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Abstract: The aim of this study was to compare the reduced stresses according to Huber’s hypothesis
and the displacement pattern in the region of the facial skeleton using a tooth- or bone-borne
appliance in surgically assisted rapid maxillary expansion (SARME). In the current literature, the
lack of updated reports about biomechanical effects in bone-borne appliances used in SARME is
noticeable. Finite element analysis (FEA) was used for this study. Six facial skeleton models were
created, five with various variants of osteotomy and one without osteotomy. Two different appliances
for maxillary expansion were used for each model. The three-dimensional (3D) model of the facial
skeleton was created on the basis of spiral computed tomography (CT) scans of a 32-year-old patient
with maxillary constriction. The finite element model was built using ANSYS 15.0 software, in which
the computations were carried out. Stress distributions and displacement values along the 3D axes
were found for each osteotomy variant with the expansion of the tooth- and the bone-borne devices
at a level of 0.5 mm. The investigation showed that in the case of a full osteotomy of the maxilla,
as described by Bell and Epker in 1976, the method of fixing the appliance for maxillary expansion
had no impact on the distribution of the reduced stresses according to Huber’s hypothesis in the
facial skeleton. In the case of the bone-borne appliance, the load on the teeth, which may lead to
periodontal and orthodontic complications, was eliminated. In the case of a full osteotomy of the
maxilla, displacements in the buccolingual direction for all the variables of the bone-borne appliance
were slightly bigger than for the tooth-borne appliance.

Keywords: SARME; transpalatal distraction; finite element analysis; maxillary constriction; maxillary
expansion; orthognathic surgery

1. Introduction

Maxillary transverse extension is the method of choice in the treatment of dispropor-
tions in the transverse dimensions of both the maxilla and the mandible, which are, among
others, distinguished by crossbite [1]. During maxillary expansion, the maxillary and
palatine bones are separated in the palatal suture, which increases the upper arch width.
After their separation, the goal of treatment is to increase the bone base of the maxilla by
providing stimulation to form new bone. The optimal anterior and posterior widths of the
upper arch have a substantial impact on stable occlusion after the orthodontic treatment
or the orthodontic and surgical team treatment is completed [2]. The causes of maxillary
constriction include genetic and environmental factors, as well as dysfunctions and para-
functions, namely, mouth breathing or thumb sucking [3]. According to the “functional
matrix hypothesis” formulated by Moss in the 1960s, the proper function and growth of
the facial skeleton are determined by proper breathing, swallowing and chewing [4,5]. The
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absence of appropriate functional stimuli results in the disordered morphology of the facial
skeleton and the occurrence of malocclusion.

The anatomy and architecture of the midface are of fundamental importance in max-
illary expansion therapy [6,7]. There are various expansion protocols: slow maxillary
expansion (SME), semirapid maxillary expansion (SRME), rapid maxillary expansion
(RME) and surgically assisted maxillary expansion [8,9]. With age, the elasticity of bone
and the ability to treat disorders with orthodontic and orthopaedic methods decreases. As
a result, surgical procedures are required [10,11]. It was originally believed that ossifica-
tion of the palatal suture blocked orthodontic expansion of the maxilla in adult patients.
However, Schlegel et al. found that suture ossification occurred in only half of the study
group who were over 23 years of age [12].

Further studies on the architecture of the facial skeleton and separation of the palatal
suture showed that the points of increased bone resistance in the midface made it impossible
to perform maxillary expansion in adult patients [13,14]. The sites with increased bone
resistance are located in the so-called Sicher’s pillars, i.e., the canine, zygomatic and
pterygoid process pillars, and in the midpalatal suture [15]. The research studies conducted
by Lines, as well as Bell and Epker, shed light on SARME (surgically assisted rapid maxillary
expansion) therapy and aimed at increasing its transverse dimensions [14–16]. The authors
argued that in the facial skeleton, there are more sites of bone resistance, apart from
the palatal suture in adult patients undergoing maxillary expansion [17]. The sites of
increased resistance within the midface region turned out to be the apertura piriformis
(anterior resistance point), the zygomaticoalveolar crest (lateral resistance point) and the
pterygopalatine suture (posterior resistance point) [1]. A surgical incision into the bone
resistance sites in the facial skeleton described by Sicher enables performing an expansion
of the maxilla, and thus minimising the stresses in other bones of the skull and the cranial
base [10,18–20]. At the present time, there is no settled conclusion regarding the type of
optimum osteotomy of the midface in surgically assisted rapid maxillary expansion in the
literature [21,22].

Another important aspect in surgically assisted rapid maxillary expansion is the type
of force-generating device used for expanding the maxilla.

In practice, devices are fixed onto teeth, directly to the bone or hybrid fixation appli-
ances are used [1,17,23]. Tooth-borne orthodontic appliances indirectly apply forces to the
facial skeleton by exerting their effect through the teeth. The direct fixation of the device to
the bone allows for ignoring the effects exerted by the teeth. In MARPE (microimplant-
assisted rapid palatal expansion) therapy, the teeth and the palatal process of the maxilla
are used for fixing the device. MARPE is a combination of the two types of device fixa-
tion mentioned above [24,25]. Each type of expander has its supporters and opponents.
However, the aspect of loading the patient’s teeth with the tooth-borne appliance and
its negative effects on the periodontium are widely discussed in the literature [21,25,26].
Another undesirable effect of the tooth-borne appliance is a significant dentoalveolar effect,
which may have an influence on the lasting effects of orthodontic treatment [3,7].

By taking into account both the surgical and orthodontic aspects, this analysis aimed
at finding an optimal biomechanical solution. In order to facilitate the selection of the best
method of treatment in surgically assisted rapid maxillary expansion therapy, five surgical
variants and two types of expanders were modelled.

2. Material and Methods
2.1. Design of the Facial Skeleton Model for the Finite Element Analysis

The three-dimensional (3D) model of the skull was created based on spiral computed
tomography (CT) scans of a healthy 32-year-old female patient with maxillary constriction.
DICOM (Digital Imaging and Communications in Medicine) files were imported into the
Slicer3D program (Slicer 4.10.2®, BWH, Boston, MA, USA), in which the facial bones were
separated. The separation was made by marking the attenuation thresholds for the bone
structure. CT scan voxels with attenuation in that scope formed a volumetric model of



Materials 2021, 14, 1152 3 of 17

the patient’s facial skeleton. Subsequent transformation in the form of a surface mesh
in the stereolithography (.stl) format was carried out in the Blender software (Blender
2.82a®, Blender Fundation, Amsterdam, The Nederland). The STL format represents a
three-dimensional surface in triangular facets. In this way, a high-quality surface mesh was
produced. The surface mesh was exported in the STL format to the GMSH program (GMSH
4.1.®, GMSH, Brussels, Belgium), where a resulting volumetric mesh of 10 nodal tetrahe-
drons of the second order was created. In order to generate a dense mesh of higher-order
finite elements, the mesh was imported into the ANSYS 15.0 software (Swanson Analysis
System, Cannonsburg, PA, USA). ANSYS is a finite element analysis (FEA) software tool for
structural analysis in a simulated environment. In ANSYS 15.0, the mechanical properties
of the materials in the models were assigned, as shown in Table 1, and an analysis using the
finite element method was made [24,27–29]. As a result of the dense discretisation, a dense
mesh of higher-order finite elements was created, consisting of over 1.8 million elements,
with an element edge length of 1–2 mm (Figure 1).
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Figure 1. A fragment of the finite element mesh.

Table 1. The mechanical properties of the components of the finite element model that was con-
structed for the present study [27–29].

Variable Young’s
Modulus (MPa)

Poisson’s
Ratio

Compact bone 13,700 0.26
Cancellous bone 1370 0.3

Enamel 80,000 0.26
Dentin 20,000 0.15

Stainless steel 200,000 0.3

2.2. Design of the Bone- and Tooth-Borne Appliances

Two variants of the appliance with different methods of fixing were modelled using
beam elements. For the arms of the device, a 3.5 mm diameter wire was established, and
for the central part, a 3 mm diameter wire was established. In the first variant, the implant
was fixed directly to the maxillary bone (bone-borne type) between teeth 4 and 5, as well
as teeth 5 and 6. In the second variant, the implant was fixed onto teeth 4, 5 and 6 of the
maxilla (tooth-borne type). The expansion of the central part of the device by 0.5 mm was
modelled by assigning to its central part of 9.62 mm in length an artificial coefficient of
thermal expansion with a value of 5.197 × 10−4 and raising its temperature by 100 ◦C. In
clinical cases, the expansion of the device occurs by turning the screw at the human body
temperature. The views of both appliances together with the marked fixation points on the
hard palate and teeth, including the part which was expanded, are presented in Figure 2.
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On the model of the facial skeleton, there were five points of fixation around the foramen
magnum, as shown in Figure 3.
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2.3. Models of Osteotomy of the Midface

By using dense discretisation, the facial skeleton models were created with five vari-
ants of osteotomy of the facial skeleton and one without surgical intervention. Each model
was analysed using the tooth-borne device and the bone-borne device with a central
module expansion of 0.5 mm. In Figure 4, the course of the osteotomy line is shown
schematically. Three colours were used to mark various types of osteotomies: a red one in
case of only an osteotomy in the palatal suture, yellow for a Le Fort I osteotomy without
a separation from the pterygoid processes of the sphenoid bone and blue for a total sep-
aration of the maxilla. In total, 12 numerical models were analysed: model 1—a variant
without surgical intervention (tooth-borne, bone-borne), model 2—sagittal osteotomy in
the palatal suture region (tooth-borne, bone-borne), model 3—osteotomy according to the
Le Fort I line without a separation in the pterygomaxillary junction (PMJ; tooth-borne,
bone-borne), model 4—osteotomy according to the Le Fort I line with a separation in the
PMJ (tooth-borne, bone-borne), model 5—sagittal osteotomy combined with an osteotomy
according to the Le Fort I line without a separation in the PMJ (tooth-borne, bone-borne)
and model 6—full osteotomy of the maxilla according to the Le Fort I line with a separation
in the PMJ (tooth-borne, bone-borne). Table 2 provides a detailed description of the range
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of the modelled osteotomies and the order in which the maps of the reduced stresses
according to Huber are presented in Figures 5 and 6.
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Figure 4. Schematic representation of the osteotomy line on the 3D finite element model of the facial
skeleton. Red colour—palatal suture osteotomy; yellow colour—Fort I osteotomy without a PMJ
separation; blue colour—total Le Fort I osteotomy.

Table 2. A detailed course of the modelled osteotomies and the order in which the maps of the
reduced stresses according to Huber are presented in the figures.

Model Tooth-Borne Type Appliance Bone-Borne Type Appliance

Model 1 No surgery

Model 2 Palatal suture osteotomy

Model 3 Le Fort I osteotomy without a PMJ separation

Model 4 Le Fort I osteotomy with a PMJ separation

Model 5 Palatal suture + Le Fort I osteotomy without a PMJ separation

Model 6 Palatal suture + Le Fort I osteotomy with a PMJ separation
PMJ—pterygomaxillary junction.

The reduced stresses according to Huber’s hypothesis were determined for the selected
anatomical structures of the facial skeleton for the 12 models of the skull. In models 1a
to 6a, the tooth-borne appliance was used, whereas in models 1b to 6b, the bone-borne
appliance was used. Furthermore, coloured contour stripes show the distribution of the
reduced stresses at a particular site in the front and bottom views in Figures 5 and 6, as in
the order shown in Table 2.

The displacements in millimetres along the X-, Y- and Z-axes were determined for se-
lected anatomical structures of the facial skeleton for the tooth- and bone-borne appliances
for the 12 numerical models of the skull.

The displacement along the X-axis correlated with a shift in the buccolingual direction.
Positive values describe displacements in the buccal direction and negative values describe
displacements in the lingual direction.

The displacement along the Y-axis correlated with a shift in the anterior–posterior
direction. Positive values describe displacements in the anterior direction and negative
values describe displacements in the posterior direction.
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Figure 5. The finite element model showing the front view of the distribution of the stresses (scale 0–
10 MPa) according to Huber throughout the craniofacial skeleton as a result of palatal expansion using
five different surgical procedures, and without an osteotomy. Model 1—without an osteotomy; model
2—sagittal osteotomy; model 3—transversal osteotomy modo Le Fort I without a PMJ separation;
model 4—transversal osteotomy modo Le Fort I with a PMJ separation; model 5—sagittal osteotomy
with a transversal osteotomy modo Le Fort I without a PMJ separation; model 6 (the model used
for finite element analysis)—sagittal osteotomy with a transversal osteotomy modo Le Fort I with a
PMJ separation.
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The displacement along the Z-axis correlated with the shift in the superior–inferior
direction. Positive values describe displacements in the superior direction and negative
values describe displacements in the inferior direction.
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Figure 6. The finite element model showing the bottom view of the distribution of stresses (scale 0–25 MPa) according to
Huber throughout the craniofacial skeleton as a result of palatal expansion using five different surgical procedures, and
without an osteotomy. Model 1—without an osteotomy; model 2—sagittal osteotomy; model 3—transversal osteotomy
modo Le Fort I without a PMJ separation; model 4—transversal osteotomy modo Le Fort I with a PMJ separation; model
5—sagittal osteotomy with a transversal osteotomy modo Le Fort I without a PMJ separation; model 6 (the model used for
finite element analysis)—sagittal osteotomy with a transversal osteotomy modo Le Fort I with a PMJ separation.

3. Results
3.1. Stresses Reduced According to Huber’s Hypothesis

Figures 5 and 6 show the distribution of the reduced stresses according to Huber’s
hypothesis for activation at a level of 0.5 mm for the bone- and tooth-borne appliances
for the 12 numerical models of the skull in the front and bottom views. Moreover, Table 3
presents the distribution of the stresses for selected points of the facial skeleton for the
12 variants under study.

In model 1, the activation of the tooth-borne device over the range of 0.5 mm resulted
in the distribution of reduced stresses according to Huber to 3.3 MPa within the orbital
region and the squamous part of the frontal bone. The highest values of >10 MPa were
found in the region of the maxillary alveolar process at the premolars, on the anterior
wall of the maxillary sinuses and in the hard palate. The activation of the bone-borne
device over the range of 0.5 mm in model 1 showed the distribution of the reduced stresses
according to Huber to 5.5 MPa within the orbital region and the squamous part of the
frontal bone. The highest values of >10 MPa were found within the proximity of the entire
region of the body of both maxillary bones. The values of >25 MPa were found in the entire
region of the hard palate.
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Table 3. Stress distribution (MPa) according to Huber throughout the craniofacial model with various surgical procedures and the tooth-borne and bone-borne orthodontic appliance using
the finite element analysis.

Anatomical Structures
Tooth-Borne Bone-Borne

No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 1 No. 2 No. 3 No. 4 No. 5 No. 6

Nasofrontal suture 2.2 5.5 1.1 1.1 4.4 2.2 3.3 5.5 3.3 2.2 5.5 2.2

Zygomaticomaxillary suture 3.3 5.5 4.4 1.1 4.4 2.2 >10 5.5 3.3 1.1 4.4 2.2

Arcus superciliaris—brow ridge 2.2 8.8 2.2 2.2 7.7 3.3 5.5 >10 5.5 3.3 10 3.3

Zygomaticofrontal suture 4.4 7.7 3.3 2.2 7.7 3.3 3.3 6.6 7.7 3.3 4.4 3.3

Palatal suture anterior region >25 1.1 >25 >25 1.1 1.1 >25 1.1 >25 >25 1.1 1.1

Palatal suture posterior region 13.8 1.1 13.8 13.8 1.1 1.1 >25 1.1 >25 >25 1.1 1.1

Supraorbital margin 2.2 4.4 2.2 1.1 4.4 2.2 3.3 5.5 3.3 2.2 5.5 2.2

Infraorbital margin 4.4 5.5 2.2 1.1 7.7 2.2 >10 8.8 7.7 2.2 6.6 2.2

Apertura piriformis—the lowest point 5.5 1.1 >10 >10 1.1 1.1 >10 1.1 >10 >10 1.1 1.1

Anterior wall of the maxillary sinus >10 4.4 7.7 1.1 3.3 2.2 >10 5.5 >10 2.2 7.7 3.3

Zygomaticoalveolar crest >10 >10 5.5 3.3 5.5 3.3 >10 >10 >10 >10 5.5 3.3

Processus alveolaris of the maxillae regio incisors and canine 7.7 1.1 10 >10 1.1 1.1 >10 1.1 >10 >10 1.1 1.1

Processus alveolaris of the maxillae regio premolars >10 8.8 >10 >10 7.7 3.3 >10 5.5 >10 >10 3.3 3.3

Processus alveolaris of the maxillae regio molars 5.5 1.1 5.5 7.7 3.3 3.3 >10 5.5 7.7 >10 3.3 2.2

Crown/Collum 5th maxilla tooth >10 5.5 >10 >10 5.5 4.4 3.3 1.1 5.5 5.5 1.1 1.1
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In model 2, the activation of the tooth-borne device over the range of 0.5 mm resulted
in an increase in the stress reduction according to Huber to 10 MPa within the orbital region
and the squamous part of the frontal bone. In the region of the maxillary alveolar process
in the anterior part, the stresses decreased to 1.1 MPa, and similar values were found in the
anterior and posterior regions of the hard palate. The activation of the bone-borne device
in the range of 0.5 mm in model 2 showed an increase in the stress reduction according
to Huber to >10 MPa within the orbital region and the squamous part of the frontal bone.
In the region of the maxillary alveolar process in the anterior part, the stresses decreased
to 1.1 MPa, and similar values were found in the anterior and posterior regions of the
hard palate.

In model 3, the activation of the tooth-borne device over the range of 0.5 mm resulted
in the distribution of reduced stresses according to Huber to 3.3 MPa within the orbital
region and the squamous part of the frontal bone. The highest values of >10 MPa were
found in the region of the maxillary alveolar process in the proximity of premolars. The
values of up to 25 MPa in the anterior region and up to 13.8 MPa in the posterior region
were found in the hard palate. The activation of the bone-borne device over the range
of 0.5 mm in model 3 showed an increase in the stress reduction according to Huber to
6.6 MPa within the orbital region and the squamous part of the frontal bone. In the entire
region of the maxillary alveolar process and on the anterior wall of the maxillary sinus, the
stress values increased and were >10 MPa. In the anterior and posterior regions of the hard
palate, they also increased and were >25 MPa.

In model 4, the activation of the tooth-borne device over the range of 0.5 mm resulted
in the distribution of reduced stresses according to Huber to 2.2 MPa within the orbital
region and the squamous part of the frontal bone. The highest values of >10 MPa were
found in the entire region of the maxillary alveolar process. Values of up to 25 MPa in the
anterior region and up to 13.8 MPa in the posterior region were found in the hard palate.
The activation of the bone-borne device over the range of 0.5 mm in model 4 showed an
increase in the stress reduction according to Huber to 3.3 MPa within the orbital region and
the squamous part of the frontal bone. In the entire region of the maxillary alveolar process,
the stress values increased and were >10 MPa. In the anterior and posterior regions of the
hard palate, they also increased and were >25 MPa.

In model 5, the activation of the tooth-borne device in the range of 0.5 mm resulted
in the distribution of reduced stresses according to Huber to 10.0 MPa within the orbital
region and the squamous part of the frontal bone. In the region of the maxillary alveolar
process in the anterior part, the stresses were decreased to 1.1 MPa, and similar values
were found in the anterior and posterior regions of the hard palate. The activation of the
bone-borne device over the range of 0.5 mm in model 5 showed an increase in the stress
reduction according to Huber to 10 MPa within the orbital region and the squamous part
of the frontal bone, as well as in the region of the zygomaticoalveolar crest. In the region of
the maxillary alveolar process in the anterior part, the stresses were decreased to 1.1 MPa,
and similar values were found in the anterior and posterior regions of the hard palate.

In model 6, the activation of the tooth-borne device in the range of 0.5 mm resulted in
the distribution of reduced stresses according to Huber to 3.3 MPa within the orbital region
and the squamous part of the frontal bone. In the region of the maxillary alveolar process
in the anterior part, the stresses decreased to 1.1 MPa, and similar values were found in the
anterior and posterior regions of the hard palate. The activation of the bone-borne device
in the range of 0.5 mm in model 6 showed the distribution of reduced stresses according
to Huber to 4.4 MPa within the orbital region and the squamous part of the frontal bone.
In the region of the maxillary alveolar process in the anterior part, the stresses decreased
to 1.1 MPa, and similar values were found in the anterior and posterior regions of the
hard palate.
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3.2. Displacements of Selected Facial Skeleton Structures along the X-, Y- and Z-Axes
3.2.1. Displacements of Selected Facial Skeleton Structures along the X-Axis

In model 1 with the tooth-borne appliance, the maximum displacement along the
X-axis was 0.04 mm. In model 2, it fluctuated from 0.31 to 0.22 mm; in model 3, it reached
a maximum of 0.04 mm; in model 4, it fluctuated from 0.04 to 0.13 mm; in model 5, from
0.22 to 0.31 mm; in model 6, from 0.22 to 0.4 mm. The maximum shift along the X-axis was
found at the mesial incisal angle of the central maxillary incisor (0.4 mm) in model 6 of the
facial skeleton. In model 1 with the bone-borne appliance, the shift along the X-axis ranged
from 0.04 to 0.13 mm. In model 2, it ranged from 0.22 to 0.4 mm; in model 3, from 0.04 to
0.13 mm; in model 4, from 0.04 to 0.22 mm; in model 5, from 0.22 to 0.4 mm; in model 6,
from 0.31 to >0.4 mm. The maximum shift in the buccal direction (>0.4 mm) was found at
the mesial incisal angle of the central maxillary incisor in model 6 of the facial skeleton for
the bone-borne appliance.

3.2.2. Displacements of Selected Facial Skeleton Structures along the Y-Axis

In model 1 with the tooth-borne appliance, the shift along the Y-axis ranged from
−0.05 to 0.01 mm. In model 2, it ranged from 0.03 to 0.05 mm; in model 3, from −0.5 to
0.03 mm; in model 4, from −0.05 to 0.05 mm; in model 5, from 0.03 to 0.05 mm; in model 6,
from −0.01 to 0.07 mm. The maximum shift in the anterior direction (0.07 mm) was found
at the mesial incisal angle of the central maxillary incisor in model 6 of the facial skeleton.
For the bone-borne appliance, the displacement along the X-axis in model 1 fluctuated
from >−0.1 to 0.01 mm. In model 2, it ranged from 0.03 to 0.07 mm; in model 3, from
>−0.1 to 0.01 mm; in model 4, from >−0.1 to 0.07 mm; in model 5, from 0.03 to 0.07 mm; in
model 6, from −0.03 to 0.05 mm. The maximum shift in the posterior direction was found
at the mesial incisal angle of the central maxillary incisor (>−0.1 mm) in models 1, 3 and 4
of the facial skeleton for the bone-borne appliance.

3.2.3. Displacements of Selected Facial Skeleton Structures along the Z-Axis

In model 1 with the tooth-borne appliance, the shift along the Z-axis ranged from
−0.03 to 0.03 mm. In model 2, it fluctuated from 0.01 to 0.07 mm; in model 3, from −0.3
to 0.03 mm; in model 4, from −0.03 to −0.07 mm; in model 5, from 0.05 to 0.07 mm; in
model 6, from −0.05 to 0.07 mm. The maximum shift in the anterior direction (0.07 mm)
was found at the mesial incisal angle of the central maxillary incisor in model 6 of the
facial skeleton. For the bone-borne appliance, the displacement along the X-axis in model 1
ranged from −0.05 to 0.1 mm. In model 2, it fluctuated from 0.05 to 0.03 mm; in model 3,
from −0.5 to 0.03 mm in model 4, from −0.05 to 0.05 mm; in model 5, from 0.03 to 0.05 mm;
in model 6, from −0.01 to 0.07 mm. The maximum shift in the superior direction (>0.1 mm)
was found on the posterolateral surface of the maxilla in model 4 of the facial skeleton.

Table 4 represents detailed displacement values (mm) along the X-, Y- and Z-axes at
selected points.
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Table 4. Displacement values of selected anatomical structures (mm) along the X, Y and Z-axes, with various surgical procedures and the tooth-borne and bone-borne appliance using
finite element analysis.

Axis Variable
Tooth-Borne Bone-Borne

No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 1 No. 2 No. 3 No. 4 No. 5 No. 6

X

Mesial incisal angle of maxillary tooth 1 +0.04 +0.31 +0.04 +0.04 +0.31 0.4 0.04 0.4 0.04 0.04 0.4 >0.4

Buccal cusp tip of maxillary tooth 5 0.04 0.22 0.04 0.13 0.31 0.31 0.13 0.31 0.13 0.22 0.31 0.4

Posterolateral surface of the maxilla 0.04 0.22 0.04 0.04 0.22 0.22 0.13 0.22 0.13 0.13 0.22 0.31

Apertura piriformis—the lowest point 0.04 0.22 0.04 0.04 0.22 0.22 0.13 0.22 0.13 0.13 0.22 0.4

Y

Mesial incisal angle of maxillary tooth 1 −0.05 0.05 −0.05 −0.05 0.05 0.07 >−0.1 0.07 >−0.1 >−0.1 0.07 0.1

Buccal cusp tip of maxillary tooth 5 0.01 0.03 0.01 0.03 0.03 0.01 0.01 0.05 0.03 0.07 0.05 0.01

Posterolateral surface of the maxilla 0.01 0.03 0.03 0.05 0.03 −0.01 0.01 0.03 0.03 0.05 0.03 −0.03

Apertura piriformis—the lowest point −0.03 0.03 −0.03 −0.03 0.03 0.05 −0.05 0.05 −0.05 −0.03 0.03 0.05

Z

Mesial incisal angle of maxillary tooth 1 −0.03 0.01 −0.03 −0.03 −0.05 −0.05 −0.07 −0.05 −0.07 −0.03 −0.05 −0.03

Buccal cusp tip of maxillary tooth 5 −0.03 0.07 0.01 0.03 0.07 0.05 0.01 0.07 0.03 0.1 0.05 0.05

Posterolateral surface of the maxilla 0.03 0.07 0.03 0.07 0.07 0.07 0.03 0.07 0.05 >0.1 0.1 0.07

Apertura piriformis—the lowest point −0.03 0.01 −0.03 −0.03 −0.05 −0.05 −0.05 −0.03 −0.05 −0.05 −0.05 −0.05

X—buccolingual, (+)—buccal, (−)—lingual; Y—anterioposterior (front–back), (+)—anterior, (−)—posterior; Z—superioinferior (upper part–lower part), (+)—superior, (−)—inferior.
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4. Discussion

Surgically assisted rapid maxillary expansion allows for obtaining optimum widths
of the upper dental arch in patients whose bone growth is complete [1,3,6,13,17]. Ac-
cording to various authors, the ages of 14–18 years is the restriction for orthodontic
treatment [16,17,21]. Handelman et al. show an alternative view [30]. The authors
report that adult patients with maxillary constriction are treated successfully without
surgical procedures.

Mommaerts, who developed the method of surgically assisted maxillary expansion
with a bone-borne appliance, suggests performing an osteotomy of the anterior, lateral and
medial maxillary buttresses [1]. According to the authors, such incision conditions correct
a separation in the fragments of the maxilla and its expansion during active distraction
therapy. A similar opinion is presented by Reinbecheret et al. [31]. The researchers
conducted a study on a group of 25 patients treated with SARME using the same osteotomy
as in Mommaerts, also without nasal septum separation. The results of the analysis
show that it is not necessary to separate the nasal septum when a surgical procedure of
maxillary expansion at 5–11 mm is performed [31]. Nasal septum separation is required in
asymmetric expansions [1].

There is currently no opinion in the literature regarding the type of osteotomy that is
recommended for the midface in surgically assisted rapid maxillary expansion [1,17,21,22].

Long-term observations of lasting treatment effects may indicate the need for incom-
plete separation of the maxilla from the facial skeleton, along with a sagittal osteotomy of
the palatal suture [32,33]. Seeberger et al. report that an incision made in the maxilla accord-
ing to the protocol by Bell and Epker from 1976 without separation of the pterygopalatine
suture in SARME therapy results in a nonrecurrent defect throughout observations made
after 5 years following surgery [32].

Studies using the finite element method (FEM) indicate the need for performing a full
sagittal and transversal osteotomy of the maxilla to minimise the risk of stresses in the
facial skeleton and the neurocranium, as well as possible, uncontrolled fractures [7,11,20].
Laningan et al. describe rare ophthalmic complications after a Le Fort I osteotomy as
complications from orthognathic surgery. Complications include impaired visual acuity, ex-
traocular muscle dysfunction, keratitis and lacrimal duct injury [33]. The abovementioned
problems may result from an indirect injury to the orbital structures caused by traction
or compression, especially when the maxilla is separated from the pterygoid process of
the sphenoid bone [33,34]. FEAs performed in maxillary expansion therapy show that
the highest stresses, including the risk of fracture, occur in the region of the body of the
sphenoid bone. This may result in the formation of a carotid cavernous fistula, injury to
the internal carotid artery and paralysis of the cranial oculomotor nerves (III, IV, VI), which
leads to ophthalmoplegia [7,11,20].

In practice, devices fixed onto teeth, directly to the bone or hybrid fixation appliances
are used. Each type of expander has its supporters and opponents [35,36].

Finite element analysis enables simulations and analysis of a mathematical model
for a given process or status of a physical system. It is commonly used by researchers to
analyse stresses and strains in complex mechanical systems [37]. Finite element analysis is
a good method for assessing modelled variants of the treatment of maxillary constriction
in adult patients who require surgical procedures [7,11,20].

Reviewing the literature, there has been a huge technological shift in maxillofacial
surgery in the recent past. Applications of FEM, computer-assisted surgical planning, 3D
printing technology or intraoperative navigation can potentially improve the efficiency
and predictability of the surgical treatment [38,39].

The analysis executed by the authors indicates significant differences in the distribution
of the reduced stresses according to Huber, as well as displacement patterns for the modelled
variants of osteotomies and the two types of appliances used for maxillary expansion.

In this study, the bone-borne appliance generated the largest increase in reduced
stresses according to Huber, both in terms of the covered area of the facial skeleton and
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their values (>10 MPa) in models 1, 3 and 4. In model 1 without an osteotomy, the stresses
were >10 MPa within the entire region of the body of the maxilla and its processes, and
>25 MPa in the hard palate, excluding the maxillary teeth. In models 3 and 4, the stresses
were >10 MPa within the entire region of the body of the maxilla and its processes below
the osteotomy line and >25 MPa in the entire hard palate, including the maxillary teeth. As
a result of the PMJ separation in model 3, the stresses on the anterior wall of the maxillary
sinus increased to >10 MPa.

The tooth-borne appliance did not generate such an extensive and massive increase
in the stresses in models 1 and 3 in the region of the body of the maxilla and all maxillary
processes. In model 4, the distribution and level of stresses were similar for the tooth- and
bone-borne appliances, excluding the teeth and the posterior region of the hard palate, to
the advantage of the tooth-borne appliance.

To sum up, the absence of an osteotomy of the palatal suture when the bone-borne
appliance was fixed significantly increased the stresses on the entirety of the maxilla, with
a maximum displacement of 0.22 mm along the X-axis in the buccolingual direction at the
level of buccal cusps of upper teeth 5 (model 4).

An osteotomy of the palatal suture only (model 2) using both the tooth- and bone-
borne appliances resulted in similar distributions of stresses in the facial skeleton. The
maximum values of the reduced stresses according to Huber (>10 MPa) were found in
the orbital region and the squamous part of the frontal bone. Our analysis revealed that
the type of expander used for isolated palatal suture osteotomy had no impact on the
distribution of the reduced stresses in the facial skeleton. For all variables, the shifts in
the buccolingual direction (X-axis) were slightly bigger for the bone-borne appliance. The
absence of references regarding this issue in the literature may result from the absence of
isolated sagittal osteotomy in surgically assisted maxillary expansion.

The distribution of reduced stresses was similar for the tooth- and bone-borne appli-
ances in models 5 and 6 in the facial skeleton. Separation in the pterygopalatine suture
had a positive effect on the reduction of stresses in the orbital region, the squamous part of
the frontal bone and the anterior wall of the maxilla and teeth on which the tooth-borne
appliance was fixed, up to the maximum value of 5.5 MPa (model 6).

Our analysis revealed that the reduction of stresses on teeth onto which the appliance
was fixed requires an osteotomy of the pterygopalatine suture in SARME therapy.

An osteotomy of the pterygopalatine suture in surgically assisted rapid maxillary ex-
pansion therapy is also a subject of discussion [17,22]. Sangasari et al. found no statistically
significant difference in the treatment results for the separation of the maxilla from the
pterygoid process of the sphenoid bone [22]. Killiç et al. and Laudemann et al. present an
alternative view [34,40]. The authors indicate that the separation of the pterygopalatine su-
ture significantly influences the expansion of the maxilla and the rotation of the osteotomy
fragments. Separation of the maxilla from the pterygoid processes of the sphenoid bone
extends the chance of surgical complexity, for instance, a descending palatal artery or a
pterygoplexus haemorrhage, and as a result, osteonecrosis of the maxilla [17,22].

The tooth fixation of the appliance generated loads on teeth in all modelled variants.
The lowest values of the reduced stresses on the teeth were found in the model with a full
osteotomy (model 6).

There is an extensive literature on the negative impact of loading teeth onto which the
appliance is fixed [1,17,25,26]. The undesirable effects include compression and bone loss,
tooth mobility, deflection and extrusion, bone dehiscence and gingival recession [41–43].
The abovementioned problems are often complicated by hygienisation difficulties that
are experienced when such an appliance is used. Transpalatal distractors are defined as
hygienic devices that are easy to use [19,21].

The shifts in the buccolingual direction (X-axis) were bigger for the bone-borne appli-
ance for all the variables under study in models 5 and 6, excluding the measurement on the
cusp of the tooth onto which the appliance was fixed (Table 4). Displacements that were
almost twice as big for the bone-borne fixation along the X-axis were found in model 6 at



Materials 2021, 14, 1152 15 of 17

the lowest point of the apertura piriformis (0.22 vs. 0.4 mm—tooth-borne vs. bone-borne).
This reveals that the bone-borne appliance that was used for maxillary expansion exerted a
skeletal effect, not a dental effect.

The methods using tooth-borne appliances are associated with the risk of defect
recurrence and the need to carry out treatment with an overcorrected expansion [1,44,45].
It is probably caused by the significant dental effect of expansion and not the dominant
one exerted on the facial skeleton.

Slight differences in displacements in the Y- and Z-directions for the tooth- and
bone-borne fixations are not the subject of our analysis and therefore will not be discussed.

5. Conclusions

The analysis executed by the present authors revealed the following:

• An absence of surgical support for maxillary expansion significantly increased the
stress reduction according to Huber’s hypothesis in the entire facial skeleton in patients
whose bone growth is complete, without affecting displacements in the buccolingual
dimension (X-axis).

• Higher levels of stresses and covered areas of the facial skeleton were found for the
bone-borne appliance, especially in the model without an osteotomy and in models
without an incision in the palatal suture.

• Only in the case of a complete separation of the maxilla at all its junctions, as well as an
osteotomy of the palatal suture, the type of expander (tooth-borne vs. bone-borne) had
no significant effect on the distribution of the reduced stresses in the facial skeleton.

• Compared to the tooth-borne appliance, the bone-borne expander allowed for a
reduced load on the periodontium in all the modelled osteotomy variants and in the
model without surgical intervention.

• Compared to the tooth-borne appliance, the bone-borne appliance exerted a bone ex-
pansion effect on the models with a full osteotomy, as confirmed by the displacements
along the X-axis for selected variables.

• A transpalatal distraction may be an effective method of treating maxillary constriction
in adult patients in the case of total separation of the maxilla, combined with palatal
suture separation.
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