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SUMMARY

Gastrointestinal nematode infection represents a major threat
to the health, welfare and productivity of sheep populations
worldwide. Infected lambs have a reduced ability to absorb
nutrients from the gastrointestinal tract, resulting in morbid-
ity and occasional mortality. The current chemo-dominant
approach to nematode control is considered unsustainable due
to the increasing incidence of anthelmintic resistance. In addi-
tion, there is growing consumer demand for food products
from animals not subjected to chemical treatment. Future
mechanisms of nematode control must rely on alternative, sus-
tainable strategies such as vaccination or selective breeding of
resistant animals. Such strategies take advantage of the host’s
natural immune response to nematodes. The ability to resist
gastrointestinal nematode infection is considered to be depen-
dent on the development of a protective acquired immune
response, although the precise immune mechanisms involved
in initiating this process remain to be fully elucidated. In this
study, current knowledge on the innate and acquired host
immune response to gastrointestinal nematode infection in
sheep and the development of immunity is reviewed.
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INTRODUCTION

Gastrointestinal nematode (GIN) parasitism is a major
constraint affecting sheep production systems. Na€ıve lambs

are exposed to infection when grazing contaminated pas-
ture. Consequently, infections are generally comprised of a
mix of species, which infect both the abomasum and intes-
tine. The species of infective larvae on pasture is depen-
dent on a number of factors including temperature and
moisture and therefore often displays a seasonal distribu-
tion (1). As GIN is highly aggregated within the host pop-
ulation, susceptible individuals can harbour thousands of
worms, which in turn leads to increased pasture contami-
nation. Current sheep production systems are highly
dependent on the availability of efficacious anthelmintic
products and are threatened by the increasing incidence of
anthelmintic resistance. Resistance to all anthelmintic
classes has now been reported, with the exception of
derquantel, which first came to market in 2010 (2–5). The
looming spectre of widespread anthelmintic resistance has
led to renewed interest in alternative nematode control
strategies such as vaccination, breeding for resistance and
immunomodulatory anthelmintics. Many of these strate-
gies exploit the natural host immune response to GIN.
The major host defence mechanism against GIN is consid-
ered to be acquired immunity (6), which develops over
time in response to challenge and is dependent on the age
of the animal, nutritional status and genotype (7–9). A
current challenge for sheep producers is to allow stock suf-
ficient exposure to GIN in order to develop immunity
without impairing production.

MANIFESTATIONS OF IMMUNITY

The development of immunity to GIN is complex and
highly variable. The rate of development of immunity
depends on the breed of sheep, the nematode species to
which they are exposed and the intensity of infection.
While lambs rapidly develop the ability to control GIN
such as Nematodirus battus (10), resistance to other
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species, such as Teladorsagia circumcincta, is much slower
to develop (9). Immune competence can be observed
through prevention of establishment of most incoming
infective larvae, suppressed GIN growth (and therefore
fecundity), the expulsion of adult worms, or a mixture of
the above (6, 11, 12). Lambs start to demonstrate immune
competence from 2 to 3 months of age (13), with regular
exposure to larval challenge allowing the immune response
to develop until a significant protective immune capability
is developed by 10–12 months of age (1, 11). Adult sheep
tend to remain relatively resistant to infection, harbouring
only a few adult worms, although regular exposure to
some level of infection is required to retain immunity (14).
An alternative view is that immunity develops in two
stages; suppression of worm growth precedes suppression
of worm establishment and survival (15). Immunity to
intestinal worms also develops more rapidly than
immunity to abomasal worms (16).
Nutritional stress, ill-health and pregnancy can all influ-

ence an individual’s immune status. It has been observed
that the nutritional status of the host during GIN infec-
tion is important, with the provision of additional protein
to growing sheep during infection resulting in enhanced
immunity to GIN (17, 18). A relaxation in host immunity
to GIN is observed in ewes during the periparturient per-
iod, from approximately 2 weeks before lambing to
approximately 6 weeks post-lambing, although this timing
is very variable. It is largely due to nutritional stress in the
ewe and can be prevented by supplementary feeding (19).
The increase in faecal egg count (FEC) is known as the
periparturient rise (20) and is a major contributor to pas-
ture larval contamination encountered by lambs (21).

THE INNATE IMMUNE RESPONSE

The immune system of vertebrates is composed of two
arms, the innate (nonspecific) immune response and the
adaptive (specific) response, the various cellular and bio-
chemical components of which work together to protect
vertebrates from a range of threats. The first line of defence
against GIN is the innate immune system, which plays a
role in sensing GIN, then initiating and driving the acquired
immune response. Of particular relevance are innate physi-
cal barriers to the establishment and survival of GIN, and
subsequently the process by which the host recognizes the
presence of GIN and activates an immune response.

Physical barriers to the establishment and survival of
GIN

The inner surface of the gastrointestinal tract is covered
with a layer of mucus, primarily produced by mucus neck

cells in the abomasum and epithelial goblet cells in the
small intestine (22). This is the front line of the innate
defence against ingested food and pathogens in the gas-
trointestinal tract. The primary component of mucus is
mucin; however, it also contains an array of bioactive
molecules such as defensins and trefoil factors (23). Many
of these bioactive molecules have been shown to be
antimicrobial or to stimulate inflammation (24). Both
increased mucus production and the presence of inhibitory
substances in the mucus have consistently been observed
during the development of immunity to GIN (25–27).
Enteric smooth muscle contractility has been shown to

play an important role in mediating nematode resistance
in mice, with changes in intestinal motility reported to be
responsible for parasite expulsion (28). However, its role in
GIN expulsion in sheep is less clear. An upregulation of
genes related to the structure and function of the enteric
smooth muscle was observed in lambs selected for resis-
tance to GIN when compared to their susceptible counter-
parts (29). Additionally, the concentration of bradykinin,
a physiologically active peptide which can promote vasodi-
lation and smooth muscle contraction, was negatively cor-
related with the number of adult T. circumcincta worms in
immune sheep (30). Contrary to this, however, it has been
reported that susceptible Suffolk lambs showed greater
duodenal contractile force compared to resistant lambs in
response to T. circumcincta infection (31).

Pattern recognition receptors (PRRs)

Amongst the earliest systems for the detection of patho-
gens are the germ line-encoded pattern recognition recep-
tors (PRRs) such as C-type lectin receptors (CLRs) and
Toll-like receptors (TLRs). CLRs and TLRs are expressed
by many cell types, including the cells of mucosal surfaces
and tissue immune cells such as the antigen-presenting
cells (APCs) macrophages and dendritic cells (32, 33).
PRR proteins identify both pathogen-associated molecular
patterns (PAMPs; pathogen molecular structures not
found in the host) and damage-associated molecular pat-
terns (DAMPs; molecules released from damaged or
stressed cells). Both PAMPs and DAMPs can result in the
initiation and perpetuation of the inflammatory response.
In addition to being the first line of defence, PRRs play
an important role in the induction of cytokines and other
signals responsible for the activation and manipulation of
the adaptive immune system (34).
While viral, bacterial and fungal ligands which act as

potent PAMPs and are recognized by mammalian PRRs
are well described, less is known about the role of PRRs
in the response to nematode infection. TLR genes (TLR2,
TLR4 and TLR9) have been found to be more abundantly
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expressed in the gut mucosa of genetically resistant sheep
following GIN challenge (35). CLRs are also candidates
for innate recognition of surface carbohydrate present on
nematodes. The mannose receptor (a CLR) has been
shown to bind to excretory/secretory proteins of the mouse
nematode Trichuris muris, but was not essential for protec-
tive immunity (36).
Tissue phagocytic cells such as dendritic cells and

macrophages play a critical role in innate immunity, but
also help initiate acquired immunity through their ability
to sample antigens, migrate to secondary lymphoid tissue
and activate antigen-specific T cells within this tissue. M1
(classically activated) macrophages are activated through
TLRs and interferon-gamma (IFN-c), whereas M2 (alter-
natively activated) macrophages are stimulated by the
interleukins (IL) IL-4 or IL-13. These states are not static,
however, with ovine M1 and M2 patterns capable of
reverting from one to the other according to cytokine
availability (37). M2 macrophages have three main func-
tions during helminth infection: regulation of the immune
response, healing of damaged tissue and resistance to par-
asite invasion (38). During a Th2-type response to nema-
tode infection, M2 macrophages express chitinase and
FIZZ family member proteins (ChaFFs), suggesting an
effector or wound-repair role for the molecules at the site
of nematode infection (39). Chitinases degrade chitin, a
molecule present in the exoskeletal elements of some ani-
mals, including helminth larvae (40). A joint role for
macrophages and neutrophils in preventing establishment
of Haemonchus contortus larvae has also been suggested
(41). Macrophage-like cells were also occasionally
observed associated with completely destroyed H. contor-
tus larvae from sensitized sheep (42).

Cytotoxic and proinflammatory cells

At the site of infection in the gastrointestinal tract, mast
cells are recruited by the release of chemokines and other
inflammatory mediators by innate immune cells. Although
best known for their role in the allergic response, increased
numbers of tissue mast cells have also been observed dur-
ing helminth infection. Mast cells are inflammatory cells
that can both respond directly to pathogens and send sig-
nals to other tissues to modulate both the innate and
adaptive immune responses (43). Two subsets of mast cells
have been described based on their location: connective
tissue mast cells (CTMCs) and mucosal mast cells
(MMCs) (44). Mast cells appear uniformly scattered in tis-
sue, and activation of mast cells occurs predominantly
through antigen-induced stimulation of specific immuno-
globulin E (IgE) bound to the high-affinity IgE receptor
(FceRIs) at the mast cell surface (45). Mast cells can also

be activated by directly interacting with PAMPs through
PRRs (43). Mast cells store a number of inflammatory
mediators (including histamine, leukotrienes and pro-
teases) that are released upon degranulation into the sur-
rounding tissues (46, 47). The effects of these chemical
mediators are characteristic of type 1 hypersensitivity and
include smooth muscle contraction, increased vascular per-
meability and local blood flow, and enhanced mucus secre-
tion. In response to GIN infection, mast cells also
produce Th2 cytokines such as IL-13, IL-4 and IL-5 in
addition to chemotactic factors which contribute to the
recruitment of multiple inflammatory cells including eosi-
nophils, natural killer (NK) cells and neutrophils (43). In
sheep, nematode-induced activation of mast cells has been
associated with acquired immunity (48, 49). An important
mechanism controlling the number of adult T. circum-
cincta in previously sensitized animals appears to be IgE-
dependent mast cell degranulation (12), with sheep mast
cell proteinase systemically released during nematode
infections (50).
In addition to an increase in the numbers of mast cells,

an increase in eosinophils is also characteristic of infection
with nematode parasites. Eosinophils develop in the bone
marrow from haematopoietic stem cells (51), and their
development and survival is promoted by the Th2 cytoki-
nes IL-3, IL-5 and GM-CSF (52). Following infection,
eosinophils proliferate in the blood in a process known as
eosinophilia. Mature eosinophils are activated and migrate
to the site of infection in response to various chemoattrac-
tants, such as IL-5 and members of the eotaxin family of
chemokines CCL11, CCL24 and CCL26 (53). In tissue,
eosinophils can show directional migration towards a par-
asite target (54). Following activation, the effector func-
tions of eosinophils include immune regulation, resistance
to parasitic invasion through degranulation and the release
of eosinophil secondary granule proteins (EPGPs) and
healing damaged tissue. The effector functions result in
the damage and killing of larval stages of many helminth
parasites (42, 55, 56).
Eosinophils have been shown to play a significant role

in the development of resistance to multiple species of
GIN in sheep (42, 57–59). A reduction in peripheral blood
eosinophilia has been observed during primary infection
with T. circumcincta, which was hypothesized to be a
result of recruitment of cells into the intestinal epithelium
(60). However, the relationship between peripheral blood
eosinophilia and tissue eosinophilia is reasonably weak,
with only a proportion of circulating eosinophils moving
into the abomasal mucosa in response to GIN infection
(58). Increases in tissue eosinophils have been observed
during H. contortus infection of both na€ıve (61) and
previously sensitized (42, 62) sheep, resistant Romney

© 2015 John Wiley & Sons Ltd, Parasite Immunology, 37, 605–613 607

Volume 37, Number 12, December 2015 Ovine immune response to nematodes



selection line animals with a naturally acquired mixed
infection (63) and Scottish Blackface, Suffolk and Texel
lambs infected with T. circumcincta (12, 64).

THE ADAPTIVE IMMUNE RESPONSE

On encountering a foreign antigen, antigen-presenting cells
(APCs) such as activated dendritic cells and macrophages
migrate to the regional lymph nodes via the afferent lym-
phatic system where they display the antigens to their cog-
nate T-cell receptor via MHC class I or II carrier
molecules. The activation of the na€ıve T cell by APCs initi-
ates the adaptive immune response and results in the
release of cytokines, leading to both T-cell differentiation
and the proliferation of further T cells.

Antigen processing and presentation

Thymus-derived T cells play a central role in the cell-
mediated immune response. T cells are differentiated from
other lymphocytes by the presence of a T-cell receptor
(TCR) on the cell surface. There are several types of T
cell, including cytotoxic, helper and regulatory T cells.
Cytotoxic T cells (Tc) kill cells that are infected with
viruses or other intracellular pathogens or damaged cells.
They are also known as CD8+ T cells as they express the
CD8 glycoprotein at their surface. T helper cells (Th)
express the surface protein CD4 and provide essential
additional signals to activate maturation of B cells, Tc
cells and macrophages. Th cells can be further classified as
Th1, Th2, Th17 or Treg cells depending on the cytokines
they produce. CD8+ and CD4+ T cells bind MHC class I
and MHC class II molecules, respectively. Regulatory T
cells (Treg) suppress the activity of other lymphocytes and
are critical for the maintenance of immunological
tolerance.

The T-cell response

The Th1 response has been traditionally associated with
the immune response to intracellular bacteria, protozoa
and viruses. The Th1 cascade is triggered by the produc-
tion of IL-12 by dendritic cells, macrophages and B cells
(65), which stimulates the production of the pro-inflamma-
tory cytokine IFN-c by T cells and natural killer (NK)
cells (66). IFN-c is important for differentiation of naive
CD4+ T cells into IFN-c-producing Th1 cells (67). The T-
box transcription factor T-bet plays a critical role in this
process, accounting for Th1 cell development and the Th1
cell-specific IFN-c production (68, 69). Both IL-12 and
IFN-c also inhibit the production of the Th2 cytokine IL-
4 in mice infected with intestinal nematodes (70). The

effector molecules of the Th1 response are specialized to
stimulate proliferation of CD8+ Tc cells and activate
macrophages, and increased expression of these effectors
has been associated with GIN susceptibility in sheep in a
number of studies (71–73).
An antibody-stimulating protective Th2-type response is

commonly elicited by helminth parasites. Common fea-
tures include expression of Th2-type cytokines (IL-4, IL-5
and IL-13), infiltration of eosinophils, basophils and mast
cells (all of which can produce several types of Th2-type
cytokines), and IgE production (74). The presence of IL-4
early in Trichuris muris infection has been shown to be
critical for the activation of the protective Th2 response in
mice (75). IL-4, through activation of STAT6, upregulates
GATA3 expression, inducing differentiation of na€ıve Th
cells to Th2 cells while suppressing differentiation into
Th1 cells (76). Upon activation, Th2 cells produce addi-
tional IL-4 in a positive feedback loop, along with other
Th2 cytokines including IL-5, IL-9, IL-13 and IL-25. IL-4
also induces class switching in activated B cells, leading to
production of IgE (77). The antibody IgE primes the IgE-
mediated type 1 hypersensitivity response by binding to
Fc (FceRI and II) receptors on the surface of mast cells
and basophils (78). When helminth antigen binds to cell
bound IgE, it leads to mast cell degranulation, and the
release of soluble mediators (74). The sensitivity of target
cells to mast cell and basophil-derived mediators is
increased by IL-4 and IL-13 signalling. In mice, it has
been shown that together, the two cytokines promote
increased contractility of smooth muscle cells (79),
increased permeability of epithelial cells (80) and elevated
goblet cell hyperplasia during nematode infection (81).
The presence of IL-4 in extravascular tissue induces alter-
native activation of resident tissue macrophages, which
function in wound healing and tissue repair. IL-5, aside
from triggering eosinophilia, enhances secretion of IgA by
B cells (82). The Th2 cytokine IL-13 induces epithelial cell
repair and mucus production, and together with IL-9
recruits and activates mucosal mast cells. In sheep, the
timely induction of a Th2 response to GIN infection,
characterized by mast cell hyperplasia, eosinophilia,
recruitment of IgA/IgE-producing cells and the expression
of Th2 cytokines, is considered to promote the develop-
ment of resistance (83, 84).
The roles of the more recently discovered Th17 and Treg

cells in the ovine response to GIN remain to be eluci-
dated. Th17 cells promote inflammation through the
recruitment of neutrophils and macrophages to the site of
infection. Early in infection IL-6, produced by dendritic
cells, acts with TGF-b (also required for the differentiation
of regulatory T cells) to produce the Th17 response. This
results in the production of IL-17 family members and
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IL-21, a subset of cytokines particularly important in
clearing pathogens during host defence responses and in
inducing tissue inflammation in autoimmune disease (85).
Later, dendritic cells along with other antigen-presenting
cells produce cytokines to promote either Th1 or Th2
development and suppress Th17 development. Increased
expression of Th17-associated genes has been associated
with both susceptibility (86) and resistance (87) to GIN in
sheep depending on the experimental model. Treg cells are
a subpopulation of T cells that are involved in the mainte-
nance of immunological self-tolerance and homeostasis
through immune suppression (88). Expression of the fork-
head transcription factor FOXP3 is critical for the devel-
opment and function of Treg cells (89). Treg
(CD4+CD25+Foxp3+) cells are an important ‘self-check’
in the immune system and have been shown to be acti-
vated and expanded during helminth infection in mice
(90–92). A faster switch from a Th1 to a Th2/Treg
response was also found in resistant Suffolk lambs
compared to susceptible lambs (93).
The human T-cell response may be more functionally

diverse than previously thought. Pathogen stimulation of
na€ıve T cells may give rise to multiple T-cell subtypes, sug-
gesting that Th cell polarization could be the results of
preferential expansion of particular clones rather than
preferential priming (94). The implication of this for sheep
Th cell polarization remains to be determined.

Antibody response

The principal function of B cells is to make antibodies
(immunoglobulins) against antigens. The binding of an
antigen to a na€ıve B cell, coupled with the accessory sig-
nals from Th cells, stimulates lymphocytes to proliferate
and differentiate into plasma cells, which secrete large
amounts of antibodies. A number of antibodies isotypes
have been shown to be correlated with GIN resistance in
sheep, including IgA, IgG1 and IgE. IgA is produced
locally at mucosal surfaces, with serum IgA in sheep pre-
dominantly derived from the intestine. It is this isotype
that is most closely associated with intestinal mucosal
immune responses. Increased levels of IgA have been posi-
tively associated with resistance to T. circumcincta, regulat-
ing both worm length and fecundity (95–98). This
resistance is regulated through suppressed parasite growth,
development and fecundity and is mediated by IgA activ-
ity against 4th-stage larvae. In Scottish Blackface lambs,
the presence of arrested L4 larvae has been shown to be
positively associated with both worm burden and the size
of the local IgA immune response (12). Elevated levels of
both IgA and IgG were observed in Trichostrongylus colu-
briformis-challenged sheep (99).

Increased levels of IgG1 and IgE have also been nega-
tively correlated with FEC in Romney selection line sheep
in New Zealand (100–102), although IgE was positively
correlated with breech soiling (102). IgE mediates mast
cell, eosinophil and basophil degranulation in response to
GIN, and elevation of total and/or parasite-specific IgE
serum antibodies has been reported during infection with
H. contortus (103), T. colubriformis (104) and T. circum-
cincta (105, 106). In addition, an association between a
polymorphism at the 50 end of the sheep IgE gene and
resistance to T. colubriformis has been reported, although
attempts to confirm this finding in other flocks failed
(107). The host innate and adaptive immune response to
gastrointestinal nematode challenge in sheep is summa-
rized in Figure 1.
A significant number of activated antigen-specific B

cells and T cells persist after an antigen has been elimi-
nated, and these are known as memory cells. These cells
form the basis of immunological memory and can be reac-
tivated much more quickly than na€ıve lymphocytes and
usually provide lasting protective immunity.

DEVELOPMENT OF RESISTANCE TO GIN IN
SHEEP

Studies comparing na€ıve and previously infected animals
have shown that development of immunity to GIN is
associated with a predominantly Th2 response, character-
ized by an increase in Th2 cytokines, recruitment of eosi-
nophils, mast cells and globule leucocytes, and increased
production of parasite-specific IgA, IgG1 and IgE (108–
110) and summarized in Figure 1. However, there is con-
flicting evidence on whether a Th2 response can be used
to select resistant or susceptible animals. While an
increase in inflammatory cells and parasite-specific IgA
was generally inversely associated with H. contortus worm
burden and FEC in three breeds of sheep, mean values
were not found to differ between the resistant (Santa Ines)
and susceptible (Suffolk and Ile de France) breeds (111).
This is in contrast to a study comparing genetically resis-
tant with random-bred Merino lambs, which found resis-
tant lambs had increased IL-5 expression, increased IgG1
and IgE antibody production, and higher densities of
mucosal mast cells and eosinophils in response to H. con-
tortus infection (71). During repeated experimental infec-
tions with T. colubriformis, genetically resistant sheep were
also able to respond earlier than susceptible animals with
nematode-specific IgA and IgG2 (112). Resistant Barba-
dos Black Belly lambs have also been shown to develop a
more rapid Th2-type response than the susceptible INRA
401 lambs after a primary infection with H. contortus
(113). A differential interplay between Th1/Th2 and Treg
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genes has also been proposed to modulate the immune
response to GIN rather than a straightforward Th1 or
Th2 pathway (93) and failure to observe consistent gene
expression profiles between resistant and susceptible ani-
mals could be due to variation in response time between
studies. Additionally, multiple studies have suggested that
the mechanisms of resistance may vary between animals
with different genetic backgrounds, and may be parasite-
specific (111, 114).

CONCLUSION

The host–parasite interaction is a complex relationship
which determines the outcome of infection. Sheep GIN
display a variety of surface and excretory/secretory anti-
gens which can be stage specific. Such molecules trigger
the host’s immune response generally resulting in the
development of a protective immune response, although
the level of immunity is dependent on age, nutritional sta-
tus and genotype. Increased mucus and bioactive molecule
production, activation of mast cells, eosinophilia, polariza-

tion of the immune response to a Th2 response and the
production of anti-nematode antibodies are all associated
with the development of immunity. A protective immune
response can be considered an expression of resistance
and a detailed understanding of the genes and biological
mechanisms involved in protective immunity will aid the
development of nonchemical effective and sustainable
nematode control methods. Understanding the genetic and
molecular basis of disease resistance also has many advan-
tages and applications such as the development of novel
genetic markers for inclusion in genetic improvement
programmes.
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Figure 1 The immune response to gastrointestinal nematode challenge in sheep. Incoming larvae damage the intestinal mucosa which leads
to local inflammation and mast cell degranulation. Nematode antigens are taken up by antigen-presenting cells (APC) such as dendritic
cells and macrophages. These cells subsequently migrate to the regional lymph nodes where they present antigens to na€ıve T cells. T-cell
differentiation results in the release of Th2-associated cytokines and the recruitment of effector cells such as eosinophils and mast cells to
the site of infection. It also initiates the adaptive immune response and the production of nematode-specific antibodies by plasma cells.
Cytokines promoting a process are shown in bold.
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