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Awealth of genetic information is available describing single-nucleotide variants in the human population that appear to be

well-tolerated and in and of themselves do not confer disease. These variant data sets contain signatures about the protein

structure-function relationships and provide an unbiased view of various protein functions in the context of human health.

This information can be used to determine regional intolerance to variation, defined as the missense tolerance ratio (MTR),

which is an indicator of stretches of the polypeptide chain that can tolerate changes without compromising protein function

in a manner that impacts human health. This approach circumvents the lack of comprehensive data by averaging the data

from adjacent residues on the polypeptide chain. We reasoned that many motifs in proteins consist of nonadjacent residues,

but together function as a unit. We therefore developed an approach to analyze nearest neighbors in three-dimensional

space as determined by crystallography rather than on the polypeptide chain. We used members of the GRIN gene family

that encode subunits of NMDA-type ionotropic glutamate receptors (iGluRs) to exemplify the differences between these

methods. Our method, 3DMTR, provides new information about regions of intolerance within iGluRs, allows consideration

of protein–protein interfaces in multimeric proteins, and moves this important research tool from one-dimensional analysis

to a structurally relevant tool. We validate the improved 3DMTR score by showing that it more accurately classifies the

functional consequences of a set of newly measured and published point mutations of Grin family genes than existing

methods.

[Supplemental material is available for this article.]

The field of genetics has had a transformative effect on biology and
clinical medicine. For example, advances in genetics can provide
definitive clinical diagnoses for multiple disorders, breaking the
cycle of specialist referrals that fail to yield actionable diagnoses
or effective therapeutics for many patients (Heinzen et al. 2015;
Stefanski et al. 2021). It has allowed assessment of risk factors
that can be used to inform clinical care and preventive medicine
(Müller-Nedebock et al. 2021), illuminated networks of biological
processes through gene regulation, and allowed modeling of hu-
man disease in vivo (Shore et al. 2020). Understanding the genetic
code has enabled manipulation of protein structure via site-direct-
ed mutagenesis to further understand protein function (Myers
et al. 2019).

The field is currently in the midst of transformation brought
about by low-cost sequencing, which allows large amounts of ge-
netic information to be obtained from both patients and healthy
populations (Landrum et al. 2016; Lek et al. 2016; Karczewski
et al. 2020; Wang et al. 2020). This information provides insight
into protein function and structure by highlighting the regions
that are critical to human health (Petrovski et al. 2013; Traynelis
et al. 2017). Specifically,whole-exome sequences are nowavailable
in numbers that allow the analysis of single-nucleotide variation
(SNV) within the coding regions of any given gene for human dis-
ease. Recent efforts to condense large SNV data sets into a score for
each residue of a given protein have resulted in development of the
missense tolerance ratio (MTR). TheMTRwas defined as a running
average over some number (typically 31) of adjacent residues in
the polypeptide chain of the ratio of observed to expected variants

(Traynelis et al. 2017). The intended function of theMTR is readily
observed in the GRIN gene family, which encodes subunits com-
prising the NMDA receptor (NMDAR) (Ogden et al. 2017;
Li et al. 2019). The NMDAR mediates a slow component of excit-
atory synaptic transmission and is linked to critical brain functions
such as development, learning, and memory. Furthermore,
NMDARs are implicated in multiple neurological diseases includ-
ing schizophrenia, Alzheimer’s disease, and neuronal death fol-
lowing acute injury (Traynelis et al. 2010; Paoletti et al. 2013;
Hansen et al. 2017; Hansen et al. 2021). NMDARs are heterote-
tramers consisting of two GRIN1 and two GRIN2 protein subunits
(GluN1 and GluN2, respectively, according to IUPHAR nomencla-
ture), which are coded by the GRIN1 and GRIN2 genes. MTR eval-
uation of the relative frequency of GRIN variants in the healthy
population reveals regions of the NMDAR subunits that are toler-
ant to change, that is, where there are many variants in healthy
population genomic databases. It also highlights regions of the re-
ceptor that are intolerant to change, such as the parts of the poly-
peptide chain that contribute to the receptor channel gate (Ogden
et al. 2017). This information has provided an unbiased view that
highlights structural features not previously recognized as critical
for function (Amin et al. 2020; Perszyk et al. 2020), such as the gat-
ing triad comprising three short stretches of the polypeptide
chain, each a considerable distance from one another in their po-
sition in the open reading frame. Specifically, this gating triad is
virtually devoid of variants in the healthy population and is a hot-
spot for disease-associated variants.
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Despite providing insight into critical regions of a protein
that are tolerant or intolerant to change, the MTR algorithm could
still become amore accurate in silico predictor for pathogenicity of
variants identified in patients. By averaging residues along the
polypeptide chain, information contained in the secondary and
tertiary structure of the protein is lost (Lal et al. 2020), whichmight
have improved variant classification (Iqbal et al. 2020). We rea-
soned that a better indicator of residues that define an intolerant
regionwould be distancewithin the protein structure.We thus cre-
ated an algorithm that calculated the MTR for neighbors over a
three-dimensional (3D) distance from crystallographic and cryo-
EM data. We implemented this new approach (entitled 3DMTR)
using GRIN variants to illustrate its ability to provide an accurate
diagnostic tool. Moreover, the 3DMTR approach can operate on
multimeric proteins to reveal information about protein interfac-
es, such as the tetrameric glutamate receptors, which are potential
hotspots for disease-causing SNVs. Furthermore, we use a valida-
tion data set to specifically compare the performance of the
3DMTR approach to the one-dimensional MTR (1DMTR).

Results

The 1DMTR score identifies only some of the critical elements

of the GRIN2A subunit of NMDARs

The recently publishedMTR algorithm (1DMTR) converts popula-
tion genomic variant data into a single metric by incorporating
data from neighboring residues (typically 31 residues) because
the variant data sets are currently sparse. For NMDARs, the
1DMTR does a good job identifying stretches of GRIN2A that are
well-described as being critical for function (Fig. 1A). For example,
the 1DMTRmethod readily identifies a stretch of completely intol-
erant residues (MTR=0) that corresponds to the SYTANLAAF mo-
tif, which is conserved in all glutamate receptors (Traynelis et al.
2010). To understand what this score captures, one can observe
the occurrence of the gnomAD variants (version v2.1.1)
(Karczewski et al. 2020) throughout the gene sequence (Fig. 1B)
or by viewing their location on the subunit structure (Fig. 1C).
The 1DMTR score decreases as there are fewer missense variants
than synonymous variants.

The 1DMTRmethod, however, has a deficiency in that it dis-
regards interactions between residues located in distal parts of the
polypeptide chain that interact to form functional domains (Fig.
1B,D–F), which may be more important than the influence of
neighboring residues. In NMDARs, the agonist binding domains
(ABDs) of the receptor each consists of two noncontiguous por-
tions of the polypeptide chain (ABD-S1, ABD-S2) and form a
bilobed clamshell-like domain, which flanks the first three inter-
vening transmembrane helices (Fig. 1B,E,F). Residues in both lobes
participate in agonist binding and facilitate clamshell closure,
which is an initial necessary step in receptor activation. This pro-
vides a clear example that the most relevant residues are those
that are nearby in 3D space and not those residues that are sequen-
tially closest (Fig. 1E,F). For this reason, we developed a method to
calculate the MTR score based on the location of each residue in
space (3D) instead of its location on the polypeptide chain (1D).

Calculation of the three-dimensional MTR score

Advances in methods for determining protein structure have pro-
vided high-resolution crystallographic and cryo-EM structures for
integral membrane protein complexes (such as iGluRs). It is con-
ceptually straightforward, using these structures, to calculate the

average location for all residues of the protein and then determine
the inter-residue distances for all residues in the structure
(Supplemental Fig. S1A). In the resultingmatrix of residue distanc-
es for GRIN2A, there is a clear signature of themultiple subunit do-
mains that have been studied (Meguro et al. 1992; Monyer et al.
1992; Ishii et al. 1993). For instance, we can see that the two halves
of the bilobed ABD are very close in space (within ∼40–50 Å) but
that the TMD is very distal to theNTD (>50 Å).We can impose sim-
ple logical criteriabasedon thesedistances todeterminewhich sub-
set of residues to use to calculate the MTR score, for example, to
include the 31 spatially closest residues. As a result, the closest 31
residues in 3D space are distinct from the closest 31 residues in
the polypeptide chain (Supplemental Fig. S1A,B).

Analysis of Pro686 in the ABD-S2 segment clearly shows how
these twomethods differ (Fig. 2A–C). Pro686 is proximal to the ag-
onist binding site (Fig. 2D; Jespersen et al. 2014; Yu and Lau 2018).
The closest 31 residues in terms of gene sequence (1D) (Fig. 1B) in-
cluded residues on the outer surface of theABD. Themeandistance
of these residues is 14.6 Å away from Pro686. The closest residues
in 3D space are clustered around Pro686 (mean distance is 9.1
Å), in the middle of the ABD, and including residues from both
ABD segments (five from ABD-S1, 14 from ABD-S2) (Fig. 2C).

With this spatially derived set of residues, the MTR can be
simply recalculated using the same equation (Methods; Fig. 3A,
B; Supplemental Data Set 1). Overall, the 1DMTR and 3DMTR pro-
duce similar MTR score profiles but with several notable differenc-
es within the various receptor domains. In general, the NTD tends
to have a higher MTR score in both methods, and the ABD and
TMD domains tend to have lower (more intolerant) scores (Fig.
3A,B). Most residues have different scores (Supplemental Fig.
S2A) with an average difference in MTR score of 0.157 (either pos-
itive or negative). More specifically, the majority of the NTD resi-
due scores are above average using both methods (Mean1D =
0.612, Mean3D= 0.584). For the TMD, several residues of the
SYTANLAAF motif have an MTR score of 0 for both the 1DMTR
and 3DMTR method (five of nine residues). There is rearrange-
ment of the most intolerant TMD residues, with a portion of the
residues deemed highly intolerant (defined as outside the two
standard deviation range) in either the 1DMTR or the 3DMTR
analysis; however, there aremore highly intolerant residues result-
ing from the 3DMTRmethod (11with 1DMTRvs. 19with 3DMTR,
total residues 89, Fisher’s exact test P= 0.1602). The majority of
ABD residues have MTR scores that are more intolerant than
the average in either method, but only the 3DMTR method iden-
tifies highly intolerant residues. A trend similar to TMD occurs
in the linker residues; however, the residues deemed highly intol-
erant are nonoverlapping with slightly more residues in the
3DMTR analysis (10 vs. 7, 66 total residues, Fisher’s exact test P=
0.6044). In particular the subset of ABD-TMD linkers are those
with more highly intolerant residues in the 3DMTR analysis
compared to the 1DMTR (10 vs. 1, 37 total residues, Fisher’s exact
test P=0.0066).

When the MTR scores from both methods are viewed as a
scatter plot (score vs. residue), the 3DMTR scores appearsmore var-
iable than 1DMTR (Fig. 3A1,B1). However, when mapped onto
the GRIN2A structure, the scores result in similar patterns
(Fig. 3A2–4,B2–4). The overall variance of the 3DMTR scores in
this data set is slightly lower than the 1DMTR scores for GRIN2A
(variance3D =0.049, variance1D =0.052) (Supplemental Fig. S2C),
and the average 3DMTR for GRIN2A is actually lower than the
1DMTR (Mean3D =0.584, Mean1D =0.612, P=0.014, unpaired
t-test). The differences between the 1DMTR and 3DMTR scores
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can be extreme (Fig. 3C). The largest decrease in the MTR score oc-
curs for Pro686 (difference3D-1D =−0.78, 3DMTR=0.11, 1DMTR =
0.89) and the largest increase is seen at Tyr700 (difference3D-1D =
+0.70, 3DMTR=1.05, 1DMTR=0.35). Because Pro686 is proximal
to the agonist binding site (Jespersen et al. 2014; Yu and Lau 2018),
the 3DMTR score is more appropriate than the 1DMTR score. Most
differences are not as extreme (mean amplitude, 0.16; median am-
plitude, 0.13). We observe modest but consistent decreases in the
MTR score across the ABD-TMD linkers and the agonist binding
pocket and modest increases in some stretches of the TMD (Fig.
3C3,4). These differences result in the 3DMTR assessing the agonist

binding pocket (central portions of the ABD), the channel selectiv-
ity filter (M2), the channel gate (extracellular portion of M3), and
the ABD-TMD linkers as the most intolerant positions (Fig. 3B).

Calculation of the 3DMTR score of an entire protein complex

NMDARs are heterotetrameric assemblies of two GRIN2 subunits
in complex with two GRIN1 subunits. The 3DMTR methodology
used on the isolated GRIN2A subunit can be applied to the entire
GRIN1/2A receptor complex (Fig. 4A; Supplemental Fig. S3;
Supplemental Data Set 1). We performed the 3DMTR analysis on

A

C

B

D E F

Figure 1. The sequential MTR score (1DMTR) of GRIN2A and structural mapping of GRIN2A variants. (A) The 1DMTR score of GRIN2A, calculated using
gnomAD v2.1.1. (B) Linear domain map of the GRIN2A gene semiautonomous domains of the receptor. The linear map matches the x-axis of the graph in
A. A raster plot of the GRIN2A variants found in gnomAD is plotted below the linear map: (orange) synonymous variants; (cyan) missense variants. (C) View
of the GRIN2A structure (homologymodel) (Supplemental File 1) depicting theGRIN2A variants shown in B. (D) View of the GRIN2A subunit illustrating the
extracellular and transmembrane domains. The NTD is depicted in cyan, the first ABD segment (ABD-S1) inmagenta, the second ABD segment (ABD-S2) in
purple, the TMD in green, and the linkers in gray. (E) View of the GRIN2A subunit colored to depict its position along the polypeptide chain, represented by
the gradient shown below the structure. The gradient is shown next to the linear domain map depicting the main receptor domains. Some residues in the
M1-M2 linker are missing from the structure, shown by the black region in the linear scale. (F) A closer view of the GRIN2A ABD highlighting the two por-
tions of the polypeptide chain (ABD-S1, ABD-S2) that form the domain.
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a GRIN1/2A homology model based on the highest resolution
NMDAR structure available (Chou et al. 2020). This model con-
tains two GRIN1 (Chains A and C) and two GRIN2A subunits
(Chains B and D) (Supplemental Fig. S3). Whereas the majority
of the closest residues are fromwithin the same chain, there are im-
portant instances in which there is close contact to other polypep-
tide chains at protein–protein interfaces (Supplemental Fig. S3;
Supplemental Fig. S4). In particular, the TMDs show considerable
cross talk. For example, GRIN2A-Phe652 is in the SYTANLAAFmo-
tif conserved in all iGluRs and faces away from the pore but has im-
portant cross-subunit interactions that are essential for receptor
function (Fig. 4B). The closest 31 residues to Phe652 as determined
by the 1D, 3D (intra-subunit), and 3D (intra-receptor) are partially
overlapping but distinct. In the 1DMTRmethod,we see the includ-
ed residues span the M3 helix and the TMD-ABD-S2-linker (Fig.
4B1). However, the closest residues determined using the 3DMTR
method include those from the Pre-M1 and the Pre-M4 linkers

(Fig. 4B2). Moreover, the 31 closest residues determined by the
3DMTR method are closer than the 31 determined by the
1DMTR method (the mean distance 3DMTRreceptor is 8.3 Å, com-
pared to 15.2 Å for the 1DMTR and 9.3 Å in the 3DMTRsubunit

methods). In the context of the receptor, residues in the M3 of
both chains of GRIN1 (A and C), the Pre-M4 of GRIN1 (Chain
C), and the Pre-M1 of the same chain are included in the closest
31 residues to Phe652 (Fig. 4B3, Chain B). The receptor elements
identified by this method have recently been identified as a “gat-
ing triad” that has a critical role in channel function (Chen et al.
2017; Gibb et al. 2018; Amin et al. 2020; Perszyk et al. 2020).

Using the GRIN1/2A receptor structure, we can calculate the
3DMTR (intra-receptor, or 3DMTRreceptor) for the entire protein
complex (Fig. 5). In general, we see a similar MTR profile for
both GRIN1 (Fig. 5A1) and GRIN2A (Fig. 5A2), which both have
similarities to their 1DMTR profile. On average we see a modest in-
crease (more tolerant) in the mean 3DMTRreceptor score for GRIN1

A1 B1 C1

A2 B2 C2

Figure 2. GRIN2A comparison of the closest residues as determined by sequence (1D) or inter-residue distances (3D). (A) Residue distances from Pro686.
(A1) A linear heatmap raster plot and heatmap showing the distance of all residues in the GRIN2A subunit to residue Pro686. (A2) A closer view of the ABD in
A1. (B) Closest 31 residues (1D) to Pro686. (B1) A linear raster plot and structural view of the 31 sequentially closest (1D) residues (blue) to Pro686 (red), with
the side chains depicted by sticks. (B2) A closer view of the ABD in B1. (C) Closest 31 residues (3D) to Pro686. (C1) A linear raster plot and structural view of
the 31 closest (3D) residues (blue) to Pro686 (red), side chains depicted by sticks. (C2) A closer view of the ABD in C1.
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compared to 1DMTR (Mean3D-rec-chainC = 0.499, Mean1D =0.473, P
=0.024, unpaired t-test) and a decrease in the GRIN2A score
(Mean3D-rec-chainB = 0.566, Mean1D =0.612, P<0.0001, unpaired t-
test). Similar to the previous 3DMTR calculation of the GRIN2A
subunit, scatter plots of MTR score versus residue have higher ap-
parent variability; however, the variance of these data sets is simi-
lar (GRIN1 variance3D-rec-chainC = 0.056, variance1D =0.056;
GRIN2A variance3D-rec-chainB = 0.055, variance1D =0.052). The dif-
ferences between the 1DMTR and the 3DMTR methods are influ-
enced by the fact that for the spatially determined inclusion
method used by 3DMTR, residues can have a variable number of
times they are selected (Supplemental Fig. S5). Typically, residues

within the interior of the protein tend to be included more often,
and peripheral residues are included less often.

There are several changes to the 3DMTR (intra-receptor) profile
that arise from the calculation using the entire NMDAR. In general,
the ABD-TMD linkers tend to be more intolerant, and there is a re-
arrangement of the MTR score for residues in the ABD (Fig. 5).
Overall, the 3DMTR results for the GRIN1/2A NMDAR show the
clearest hotspots of genetic intolerance are located within the ago-
nist binding pockets of the ABD and the channel pore (Fig. 5B1).
The NTD is the most tolerant portion of the receptor (Fig. 5B1).
However, when the NTD layer is viewed in isolation, the NTD het-
erodimer contains some intolerant regions (e.g., the NTD dimer

A1 B1 C1

A2 B2 C2

A3 B3 C3

A4 B4 C4

Figure 3. Comparison of the GRIN2A 1DMTR and 3DMTR intra-subunit scores. (A) The linear (1D) MTR score of GRIN2A. (A1) The 1DMTR score shown
via a scatter plot and raster plot (see color bar for score representation; intolerant scores are blue, tolerant scores are red). (A2) View of the 1DMTR score
heatmap applied to the GRIN2A structure. (A3) A closer view of the ABD in A2. (A4) A closer view of the TMD in A2. (B) The 3DMTR score of GRIN2A, illus-
trated similarly as in A. (C ) The difference in the 3DMTR and the 1DMTR score of GRIN2A. The color bar for the raster plots and the structure heatmaps is
shown above C2.
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interfaces) when compared with the rest of the domain (Fig. 5B2-3;
Supplemental Fig. S6). Similar to the 3DMTR analysis of the isolated
GRIN2A subunit, the channel selectivity filter (M2), the channel
gate (M3), the ABD-TMD-linkers, and the agonist binding pocket
are themost intolerant portions of theGRIN2A subunitwhen calcu-
lated with the entire GRIN1/2A NMDAR (Fig. 5B4; Supplemental
Fig. S6). Similarly, the GRIN1 3DMTR (intra-receptor) identifies
many of the same portions of the subunit as the most intolerant
(the M2 channel selectivity filter, the M3 channel gate, and the
ABD-TMD-linkers). More of the GRIN1 ABD has highly intolerant

scores (as compared to GRIN2A), with many intolerant residues
concentrated at the ABD-dimer interface (Fig. 5B4).

Permutation analysis identifies the most intolerant and tolerant

residues

Because structural data is not available for all proteins, the 3DMTR
method cannot be applied to the entire genome. It is thus impos-
sible to calculate a universal likelihood of any given 3DMTR score
among all proteins; therefore a global occurrence and relevance of

A1 B1

A2

(A2)

(A3)

A3

B2 B3

(B)

Figure 4. Comparison of the included residues in the 1DMTR, 3DMTR intra-subunit, and 3DMTR intra-receptor calculation. (A) Structural views of the
GRIN1/2A receptor. The GRIN1 subunits are colored in pale yellow and the GRIN2A subunits are colored pale green. The full receptor is shown in A1, a top
down view of the four isolated NTDs of the receptor in A2, and a side view of one NTD dimer in A3. B) The closest 31 residues as determined using the 1D
polypeptide sequence (B1), the inter-residue distances within just the GRIN2A subunit (B2), and the inter-residue distances within the GRIN1/2A receptor
structure (B3). This viewpoint is depicted by the cartoon eye labeled (B) in A1. Of the closest 31 residues in the receptor structure to GRIN2A-Chain
B-Phe652, there are three residues from Chain A, nine residues from Chain C, and 19 residues from Chain B. A view of the receptor structure and a raster
plot of the closest residues are shown. In the structure views, the closest 31 residue side chains are depicted by sticks and colored based on the subunit
coloring in A: (yellow) GRIN1; (green) GRIN2; (red) Phe652.
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a specific 3DMTR score cannot be determined. An alternative
means of assessing relevance is to use permutation analysis to es-
timate the likelihood of a specific score in a given data set (pro-
tein complex and gnomAD variant data). In other words,
permutation analysis provides a distribution of the possible
scores that each residue can have. The randomization distribu-
tion for each residue provides a background level that is expected
simply by chance and can be used to determine if the actual
3DMTR score (signal) is highly unlikely. We performed two dif-
ferent permutation analyses, one in which the residue locations
were randomized (Fig. 6; Supplemental Fig. S7) and one in which
the gnomAD data were randomized (Supplemental Fig. S8;
Supplemental Fig. S9).

In the residue permutation analysis, all residue locations are
randomly swapped with one another resulting in a new orienta-
tion relationship among all residues (Supplemental Fig. S7). This
approach has one important implication: because just the location
was swapped, each residue retains its original gnomAD data. By

randomizing the surrounding residues, this permutation method
probes how neighboring residues influence a residue’s 3DMTR
score. In the permutation analysis of the gnomAD data, each resi-
due location is fixed, but the variant data used for the 3DMTR cal-
culation is randomized (Supplemental Fig. S8). The main
consequence of this is that a residue will have the same number
of extra-chain contacts. Fluctuations in the 3DMTR permutation
mean score can suggest if there is a bias for certain residues to
have a different 3DMTR score based on how the amino acid chains
in the structure are paired.

We performed both permutation analyses on the GRIN1/2A
NMDAR. In each analysis we generated 1000 randomization in-
stances and quantified the 3DMTR results of each permutation
(Fig. 6; Supplemental Fig. S7; Supplemental Data Set 1). The result-
ing permutationMTR score for a given residuewill be normally dis-
tributed (Supplemental Fig. S10), which typically occurs during
randomization even if the sampled distribution is not normally
distributed (Supplemental Figs. S2, S6). We found more residues

A1 A2

B1

B2 B3

(B3)

B4

B5

Figure 5. 3DMTR intra-receptor score of GRIN1/2A. (A) Scatter plots of the GRIN1 (A1) and GRIN2A (A2) 3DMTR (intra-receptor) score. (Below) Raster
plots of each subunit’s 1DMTR, 3DMTR intra-subunit, and the 3DMTR intra-receptor scores. (∗) Primary differences between the intra-subunit and intra-
receptor 3DMTR scores. (B) Structural heatmap views showing the 3DMTR (intra-receptor) score on the full receptor (B1), a top down view of the four
isolated NTDs of the receptor (B2), a side view of one NTD dimer (B3); one of the GRIN1 (B4) and GRIN2A (B5) subunits are shown in isolation. All raster
plots and structural heatmaps use the same color bar, shown at the top right of B5.
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with scores significantly different (defined outside two times stan-
dard deviation range from each residue’s mean) than their permu-
tation mean than would have been expected by random chance
(Fig. 6A,B). A large number of residues were significant (135–169
residues) (Supplemental Table S1), many more than expected to
fall beyond two times the standard deviation range based on ran-
dom chance (about 40 residues). These residues were usually the
most extreme scores (Fig. 6A,B). Furthermore, the excess number
of significant residues appear to be ones with more intolerant
scores (Supplemental Table S1). The number of significant residues
with more tolerant scores were about as many as expected from
random chance. Overall, we see that residue permutation analysis
results, which identifies residues that have scores that are highly
unlikely given randomchance, correspondswith the key function-
al elements of the NMDAR (Fig. 6C–E). The results show that high-
ly intolerant residues occur throughout the channel selectivity
filter, channel gate, glutamate binding site, ABD-dimer interface,
and ABD-TMD-linkers.

We found similar results from the gnomADdata permutation
analysis (1000 randomization instances) (Supplemental Figs. S8,
S9; Supplemental Data Set 1), in which there were many more res-
idues with extreme scores than expected from random chance
(138–175 residues) (Supplemental Table S1). As above, the extra
number of significant residues appear to be ones with more intol-
erant scores. In general, the same key elements of the receptor were
identified (Supplemental Fig. S9C). Stretches of residues with per-
mutation means diverted from a general trend were mainly the
portions with extensive contact with other polypeptide chains
(Supplemental Fig. S4). The diversions in GRIN1 and GRIN2A
were in opposite directions, suggesting that for these residues,
there may be some influence on their 3DMTR (intra-receptor)
score caused by the pairing of these subunits’ variant data sets.
In general, both 3DMTRpermutation analyses results were similar,
which suggests that the specific residues at their location in the
structure drive the highly intolerant (or tolerant) scores without
significant influence of the pairing of GRIN1 and GRIN2A.

A1 B1

A2 B2

C1

C4

C2 C3

C5

(C5)

Figure 6. Permutation analysis (residue randomization) identifies the 3DMTR scores that are unlikely given randomchance. (A1) Scatter plot of the GRIN1
(Chain C) 3DMTR score (magenta line, black dots), the permutation 3DMTR scoremean (black line), and ±1 and ±2 standard deviations of the permutation
3DMTR score (gray areas). Themean and standard deviation are calculated for each residue based on the permutation results for that particular residue (for
the distributions of several example data sets, see Supplemental Fig. S10). (A2) Raster plots of the GRIN1 3DMTR score and the calculated significance via
permutation analysis. A residue is deemed highly intolerant (blue, less than the permutation analysismeanminus 2 standard deviations) and highly tolerant
(red,more than the permutation analysismean plus 2 standard deviations). (B) Permutation analysis for GRIN2A (Chain B) as shownby similar plots in A. (C)
The structural map of calculated significance from permutation analysis (same as the raster plots above), mapped onto a GRIN1 subunit and GRIN2A sub-
unit (C1). Closer view of the ABDs: (C2) GRIN1; (C3) GRIN2A. Closer view of the NTDs, shown with side chains (sticks) of the identified significant residues:
(C4) top down; (C5) side view depicted in C4.
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Examining a subdomain in isolation and altering the number

of included residues may refine 3DMTR analysis

The resolution and conformation of the protein structure is an im-
portant considerationwhen using the 3DMTRmethod. High-reso-
lution structures are required for accurate placement of the side
chains (<∼4 Å). Furthermore, multiple structures have been de-
scribed for some proteins in different conformations. Given that
the 3DMTR permutation analysis did not show clear differences
in the NTD when using the GRIN1/2A homology model based on
the nonactive GRIN1/2B structure (Chou et al. 2020), we analyzed
an isolated NTD in a crystal structure with Zn2+ bound (Romero-
Hernandez et al. 2016). Zn2+ ions are an important endogenous
modulator of GRIN2A-containing receptors (Paoletti et al. 1997;
Traynelis et al. 1998). We performed the 3DMTR method on this
structure using the closest 31 residues and performed residue per-
mutation analysis (Supplemental Fig. S11; Supplemental Data Set
1). As expected, the NTD in the full-length structure (Full) com-
pared to the isolated Zn2+-NTD structures had similar 3DMTR pro-
files with similar standard deviation (collective statistics for both
GRIN1 and GRIN2A NTDs; meanFull = 0.630, STDFull = 0.165;
meanZn2+ = 0.626, STDZn2+ = 0.167). However, the permutation
analysis of the isolated NTD structure identifiedmore highly intol-
erant residues in the Zn2+ structure (Supplemental Table S2). That
is, 46 residues were highly tolerant and eight residues were highly
intolerant in the NTD dimer in the full-length structure. In con-
trast, only 23 residues were highly tolerant and 25 residues were
highly intolerant in Zn2+-NTD structure. The highly intolerant res-
idues identifiedwere distributed along the dimer interface between
GRIN1 and GRIN2A.

It couldbe argued that using theclosest 31 residuespotentially
includes irrelevant residues. Therefore, we calculated the 3DMTR
using fewer residues (closest 11 residues, c11; closest 21 residues,
c21). We observed in the 3DMTR profiles calculated with fewer
than 31 included residues had more highly intolerant residues
(number of 3DMTR scores of less than 0.3, 5 residues in c31, 25 res-
idues in c21, and 68 residues in c11) (Supplemental Figs. S11B–D,
S12). Overall, themean 3DMTR scores were similar for these differ-

ent analyses (0.626 in c31, 0.609 in c21, 0.600 in c11).However, the
standard deviation increased by almost twofold (0.167 in c31,
0.204 in c21, 0.303 in c11). The pattern of significant residues in
the c21 analysis is similar to c31, although fewer significant resi-
dues were found (Supplemental Table S2) and many of the identi-
fied residues were different. For c11, more residues were identified
as significantly different than the average, however a clear pattern
was absent. It appears that with the current level of genomic data,
the 3DMTRmethod is capable of producing similar results using 21
residues or more, but reducing the number of residues to less than
21 risks producing a 3DMTRprofile that is too variable to reveal dif-
ferences (Supplemental Fig. S12).

The 3DMTR score better classifies the functional outcome

of mutations than the 1DMTR score

We quantified the 1DMTR and 3DMTRmethods’ ability to predict
important residues by testing for functional consequences when a
residue is mutated. We selected several published studies in which
pointmutations were generated and the glutamate EC50 was deter-
mined. We collected 67 Grin1 mutants (GRIN1/2A), 128 Grin2A
mutants, 104 Grin1 mutants (GRIN1/2B), and 60 Grin2B mutants
from 31 sources (Supplemental Data Set 2). We also determined
glutamate EC50 values for 40 new Grin2A mutants (Supplemental
Tables S3, S4; Supplemental Data Set 2). In addition to these mu-
tant data, wild-type glutamate EC50 values were collected from
the same publications and from our own testing (26 GRIN1/2A
and 17 GRIN1/2B determinations) (Supplemental Data Set 2).
We used themean and standard deviation of all wild-type EC50 de-
terminations (Supplemental Table S5) to determine the Z-score for
all mutant determinations based on the wild-type distribution
parameters.

We selected MTR and Z-score cutoffs to create a binary classi-
fication to see if the MTR can detect mutants that have functional
consequences (Fig. 7). The result of the 1DMTR analysis showed 39
of the 84 mutants with Z-scores suggestive of altered functional
phenotype (Z-score> 3) had 1DMTR scores less than 0.3. In addi-
tion, 101 of 145 mutant determinations with Z-scores suggestive

A B C

Figure 7. The 3DMTR is a better predictor of functional consequences of GRIN1/2A point mutations. (A–C) Scatter plots of various residues’ glutamate
EC50 (represented as a Z-score based on intra-study wild-type distribution) and MTR score: (A) 1DMTR; (B) 3DMTR; (C ) 3DMTR permutation analysis.
Thresholds for the MTR score, <0.3 (A), <0.3 (B), <0.05 (C), and for the glutamate EC50 Z-score (>3) were determined from the distribution of WT EC50
values across the studies included. Implementation of threshold criteria creates a binary classification to determine the portions of the residues which
are deemed highly intolerant and have differences in receptor function when mutated. Thus, each residue can be classified as true negative (TN), false
negative (FN), false positive (FP), and true positive (TP), and the various MTR methods can be compared.
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of wild-type function (Z-score < 3) had 1DMTR scores greater than
0.3 (Fig. 7A). In comparison, the 3DMTR analysis was better able to
identify mutants that were functionally different than wild type.
With the 3DMTR, 66 of the 84 residues where mutations were
shown experimentally to influence glutamate EC50 were correctly
identified by having anMTR score less than 0.3, whereas 87 of the
145 mutants with a wild-type EC50 phenotype were identified as
tolerant to mutation (Fig. 7B). Additionally, with the 3DMTR per-
mutation analysis, 62 of the 84 mutant determinations that were
different than wild type were correctly identified, and 95 of the
145 mutant determinations that were like wild type were correctly
identified (Fig. 7C). Fisher’s exact test suggests the binary classifica-
tion of all GRIN1/2A point mutations with the 1DMTR analysis
failed to reach a high significance level (Table 1), whereas both
of the 3DMTR methods achieved high significance (Table 1). The
distribution of the glutamate EC50 Z-scores changes from the
more tolerantMTR scores to themore intolerantMTR scores, espe-
cially the 3DMTR (Supplemental Fig. S13). In other words, the
more tolerant residues (≥0.6) have tight distributions with Z-scores
less than 3, whereas themore intolerant residues (<0.3) have broad
Z-score distributions.

Much of the improvement in the ability to predict functional
consequences of point mutations of the 3DMTR score is attribut-
able to the differences in theMTR score of theABDand the domain
linkers (Table 1; Supplemental Fig. S14). For the 1DMTR analysis of
the ABD and linker mutants, 14 of the 45 mutant determinations
that were different than wild type were correctly identified, and 64
of the 79mutant determinations that were like wild type were cor-
rectly identified (Supplemental Fig. S14B). With the 3DMTR anal-
ysis and permutation analysis, 75% of the residues below their
respective cutoffs were identified as functionally different
(Supplemental Fig. S14B,C). Fisher’s exact test suggests the binary
classification of ABD and linker point mutations with the 1DMTR
failed to reach significance (Table 1) but were highly significant
with either the straight 3DMTR or the permutation analysis binary
classifications (Table 1).

Additionally, we observed similar trends with the GRIN1/2B
data (Supplemental Figs. S15, S16; Supplemental File 2). The
3DMTR method showed improved sensitivity than over the
1DMTR or the 3DMTR permutation analysis, in addition to classi-
fying the most true positives correctly (Supplemental Table S6).
The 3DMTR permutation method resulted in high specificity but
had many more false negative residues than the other methods.
Fisher’s exact test suggests the binary classification of all GRIN1/
2B point mutations with the 1DMTR failed to reach high signifi-
cance (Supplemental Table S6), but achieved high significance
levels with the binary classification of either 3DMTR method
(Supplemental Table S6).

Discussion

The introduction of the MTR method (Traynelis et al. 2017) pro-
vided the biomedical research community with an important an-
alytical tool that allowed regional intolerance to be assessed.
Individuals working in all fields of biology can make use of this
tool to better understand their protein of interest. However, the
concept was limited by application to the polypeptide chain,
which neglects tertiary structure of proteins that often juxtapose
two residues that reside at considerable distance from one another
on the polypeptide chain. 3DMTR analysis is an important refine-
ment of this approach. For example, the results provided here for
the GRIN family of genes yields several important differences
when compared to 1DMTR analysis.

3DMTR analysis improves the application of population-level

variant data

The 3DMTRmethoddid qualitatively better in identifying residues
in protein domains known to be critical for receptor function.
These mainly include residues in the ABD, the domain linkers,
and the channel gate. For example,mutations of residues in the in-
ner cleft of the ABD that harbor the agonist binding pocket can

Table 1. Comparison of MTR method validation with GRIN1/2A glutamate EC50 data

MTR method
Which domains
are included?

Total mutant
counts FN FP TN TP Sens Spec PPV NPV PDR

Fisher’s exact
test

1DMTR
Score All 229 44 44 102 39 0.47 0.70 0.47 0.70 0.36 0.0148

3DMTR (intra-receptor)
Score All 229 17 58 88 66 0.80 0.60 0.53 0.84 0.36 4.27 × 10−9

Permutation analysis All 229 21 50 96 62 0.75 0.66 0.55 0.82 0.36 4.36 × 10−9

1DMTR
Score ABD 124 31 15 64 14 0.31 0.81 0.48 0.67 0.36 0.185

3DMTR (intra-receptor)
Score ABD 124 9 22 57 36 0.80 0.72 0.62 0.86 0.36 2.39 × 10−8

Permutation analysis ABD 124 11 21 58 34 0.76 0.73 0.62 0.84 0.36 1.94 × 10−7

1DMTR
Score Linkers 33 8 7 16 2 0.20 0.70 0.22 0.67 0.30 0.686

3DMTR (intra-receptor)
Score Linkers 33 4 13 10 6 0.60 0.43 0.32 0.71 0.30 1.00
Permutation analysis Linkers 33 5 12 11 5 0.50 0.48 0.29 0.69 0.30 1.00

1DMTR
Score ABD+ linkers 157 39 22 80 16 0.29 0.78 0.42 0.67 0.35 0.331

3DMTR (intra-receptor)
Score ABD+ linkers 157 13 35 67 42 0.76 0.66 0.55 0.84 0.35 4.44 × 10−7

Permutation analysis ABD+ linkers 157 16 33 69 39 0.71 0.68 0.54 0.81 0.35 4.65 × 10−6

Counts were determined from the binary classification of each data set. The equations of the binary classifications summary metrics are provided in
Methods.
(FN) False negative count; (FP) false positive count; (TN) true negative count; (TP) true positive count; (Sens) sensitivity; (Spec) specificity; (PPV) posi-
tive predictive value; (NPV) negative predictive value; (PDR) positive detection rate.
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alter glutamate potency up to 3000-fold, either by changing ago-
nist affinity or by modifying the domain closure, movement that
drives activation of the receptor. The TMDhas key residues that en-
able opening of the channel as well as additional residues that con-
trol Mg2+ block and Ca2+ permeability. Also, the ABD-TMD linkers
have been suggested to be important not only for translating con-
formational changes from the ABD to the TMD, but also for key in-
teractions that maintain the closed state of the receptor as well as
allow for the responsive activation required for rapid synaptic
transmission (Amin et al. 2020; Perszyk et al. 2020). In the
GRIN1/2A receptor 3DMTR analysis, these key portions of the re-
ceptor were labeled as highly intolerant.

The improvement provided by the 3DMTR method may re-
flect selection of residues that are closer and therefore more rele-
vant to the central residue. The average of the mean residue
distances of the selected 31 residues for the entire GRIN1/2A struc-
ture is 9.1 Å for the 3DMTRreceptor, 9.5 Å for the 3DMTRsubunit, and
14.4 Å for the 1DMTR. For the 3DMTRreceptormethod, reducing the
number of selected residues to 21 or 11 reduces the mean residue
distances (7.8 Å and 6.0 Å, respectively). Using 21 or 31 residues
in the 3DMTR calculation, the residues that directly interact
with the central residue are included as well as those thatmight in-
teract or may influence indirectly the central residue. In contrast,
using a fewer number of residues (e.g., 11) selects only residues
that are positioned more closely to the central residue. Owing to
the lack of full coverage of the genomic database, a minimum
number of residues is required to avoid errors in the MTR calcula-
tion (typically more than 11 residues) and using more residues (21
or 31 residues) provides a more consistent MTR score with lower
overall variability.

The main drawback of the 3DMTRmethod is that it can only
be used for proteins for which structural data is available. Thus, the
method cannot be used for proteins or protein regions that lack
crystallographic or cryo-EM structural data. In such cases, the
only opportunity is to use homology models, the original
1DMTR analysis, or other methods to consolidate population ge-
nomic data into simple metrics or scores (Traynelis et al. 2017;
Pérez-Palma et al. 2020). For example,MTR analysis of the intracel-
lular C-terminal domain of NMDAR subunits is not possible
because there are no structural data for this domain, which is crit-
ical for the NMDAR regulation and localization. Potentially new
innovations in predicting protein structure (AlphaFold) could be
implemented to fill in these gaps in structural information that
lack experimental data (Senior et al. 2020).

Permutation analysis and the accuracy of the 3DMTR

The 3DMTR permutation analysis provides reassurance that the
3DMTR profile identifies real differences between the residues in
a given protein data set. By calculating numerous permutations,
the likelihood of each residue’s score can be determined, which
suggests whether the most extreme values in the data set result
from random coincidence. In instances for which the overall
3DMTR score is moderately high (suggesting tolerance of varia-
tion), as was observed in the isolated NTD domains of the
GRIN1 and GRIN2A, permutation analysis can detect which are
the most intolerant residues. Additionally, as we saw in the evalu-
ation of the isolated GRIN1/2A NTD, reducing the number of res-
idues included can alter the MTR profile and increase the number
of highly intolerant residue scores (<0.3). However, reducing the
number of included residues (from 21 to 11) increases the permu-
tation variability and thus suggests that these highly intolerant

scores are more likely caused by random coincidences, resulting
from the less than optimal level of SNV data set coverage. Thus,
permutation analysis can be used to ensure that the 3DMTR anal-
ysis is producing reliable results.

3DMTR shows an improved ability to classify the functional

outcomes for NMDAR mutations

An important component of this study was the statistical valida-
tion of the results we obtained. We found that the majority of the
mutations produced glutamate EC50 values that were different
from wild type. Comparing these experimental data sets with
the results from the analysis by 3DMTR and 1DMTR methods
showed that the 3DMTR score was better at predicting the func-
tionally different mutation than the 1DMTR score. The 3DMTR
permutation analysis also correctly classified the functional result
of point mutations, similar to the 3DMTR score for GRIN1/2A.
However, for GRIN1/2B, the permutation analysis had lower sen-
sitivity in the binary classification. This may suggest that the raw
3DMTR score may be a better predictor of the functional outcome
of mutations when analyzing data sets with numerous intolerant
3DMTR scores. As GRIN2B is on average more intolerant than
GRIN2A (mean intra-receptor 3DMTR score 0.567 for GRIN2A,
0.389 for GRIN2B), the permutation analysis may exclude some
potentially relevant residues that have highly intolerant scores
(<0.3) because the method identifies only the most extreme cases
in a data set.

The 3DMTR score was capable of detecting functionally rele-
vant consequences of mutation with high sensitivity and a high
negative predictive value; however, the 3DMTR score had lower
positive predictive value, which was still comparable or better
than 1DMTR score. The low positive predictive values are not
problematic for several reasons. First, glutamate EC50 captures
only one aspect of receptor function, with other important fea-
tures being represented by glycine EC50, receptor deactivation
time course, open probability, Mg2+ sensitivity, proton sensitivity,
Zn2+ sensitivity, cell surface expression, and other descriptive pa-
rameters. The reason for a low positive predictive value might be
that the false positives (e.g., low 3DMTR, but no change in gluta-
mate EC50) capture differences in other functional properties that
result in tolerance selection. An additional caveat is that all point
mutants in the validation were assayed in NMDARs, where both
copies of the subunit in the tetrameric receptor contains the mu-
tation. In contrast, tolerance selection occurs in individuals that
most often are heterozygous carriers of the mutation; therefore,
the majority of the receptor population will contain only a single
subunit with the mutation, along with a wild-type subunit. Next,
because these were a random sampling of the mutations that we
found in the literature, not all of them are likely to occur in indi-
viduals because some require multiple base pair changes to pro-
duce the specific codon change (they are not SNVs). The
predictability of any MTR score might therefore be different for
those changes that can be produced by one base pair change ver-
sus those that require multiple changes. Additionally, this might
also contribute to false negative data points, in that if the specific
point mutation tested is not a SNV, the functional consequences
of that mutation might not be predicted by the MTR score.
However, given that the 3DMTR is calculated by averaging SNV
counts of multiple residues, this may result in a more generalized
score of tolerance. In other words, a low 31-residue averaged
3DMTR score suggests that any perturbation in that 3D space is
likely to alter function.
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Amorewholistic approachmay bemore appropriate than our
binary classification of just a single functional parameter. The
measurement of many parameters describing NMDAR function
for a large number of NMDAR mutations could be determined
and used to determine a single aggregate score representing func-
tional alterations (Swanger et al. 2016). In addition, assessment
of multiple parameters could allow a multivariable nonlinear re-
gression to be performed to determine the optimal combination
of functional parameters that contribute to MTR tolerance.
Furthermore, there may be cellular or network scale end points
(charge transfer, contribution to neuronal bursting behavior,
changes in neuronal plasticity, etc.) that are altered by NMDAR
mutations that may be a better predictor than basic receptor
properties.

Future applications of the 3DMTR method

The 3DMTRmethod can be used in other protein analysis applica-
tions, including molecular dynamic (MD) simulations. Because
the 3DMTR method is heavily based on the structure or model
that is used, these data sets may provide further insight into the
variability of the 3DMTR with small conformational changes.
For NMDARs, important conformational changes occur during re-
ceptor activation, and thus the 3DMTR-MD evaluation may be
able to detect important transient interactions that occur or alter-
native receptor conformations with local minima or highly vari-
able 3DMTR scores. Additionally, many proteins interact as parts
ofmultimeric complexes, sometimes withmultiple analogs poten-
tially interacting with the same site, such as the different GRIN2
subunits occupying the same position in the NMDAR complex
or different G-proteins interacting with G-protein coupled recep-
tors. Here, the 3DMTRmethod could be used to compare different
analogs to reveal differences or similarities in protein interactions.
Differences in the 3DMTR score will occur at interface positions
based on the juxtaposition of different analog data sets, as well
as potential alterations in protein complex conformation with dif-
ferent partners.

Alternative 3DMTR scores could be developed using inclu-
sion metrics other than Euclidean distance, focusing on which
residueswe know interact with each other. Some examples of alter-
native inclusion criteria could be using residue distance with
weighed factors such as residues of a similar class (polar, charges,
etc.), residues that have correlated movements inMD simulations,
or residue interactions (salt-bridge, hydrogen bond, or aromatic
interaction networks). Additionally, a related method could
be implemented incorporatingweighing based on a variablemuta-
tion rate that may influence the 3DMTR score (Samocha et al.
2017).

Looking forward, as the precision of the MTR will improve
with a larger variant data set, eventually providing enough synon-
ymous andmissense variants to produce a residue-specific MTR. It
would appear at this point in time there might be a redundancy to
the 3DMTR method, but there may be benefits to averaging data
over local regions to provide a more generalizable assessment of
tolerance to perturbation. Furthermore, because the 3DMTR is
more effective at using this genomic data it may be useful in ad-
dressing concepts of polygenic diseases (where multiple gene var-
iants contribute to a complex disease), ancestral/lineage-specific
3DMTR, or in analyzing other subsets of the complete databases.
One could imagine that having a de novo variant in the GRIN2A
gene might confer susceptibility to epilepsy but may require an-
other variant in a second gene (such as SCN1A, also known as

Nav1.1). Analyzing a subset variant genome data set, with or with-
out GRIN2A, any mildly intolerant variants could be constructed
and the 3DMTR evaluated for SCN1A (or vice versa). The 3DMTR
profile might be different for these subsets, suggesting that mildly
intolerant variants in either GRIN2A or SCN1A may be tolerated
but mildly intolerant variants in both are removed from the
gene pool. Thus, 3DMTR analysis is a useful tool with which to
guide the study of the structure-function relationship of proteins
and protein complexes.

Methods

Three-dimensional MTR calculation

The missense tolerance ratio (MTR) was calculated from popula-
tion-level SNV data sets, similar to previous reports (Traynelis
et al. 2017), by the following equation:

MTRn =
∑

incln MSobs /
∑

incln MSobs +
∑

incln SSobs
( )

∑
incln MSexp /

∑
incln MSexp +

∑
incln SSexp

( ) ,

where MTRn is the missense tolerance ratio for residue n, incln is
the set of residues to be included for each residue n,MSobs is the ob-
served missense variant counts for a particular residue, SSobs is the
observed synonymous or same sense variant counts for a particular
residue,MSexp is the expected missense variant counts for a partic-
ular residue as determined by the codon, and SSexp is the expected
synonymous variant counts for a particular residue as determined
by the codon. The expected number ofMS and SS variants assume
an equal theoretical mutation rate at every base pair and were de-
termined from the number of potential missense amino acid vari-
ants based on redundancy in the genetic code. That is, we
determined the number of SNVs within a codon that would pro-
duce change in the amino acid represented by the codon, or alter-
natively yield the same amino acid.

For the 1DMTR, the 15 residues before and after residue n, in
terms of the amino acid sequence, were included in the calcula-
tion. For the 3DMTR, the closest 31 residues in space are included,
according to a given protein structure. To determine which set of
neighboring residues to include for each individual residue, the lo-
cations of each residue in 3D space, as given by coordinates in the
PDB file, was defined as the average location (X, Y, Z coordinates)
of all atoms (present in the given model) comprising the residue
(peptide backbone plus side chain). The Euclidean distance be-
tween residues was calculated using the 3D version of the
Pythagorean theorem. Alternative 3DMTR scores can be calculated
by simply using the closest N (11, 21) residues for each residue.
gnomAD v2.1.1 was used for all analyses.

MTR permutation analysis

To assess the likelihood of the calculated 3DMTR scores from a giv-
en data set (gnomAD variant data set, protein structure), two per-
mutation analysis methods were developed: residue and factor. For
the residue permutation analysis, the residue locations were ran-
domizedwith one anotherwithin the selected set, and the distanc-
es between each were recalculated. For the factor permutation
analysis, a randomized look-up table was used when selecting
the residues to be included in the 3DMTR calculation. For both
methods, randomization was constrained to be within each poly-
peptide chain, if there were multiple polypeptide chains included
in the analysis. The mean permutated score and standard devia-
tion were determined for each residue. In all cases presented
here, 1000 permutations were calculated.
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Agonist concentration-response curves and two-point agonist

EC50 estimation

Rat wild-type NMDARs were produced by coexpression cDNAs en-
coding the GRIN1-1A (NCBI Genbank [https://www.ncbi.nlm.nih
.gov/genbank/] accession numbers U11418, U08261; hereafter
GRIN1) and GRIN2A (D13211) subunits in Xenopus laevis oocytes
as previously described (Erreger et al. 2007). X. laevis stage VI oo-
cytes were isolated from X. laevis ovaries as previously described
(Hansen et al. 2013). TheHill equationwas fitted to glutamate con-
centration-response data as previously described (Hansen et al.
2013; Supplemental Methods).

For the two-point agonist EC50 estimation, current response
to application of a submaximal and a saturating of concentration
of glutamate (2 and 100 μM, respectively) were measured, and
the following equation was used to estimate the EC50:

EC50 estimate = [Asub]× Imax

Isub
− 1

( )−h

,

where EC50_estimate is the estimated half-maximally effective con-
centration of agonist, [Asub] is the submaximal concentration of
the agonist used, Imax is the maximal current response, Isub is the
submaximal current response, and h is the Hill slope. The Hill
slope was assumed to be 1.2 for all mutants tested with this assay.

Preparation of the validation data set

Previously published NMDAR wild-type and point mutation con-
struct glutamate EC50 values were obtained from the literature
(Laube et al. 1993; Kuryatov et al. 1994; Wafford et al. 1995;
Williams et al. 1995, 1998; Hirai et al. 1996; Kashiwagi et al.
1996, 1997; Anson et al. 1998; Fayyazuddin et al. 2000; Low
et al. 2000; Wittekindt et al. 2001; Laube et al. 2004; Chen et al.
2005, 2017; Furukawa et al. 2005; Inanobe et al. 2005; Erreger
et al. 2007; Maier et al. 2007; Ren et al. 2013; Yuan et al. 2014;
Serraz et al. 2016; Swanger et al. 2016; Addis et al. 2017; Bledsoe
et al. 2017; Ogden et al. 2017; Wang et al. 2017; Li et al. 2019;
Hrcka Krausova et al. 2020; McDaniel et al. 2020; Skrenkova
et al. 2020). The residue numbers were modified so that the initi-
ating methionine was always one. All values were converted to
the log EC50. The wild-type data points were treated as if each
data point was a sample from the normal distribution of the
mean wild-type parameter, despite being collected via slightly
varying assays. The mean and standard deviation of the underly-
ing distribution were estimated from the sample mean (meanwt)
and standard deviation (STDwt). An EC50 Z-score for each point
mutation was calculated using the wild-type normal distribution
parameters:

EC50 z-score = logEC50 −meanwt

STDwt
.

Binary classification

MTR score and Z-score threshold were determined empirically.
1DMTR scores below 0.3 are considered extremely rare and mean-
ingful (exome-wide MTR fifth percentile = 0.5462, MTR-viewer,
http://mtr-viewer.mdhs.unimelb.edu.au/). For the permutation
analysis, a threshold of 0.05 was chosen to align with the rest of
the results presented by this method, which identifies the residues
for which the 3DMTR score ismore extreme thanwould be expect-
ed by chance (95%). TheZ-score cutoff was chosen as 3 to select for
those data points that are most certainly different than the wild
type, especially given thatmany of the data points collected are re-
ported specifically because of their functional consequences,

which might result in inflated numbers of mutants or variants
that have higher Z-scores. The data points were classified as either
true negative (TN, MTR score >0.3, 0.05 and Z-score<3), false neg-
ative (FN, MTR score>0.3, 0.05 and Z-score>3), false positive (FP,
MTR score<0.3, 0.05 and Z-score< 3), or true positive (TP, MTR
score<0.3, 0.05 and Z-score>3). After classifying the data points,
standard binary classification metrics were calculated
(Supplemental Methods). Fisher’s exact test was used to evaluate
the effectiveness of the classification, using an α =0.01 owing to
the relatively large sample sizes we collected.

Software availability

All MTR calculations were performed using a MATLAB (Math-
works, version R2019b) encapsulated application (for source files,
see Supplemental Code File) or other custom scripts (for details, see
Supplemental Methods). Additionally, all code, the executable
3DMTR application, and future updates are available on GitHub
(https://github.com/riley-perszyk-PhD/3DMTR, current version
v1.008) along with an operation manual explaining how to use
the application on other proteins.
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