA)
mass spectrometer. Peptides were concentrated on a pre-column
(20 mm x 180 pwm i.d, Waters) and were then separated using a
gradient from 99% A (0.1% FA in water) and 1% B (0.1% FA in
acetonitrile) to 25% B, in 45 min at 200 nl min-1, using a
75 mm x 250 pm i.d. 1.7 wm BEH CI18, analytical column
(Waters). Peptides were selected for fragmentation automati-
cally by data-dependent analysis.

Data were interrogated using Mascot version 2.2 (Matrix
Science, UK) against the UniProt database (version 2011-05)
with taxonomy of Homo sapiens selected. Mascot search
results were validated using Scaffold version 3.3.1 (Proteome
Software, Portland, USA) to assign confidence values to
peptide/protein matches, where the peptide/protein confidence
values of 0.95 and 0.99 were used. Identified proteins were
defined as having a number of matched peptide spectra greater
than two, and the unweighted spectral count was used as a
measure of quantification. Two biological replicates were used
in all experiments.
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Generation of Armet and Creld2 substrate-trapping
mutants

c¢DNAs containing the entire coding sequence for Armet and
Creld2 were amplified using the PCR. The forward primer
included a Kpnl site at the 5’ end of the sequence, while the
reverse primer included a V5 tag followed by a KDEL sequence,
stop codon and a Xhol restriction site to aid sub-cloning and iden-
tification. The engineered PCR products were ligated into Kpnl—
Xhol-digested pcDNA3.1(+) (Invitrogen). In vitro mutagenesis
ofthe N- and C-terminal cysteines in both putative active CXXA
sites of Creld2 and Armet was performed by a PCR. For Creld2,
these were Cys32 and Cys264 and for Armet Cys33 and Cys154
(Supplementary Material, Figs S5 and S6). Plasmids were line-
arized with Sspl before transfecting into subconfluent HT 1080
human fibroblasts with Lipofect AMINE 2000 reagent as de-
scribed previously. Stable cell lines were selected with G418
for 14 days before colonies were isolated and expanded.

Identification of putative mixed disulphides using
substrate-trapping mutants

HT1080 cells expressing the various forms of Armet-V5,
Creld2-V5 (WT, N/C-CXXA, N-CXXA and C-CXXA) and
ERp72-V5 (C-CXXA) were grown to confluence under standard
conditions and then treated with NEM (25 mm) to preserve
mixed disulphides. Cells were lysed in 1% (v/v) Triton X-100,
50 mm Tris—HCI, pH 7.4, 150 mmNacCl, 2 mm ethylenediamine-
tetraacetic acid and 0.5 mm phenylmethylsulphonyl fluoride and
20 pg cell lysate was separated by SDS—PAGE on 4-12%
Bis-Tris gels under either reducing (DTT) or non-reducing con-
ditions. Western blotting was subsequently performed with anti-
bodies specific to the V5 epitope (Invitrogen: 1:5000 dilution).

SUPPLEMENTARY MATERIAL
Supplementary Material is available at HMG online.
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