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Abstract

Burkholderia pseudomallei is the causative agent for melioidosis. Because of its intracellular nature, the bacterium is capable of 
replicating within a plethora of eukaryotic cell lines. B. pseudomallei can remain dormant within host cells without symptoms 
for years, causing recrudescent infections. Here, we investigated the pathogenesis mechanism behind the suppression of T cell 
responses by B. pseudomallei. Peripheral blood mononuclear cells (1×106 cells/well) isolated by Ficoll Paque (Sigma- Aldrich) 
density gradient centrifugation were incubated with optimized concentrations of bacterial crude culture filtrate antigens (CFAs) 
(10 ug ml−1) and heat- killed bacteria [1 : 10 multiplicity of infection (m.o.i.)]. Following incubation, cells were investigated for 
surface expression of coinhibitory molecules by flow cytometry. We found that B. pseudomallei induced the upregulation of pro-
grammed death 1 (PD-1), a molecule responsible for T cell exhaustion, on T cells in vitro following exposure to crude CFAs of B. 
pseudomallei. This upregulation of PD-1 probably contributes to poor immune surveillance and disease pathogenesis.

INTRODUCTION
Burkholderia pseudomallei causes melioidosis, a deadly infec-
tious disease of humans and animals leading to significant 
mortality rates that is often reported from parts of Southeast 
Asia and northern Australia [1–3]. Over the past few decades, 
it has become a major focus of global concern [4, 5]. The 
intrinsic ability of B. pseudomallei to resist various antibiotics 
makes it less vulnerable to antibiotic therapy, meaning there 
is an urgent need to develop an effective vaccine against 
melioidosis [6]. B. pseudomallei, a category B bioterrorism 
agent [7], is acquired via inhalation of aerosolized bacteria, 
ingestion of contaminated water or by cutaneous inoculation 
[8]. Clinical manifestations include localized infections, with 
the lungs being the most commonly affected organ, followed 
by the liver and spleen [9]. Other protean manifestations, 
such as pneumonia and septic shock, are associated with high 
mortality rates. B. pseudomallei is a facultative intracellular 
pathogen that can invade, multiply and thrive within phago-
cytic and non- phagocytic cells [10–12]. This ability allows 

them to remain quiescent in the host, resulting in the recur-
rence of symptoms for several years after infection [13–15].

A recent study on a murine macrophage- like cell line showed 
that B. pseudomallei can combat host proteases in the phago-
some by releasing a serine protease inhibitor called ecotin [16]. 
This, together with the type 3 secretion system (T3SS), allows 
the bacteria to escape phagosomal killing by macrophages 
[17, 18]. Upon escape, the bacteria spread to surrounding cells 
and form multinucleated giant cells [19]. Another mechanism 
adopted by B. pseudomallei to escape phagocytosis is the 
induction of caspase-1- dependant cell death in macrophages 
[20]. However, stimulation of macrophages with IFN-γ 
notably enhances antibacterial ability, limiting the intracel-
lular survival of B. pseudomallei [21–23]. This is because 
macrophage- mediated killing requires optimal levels of IFN-γ 
via T cell and NK cell activation and inadequate levels would 
allow B. pseudomallei to escape innate immune responses 
[24, 25]. Since B. pseudomallei can evade macrophages, the 
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more versatile cell- mediated immunity (CMI) involving the 
expansion of T cells could be essential. The fact that clinical 
melioidosis samples show reduced T cell counts indicates 
that B. pseudomallei could be impairing T cell activation to 
evade immune surveillance [26, 27]. Nonetheless, the exact 
mechanism behind T cell suppression during melioidosis is 
poorly understood.

T cells are activated by dendritic cells (DCs) and the engage-
ment of co- signalling molecules on both the cells helps to 
positively (co- stimulation) and negatively (co- inhibition) 
regulate T cell activation. PD-1 receptor is found on the 
surface of CD4+ and CD8+ T cells and is upregulated within 
24–72 h of TCR stimulation [28]. Further engagement of 
PD-1 with its ligand(s) PD- L1/L2 inhibits T cell proliferation 
and cytokine secretion [29]. In an acute infection, such an 
inhibitory signal would limit the number of effector T cells 
during T cell expansion [30], whereas during chronic infec-
tion, due to persistent exposure to antigens, this interaction 
renders the T cells unresponsive, leading to T cell exhaustion 
[31]. Increasing evidence suggests that PD-1 has a role in the 
inhibition of effector T cell responses in persistent Mycobacte-
rium tuberculosis [32] and persistent viral infections [33–35], 
which we demonstrated in a murine model of persistent B. 
pseudomallei infection [36]. Upregulation of PD- L1 on poly-
morphonuclear neutrophils (PMNs) of melioidosis patients 
has been shown to impair T cell functions [37]. Nonetheless, 
there is no evidence to date regarding PD-1 upregulation on 
T cells following exposure to crude culture filtrate antigens 
of B. pseudomallei. Here, we investigated the pathogenesis 
mechanisms behind the suppression of T cell responses by 
B. pseudomallei.

METHODS
Ethical approval
All experiments involving humans were performed in 
accordance with the relevant guidelines and regulations 
and under examination by the Medical Ethics Committee 
(MEC) of University Malaya Medical Centre (UMMC), 
Kuala Lumpur, Malaysia (ref. no. 1017.23), and were 
conducted per the guidelines of the International Confer-
ence on Harmonization Guidelines and the Declaration of 
Helsinki. All individuals involved in the study were over 
18 years of age and provided informed consent to participate 
in the study.

Blood samples
Blood samples (10 ml) from healthy subjects at UMMC, 
Malaysia were collected in sodium heparin BD Vacutainers 
(BD Biosciences, Franklin Lakes, NJ, USA). Peripheral blood 
mononuclear cells were isolated within 8 h of phlebotomy by 
Ficoll Paque (Sigma- Aldrich) density gradient centrifuga-
tion. Cells were counted using the trypan blue exclusion 
method. PBMCs were seeded in six- well tissue culture plates 
at 1×106 cells/well.

Bacterial strains
Three bacterial strains were used: a clinical isolate of B. 
pseudomallei (THE), obtained from the spleen of a patient 
admitted to UMMC; a virulent environmental isolate, Burk-
holderia thailandensis (ATCC); and the K96243 strain (mouse 
spleen). The clinical isolate was identified as B. pseudomallei 
through its ability to grow on Ashdown agar, and also by 
molecular confirmation using groEL- specific primer for genus 
detection and mprA- specific primer for species characteriza-
tion. We also performed substrate utilization tests using the 
API20NE test according to the manufacturer’s instructions.

Twenty- four hour growth curves, colony- forming units 
(c.f.u.) ml−1 and multiplicity of infection (m.o.i.) were deter-
mined for all strains (data not shown). Heat inactivation of 
bacteria was performed as described previously [38–40]. 
Briefly, all strains were grown in Luria–Bertani (LB) broth 
and incubated overnight (37 °C at 200 r.p.m.) in the shaking 
incubator. The OD at 590 nm for each tube was checked the 
following day and all cultured tubes were adjusted to the same 
OD using phosphate- buffered saline (PBS). The samples were 
serially diluted and plated to determine the number of viable 
cells. The cells were harvested and washed twice using PBS. 
The bacterial suspension was heat- inactivated (HI) at 80 °C 
in 5 mM PBS (pH 7.3) in a water bath. The bacterial cells 
were harvested by centrifugation and resuspended in PBS and 
stored at 4 °C until use.

Extraction of culture filtrate antigens
Crude CFA was extracted as described previously [41]. Briefly, 
the strains were grown in LB broth. The culture was centri-
fuged at 20 000 g for 40 min. The supernatant was harvested 
and filtered through a 0.22 µM filter (Sartorius, Goettingen, 
Germany). The filtered supernatant was concentrated 50- fold 
using a Pierce Concentrator 9K (Thermo Scientific, USA). 
The protein content was estimated by Bradford assay against 
a bovine serum albumin (Biowest, USA) standard [42]. 
The preparations were stored at −20 °C until use. PBMCs 
(1×106 cells) were seeded into six- well plates and incubated 
with optimized concentrations of CFA (10 ug ml−1) and heat- 
killed bacteria (1 : 10 m.o.i.) for 36 h. Antigen- unexposed 
mock cells were used as a negative control, and cells stimu-
lated with phytohaemagglutin (PHA) (1.5 % v/v) were used 
as a positive control.

Flow cytometry
Following incubation with antigens, the cells were investi-
gated for surface expression of co- inhibitory receptors. All 
antibodies were pretitrated to determine appropriate working 
concentrations. Cells were stained with Fixable Viability Stain 
(FVS510, BD Biosciences; clone R35-95) and incubated for 
20 min. Monoclonal antibodies directed against CD3 (BD 
Biosciences clone UCHT1), CD4 (BD Biosciences clone SK7), 
CD8 (BD Biosciences clone SK1) and PD-1 (BD Biosciences 
clone MIH4), CTLA-4 (BD Biosciences clone BNI3) and 
TIM-3 (R and D Systems clone #344823) were added and 
incubated for 30 min. The samples were washed twice prior 
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to acquisition on a FACSCanto II Immunocytometry system 
(BD Biosciences) and the data were analysed using FlowJo 
software version 10 (Ashland, OR, USA).

Statistical analysis
Statistical analysis were performed using the non- parametric 
Kruskal–Wallis test using GraphPad Prism software version 
7. Differences were considered statistically significant at a P 
value of <0.05.

RESULTS
PD-1 was recently shown to be upregulated in persistent 
B. pseudomallei infections in mice [36], which nonetheless 
has not been proven in humans. Here, healthy PBMCs were 
exposed to B. pseudomallei and B. thailandensis antigens in 
vitro and, following 18 h of incubation, cells were assessed for 
PD-1 and TIM-3 expression. We found that PD-1 was signifi-
cantly upregulated upon exposure to HI B. pseudomallei strain 
THE compared to control, whereas B. pseudomallei strain K9 
and B. thailandensis did not alter PD-1 expression. Interest-
ingly, only CD4+ T cell subsets showed upregulated PD-1 
upon exposure to HI THE strain compared to both control 

and B. thailandensis (Fig. 1). However, the CFAs did not alter 
PD-1 expression on both the T cell subsets (Fig. 1c). Next, 
we investigated the expression of TIM-3 on both the T cell 
subsets. There was no statistical significance in TIM-3 expres-
sion when compared to control (Fig. 2). We also observed the 
CD4+ and CD8+ T cell numbers and observed that there was 
no significant change upon exposure to B. pseudomallei and 
B. thailandensis antigens (data not shown).

DISCUSSION
Recent research shows that the PD-1 pathway is emerging 
as an important mechanism exploited by many viruses and 
intracellular bacteria to dampen T cell responses [33–35]. We 
previously showed that PD-1 is highly upregulated during 
persistent B. pseudomallei infection in a murine model [36]. 
Although animal studies allow a closer approximation to 
human responses, we sought to validate if such PD-1 upregu-
lation is translated in humans. We used PBMCs derived from 
healthy donors to provide a better understanding of immune 
responses during human melioidosis. The inclusion of the 
closely related non- virulent species B. thailandensis in our 
study helped to illustrate the prominence of PD-1 upregulation 

Fig. 1. PD-1 expression upon exposure to HI bacteria. Peripheral blood mononuclear cells from healthy controls were stimulated in vitro 
with HI whole bacteria at an m.o.i. f 1 : 10 from the strains THE, B. thailandensis and K96243. (a) Gating strategy used for identifying T cell 
subsets. All gates were set using appropriate isotype controls. (b) PD-1 expression in CD4+ and CD8+ T cells following 18 h incubation 
with HI bacteria and culture filtrate antigen. Statistical analysis was performed using the Kruskal–Wallis test. P*<0.0125, P**<0.0025, 
P***<0.00025 with four Bonferroni comparisons. (c) An overlay histogram plot comparing mean fluorescence intensities of PD-1 in HI 
THE exposed and antigen- unexposed mock PBMCs. The data presented are representative of four individual experiments (n=4).
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by virulent B. pseudomallei. Our findings showed that PD-1 is 
significantly upregulated by HI B. pseudomallei in vitro. The 
fact that PD-1 upregulation was seen in CD4+ T cells alone 
is contradictory to our recent reports on a mouse model, 
where both CD4+ and CD8+ T cells showed significant PD-1 
upregulation [43]. However, previous studies have shown that 
CD4+ T cell proliferation alone was inhibited upon exposure 
to human PMNs pulsed with B. pseudomallei antigens [37]. 
We infer that the CD4+ phenotype of the T cells is impor-
tant for host resistance against melioidosis in humans [37]. 
According to our results, only HI whole bacteria led to PD-1 
upregulation and not culture filtrate antigen. B. pseudomallei 
is known to enter a viable but non- culturable (VBNC) state 
in response to environmental stress [44–46]. The incubation 
of B. pseudomallei at high temperatures for heat inactivation 
would have led them to enter a VBNC state and a possible 
resuscitation upon culturing with PBMCs would have allowed 
them to regain their ability to cause infection. However, the 
K96243 isolate did not cause any changes to PD-1 expression. 
It is unclear why these two strains of B. pseudomallei elicit 
varying degrees of T cell responses. The co- expression of 
PD-1 and TIM-3 has previously been reported in chronic viral 
infections [47, 48] and in M. tuberculosis infection [49, 50]. We 
investigated the possibility of PD-1 and TIM-3 co- expression 
in PBMCs exposed to B. pseudomallei and found that no T 
cells expressed TIM-3. Our study points to the likely role 
of PD-1 in regulating immune responses, especially those 
involving T cells in melioidosis, and supports the adoption 
of strategies to target PD-1 for developing newer therapeutic 
molecules for use in clinical treatment of melioidosis.
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