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Abstract Heritable variation in gene expression forms a crucial bridge between genomic

variation and the biology of many traits. However, most expression quantitative trait loci (eQTLs)

remain unidentified. We mapped eQTLs by transcriptome sequencing in 1012 yeast segregants.

The resulting eQTLs accounted for over 70% of the heritability of mRNA levels, allowing

comprehensive dissection of regulatory variation. Most genes had multiple eQTLs. Most expression

variation arose from trans-acting eQTLs distant from their target genes. Nearly all trans-eQTLs

clustered at 102 hotspot locations, some of which influenced the expression of thousands of genes.

Fine-mapped hotspot regions were enriched for transcription factor genes. While most genes had a

local eQTL, most of these had no detectable effects on the expression of other genes in trans.

Hundreds of non-additive genetic interactions accounted for small fractions of expression variation.

These results reveal the complexity of genetic influences on transcriptome variation in

unprecedented depth and detail.

DOI: https://doi.org/10.7554/eLife.35471.001

Introduction
Differences in gene expression among individuals arise in part from DNA sequence differences in

regulatory elements and in regulatory genes. Regions of the genome that contain regulatory variants

can be identified by tests of genetic linkage or association between mRNA levels and DNA polymor-

phisms in large collections of individuals. Regions for which such tests show statistical significance

are known as eQTLs (Albert and Kruglyak, 2015). Regulatory variation is widespread in the species

for which it has been studied; indeed, in humans, the expression of nearly every gene appears to be

influenced by one or more eQTL (Aguet et al., 2017; Battle et al., 2014).

In humans, eQTLs are typically mapped by genome-wide association studies (GWAS) in unrelated

individuals. To cover the genome, human GWAS must test a very large number of variants, resulting

in a high multiple-testing burden and low statistical power. As a result, most human eQTL GWAS

have been limited to searches for ‘local’ eQTLs that are located close to the genes they influence

(GTEx Consortium, 2015; Lappalainen et al., 2013). The power to detect local eQTLs is higher

because focused local tests reduce the multiple-testing burden, and because local eQTLs tend to

have larger effect sizes. However, genome-wide estimates show that most regulatory variation does

not arise from local eQTLs. Instead, it arises from ‘distant’ eQTLs, which are located far from the

genes they influence, typically on different chromosomes, and which exert their effects through

trans-acting factors (Grundberg et al., 2012; Wright et al., 2014). Although trans-acting human

eQTLs have been discovered (Aguet et al., 2017; Battle et al., 2014; Brynedal et al., 2017;

Fehrmann et al., 2011; Grundberg et al., 2012; Heinig et al., 2010; Lee et al., 2014; Small et al.,
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2011; Wright et al., 2014; Yao et al., 2017), the vast majority remains unknown. As a consequence,

we know relatively little about this crucial source of regulatory genetic variation.

In model organisms, eQTLs can be identified by linkage analysis in panels of offspring obtained

from crosses of genetically different individuals (Brem et al., 2002). Whereas GWAS studies are

powered to test only genetic variants found at high frequency in the population (e.g. [Kita et al.,

2017]), linkage studies can assay both common and rare variants that differ between the parental

strains. In addition, longer blocks of linkage reduce the number of statistical tests required to cover

the genome. As a result, many local and distant eQTLs have been discovered in such studies. How-

ever, even in linkage studies, sample size limitations have to date resulted in insufficient statistical

power to detect most eQTLs. This limitation has manifested itself as ‘missing heritability’: detected

eQTLs tend to account for only a fraction of the measured heritable component of gene expression

variation. Here, we addressed this limitation by carrying out an eQTL study in a large panel of segre-

gants from a cross between two yeast strains. The high power of our study allowed us to identify

eQTLs that account for the great majority of heritable expression variation in this cross, and to char-

acterize the distant component of regulatory variation in unprecedented depth and detail.

Results

Deep eQTL mapping explains most gene expression heritability
We developed an experimental pipeline for high-throughput generation of RNA-seq data in yeast

and obtained high-quality expression measurements (Source data 1 and Source data 2) for 5720

genes in 1012 segregants from a cross between a laboratory and a wine strain (hereafter, BY and

RM, respectively). We obtained high-confidence genotypes at 11,530 variant sites from low-cover-

age whole-genome sequences of the segregants (Bloom et al., 2013) (Source data 3). We used the

genotype and RNA-seq data for eQTL mapping and identified 36,498 eQTLs for 5643 genes at a

false discovery rate (FDR) of 5% (Source data 4). Only 77 genes had no detected eQTL. Among the

genes with at least one detected eQTL, the median number was 6, with a maximum of 21

(Figure 1A; Supplementary Discussion 1 describes the five genes with 21 eQTLs). Previous eQTL

mapping in 112 segregants from this cross detected an average of less than one eQTL per gene as a

consequence of much lower statistical power (Brem et al., 2002; Smith and Kruglyak, 2008). That

eLife digest Every individual’s genome is unique, with variations in the DNA sequence at many

thousands of points. Each difference is a change in one or more ‘letters’ of the DNA code. Some of

these DNA letter variations have consequences for the way the individual looks or behaves. They

can influence these traits either by changing the sequence of a protein encoded by a gene; or by

changing when, where or how much a gene is active.

Studying how individual differences in the DNA influence gene activity requires a very large

amount of data on many individuals within a species. Only recently have such large datasets become

available. These have made it possible to study these regulatory differences in unprecedented

detail.

Albert, Bloom et al. set out to map as many regulatory genetic variants as possible in budding

yeast – a popular model organism used in many branches of science. The approach involved

measuring how active every gene in the genome was, and which genetic variants influenced whether

each gene’s activity was turned up or down, in more than 1,000 different strains of yeast. Thousands

of regions of the DNA turned out to influence regulation of genes. The analysis revealed that almost

every gene is influenced by a complex set of regulatory regions all over the genome. Some hotspot

regions were found to influence thousands of genes at once.

The findings provide the most complete set of data for studying the effects of variation in DNA

sequence on genetic regulation in any species, and can act as a model for researchers to carry out

similar experiments in other species. Ultimately, these results could help understand exactly how

differences in genome sequence help to make individuals unique.

DOI: https://doi.org/10.7554/eLife.35471.002
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data set was used to obtain indirect estimates of the distribution of the number of eQTLs per gene

(Brem and Kruglyak, 2005), and these agree closely with the distribution of directly detected eQTLs

observed in the current study. For example, Brem and Kruglyak (Brem and Kruglyak, 2005) esti-

mated that at most 3% of genes would be influenced by a single eQTL (we observed 2.6% of such

genes), and half of genes would require >5 eQTLs (we observed a median of 6 eQTLs per gene).

While Brem and Kruglyak estimated that one third of genes would require more than 8 eQTLs, we

observed only 23% such genes. Additional eQTLs of very small effect missed by our study likely

account for this discrepancy. The observed distribution of the number of loci also closely matched

Figure 1. eQTL detection and transcriptome heritability. (A) Histogram showing the number of eQTLs per gene. (B) Most additive heritability for

transcript abundance variation is explained by detected eQTLs. The total variance explained by detected eQTLs for each transcript (y-axis) is plotted

against the additive heritability (h2). The diagonal line represents a scenario under which the variance explained by eQTLs exactly matches the

heritability. (C) Power to detect eQTLs as a function of effect size, and distributions of observed local and distant eQTL effects. The black curve

corresponds to the statistical power (right y-axis) for eQTL detection at a genome-wide significance threshold. Colored areas show the density of

individual significant eQTLs (left y-axis) that explain a given fraction of phenotypic variance (x-axis) for distant (blue) and local (red) eQTLs. Note that the

x-axis is truncated at 20% variance explained to aid visualization of smaller effects, and omits a long tail of few eQTLs with large effects. (D) Histogram

showing the fraction of h2 explained by the sum of the eQTLs for each gene.

DOI: https://doi.org/10.7554/eLife.35471.003

The following figure supplements are available for figure 1:

Figure supplement 1. Mean additive heritability across all transcripts as a function of downsampling the total number of reads per sample.

DOI: https://doi.org/10.7554/eLife.35471.004

Figure supplement 2. Heritability (h2) compared to other measures.

DOI: https://doi.org/10.7554/eLife.35471.005
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the distribution we reported for loci influencing 160 protein levels studied with the highly powered

X-pQTL approach (Albert et al., 2014b). Our results provide direct demonstration that variation in

expression levels of nearly all genes has a complex genetic basis.

We used our data to estimate the additive heritability of the expression level of each gene (i.e.

the fraction of expression variance attributable to genetic factors; Figure 1—figure supplement 1;

Source data 5). We observed a median heritability of 26%, with a maximum of 95% (Figure 1B).

Our estimates are similar to those from population-based studies of gene expression in humans

(Grundberg et al., 2012; Lloyd-Jones et al., 2017; Wheeler et al., 2016; Wright et al., 2014). The

estimates are lower than heritabilities typically seen for organismal traits in this yeast cross

(Bloom et al., 2013, 2015), suggesting a greater contribution of environmental and stochastic fac-

tors to gene expression variation. Across genes, heritability was positively correlated with mean

expression and with expression variance, and negatively correlated with the number of protein-pro-

tein and synthetic genetic interaction partners, as well as with gene essentiality (p�0.005) (Figure 1—

figure supplement 2; Supplementary Discussion 2 and 3; Supplementary file 1; Source data 6).

In contrast to previous eQTL studies, the detected eQTLs explained most of the estimated addi-

tive gene expression heritability (a median across genes of 71.5%) (Figure 1B and D 10-fold cross-

validation). Low missing heritability in our data is explained by the high power of our experiment.

We had greater than 90% power to detect eQTLs that explain at least 2.5% of expression variance

(Figure 1C). The distribution of effect sizes of detected eQTLs is strongly weighted toward small

effects (median 1.9% of variance explained; Figure 1C), suggesting that the remaining missing heri-

tability is explained by undetected eQTLs with even smaller effects. These results are similar to those

observed for organismal traits in this cross (Bloom et al., 2013, 2015). Thus, we have discovered

most eQTLs with substantial effects that segregate in this cross, and these jointly account for the

great majority of the observed genetic variation in the transcriptome.

Genetic expression variation arises primarily from trans-acting hotspots
We found that 2884 genes (50% of 5720 expressed genes) had a local eQTL (defined as an eQTL

whose confidence interval includes the gene it influences) at genome-wide significance (Figure 2A).

This number rose to 4241 genes (74% of expressed genes) when we performed eQTL analysis with

Figure 2. Contribution of local and distant eQTLs to expression variance. (A) A stacked barplot showing for each gene with at least one eQTL the

amount of phenotypic variance from local and distant eQTLs. Genes are sorted first by the amount of variance from the local eQTL, followed by the

amount of variance from the strongest distant eQTL. (B) Violin plots of the distributions of fractions of phenotypic variance explained by summed local

and distant eQTLs, respectively. This panel was generated using genes with at least one local and one distant eQTL.

DOI: https://doi.org/10.7554/eLife.35471.006

The following figure supplements are available for figure 2:

Figure supplement 1. Allele-specific expression (ASE) compared to local eQTL effects.

DOI: https://doi.org/10.7554/eLife.35471.007

Figure supplement 2. Power to detect allele-specific expression.

DOI: https://doi.org/10.7554/eLife.35471.008
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only one nearby marker per gene in order to reduce the multiple testing burden (FDR < 5%). Thus,

the single pair of yeast isolates used here harbors sufficient local regulatory variation to alter the

expression of more than half the genes in the genome. Comparisons with allele-specific expression

data (Albert et al., 2014a) support previous results (Doss et al., 2005; Ronald et al., 2005) that

most but not all local eQTLs act in cis (Figure 2—figure supplement 1, Figure 2—figure supple-

ment 2, Supplementary Discussion 4; Supplementary files 2, 3 and 4; Source data 7).

The vast majority of the genome-wide significant eQTLs did not overlap the genes they influ-

enced (92%; 33,529 of 36,498); indeed, 86% were located on a different chromosome. Nearly every

expressed gene (98%; 5606) had at least one such distant, trans-acting eQTL (Figure 2A). The indi-

vidual effect sizes of the trans eQTLs were smaller than those of local eQTLs (median variance

explained 2.8-fold less, T-test p<2.2e-16; Figure 1C). However, for the 2846 genes that had both a

local eQTL and at least one distant eQTL, the aggregate effect of the distant eQTLs per gene was

larger than that of the local eQTL (median 2.6-fold more variance explained; paired T-test p<2.2e-

16; Figure 2B). Distant eQTLs accounted for the majority of eQTL variance for 85% of genes. Our

results directly demonstrate the importance of trans acting variation.

The trans eQTLs were not uniformly distributed across the genome (Figure 3A). Instead, they

clustered at 102 hotspot loci, each of which affected the expression of many genes (Brem et al.,

2002; Ghazalpour et al., 2008; Orozco et al., 2012) (Figure 3B). These hotspots contained over

90% of all trans eQTLs. The eQTLs that mapped outside of the hotspots also clustered more than

expected by chance (randomization p<0.001), suggesting the existence of additional hotspots that

affect the expression of too few genes to pass the stringent criteria used to define the set of 102.

Isolated trans-acting loci that affect the expression of one or a few genes appear to be uncommon.

The 102 hotspots affected a median of 425 genes, ranging from 26 (a newly discovered hotspot

at position 166,390 bp on chromosome III) to 4594 at the previously reported MKT1 hotspot

(Zhu et al., 2008) (82% of 5629 genes with any signal at a hotspot; Figure 3B). Three additional hot-

spots each affected more than half of all genes. They include a previously described hotspot at the

HAP1 gene (Brem et al., 2002) (3640 genes affected), as well as two newly detected hotspots on

chromosome XIV. A hotspot at 372,376 bp affected 4172 genes and is likely caused by a variant that

recently arose in the KRE33 gene in the RM parent used in our cross (Jerison et al., 2017). A hot-

spot at position 267,161 bp affected 3169 genes and spans the genes GCR2, YNL198C, WHI3 and

SLZ1. These results indicate that hotspots can have extraordinarily wide-reaching effects on the tran-

scriptome, with some influencing the expression of the majority of all genes.

Widespread effects caused by single loci likely arise from a cascade of effects in which strong pri-

mary effects spread through the cellular regulatory network. For example, the BY allele of the tran-

scriptional activator HAP1 carries a transposon insertion that reduces HAP1 function. As expected,

the BY allele strongly reduced the expression of known transcriptional targets of HAP1: 26 out of

the 69 HAP1 targets present in our data were among the 50 genes with the largest reduction in

expression in segregants carrying the BY allele of HAP1 (p<2.2e-16, odds ratio = 138). In total, only

75 direct transcriptional HAP1 targets are known. Unless previous work missed thousands of HAP1

targets, the vast majority of the 3640 trans eQTLs at HAP1 must reflect indirect, secondary conse-

quences of the direct transcriptional effects. HAP1 is an activator of genes involved in cellular respi-

ration. Thus, the many secondary effects of the BY HAP1 allele on gene expression may be

mediated by cellular responses to altered metabolism arising from reduced respiration.

Our Supplementary Files and Datasets provide detailed information about each hotspot.

Source data 8 contains a table that gives an overview of the hotspots, including their location,

genes affected (details in Source data 9), and analyses of function (details in Source data 10) and

transcriptional regulation (details in Source data 11) of the target genes of each hotspot.

Supplementary file 5 visually represents each hotspot region, and Supplementary file 6 displays

gene networks formed by the strongest target genes of each hotspot.

Causal genes underlying hotspots
Functional analysis of eQTL hotspots requires identification of the underlying causal genes, which

has been challenging to do systematically. We developed a multivariate fine-mapping algorithm that

narrows hotspot positions by leveraging information across the genes that map to each hotspot

(Materials and methods). Briefly, we used all genes with an eQTL on a given chromosome and

regressed out genetic factors on all other chromosomes and additional non-genetic factors. We
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Figure 3. Locations of eQTLs in the genome. (A) Map of local and distant eQTLs. The genomic locations of eQTL peaks (x-axis) are plotted against the

genomic locations of the genes whose expression they influence (y-axis). The strong diagonal band corresponds to local eQTLs. The many vertical

bands correspond to eQTL hotspots. Point size is scaled as a function of eQTL effect size, measured in fraction of phenotypic variance explained. (B)

Figure 3 continued on next page
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reduced the dimensionality of the residual expression levels by singular value decomposition to cap-

ture linear combinations of traits that account for most of the variance in residual expression. We

scanned the given chromosome for genetic influences on the multivariate distribution of these linear

combinations, while controlling FDR via permutations. Finally, we used bootstraps to compute confi-

dence intervals for hotspot locations (Figure 4 and 5).

With this approach, we resolved the locations of 26 hotspots to regions containing three or fewer

genes (a total of 58 genes; Figure 4A). Three hotspots contained exactly one gene (GIS1, STB5, and

MOT3). We previously identified and experimentally confirmed the causal genes at several major

hotspots (MKT1 (Zhu et al., 2008), HAP1 (Brem et al., 2002), IRA2 (Smith and Kruglyak, 2008),

GPA1 (Yvert et al., 2003), and the mating-type locus [Brem et al., 2002]). These were all correctly

localized by the algorithm, validating this fine-mapping strategy.

The 58 genes at 26 high-resolution hotspots are highly enriched for the causal genes underlying

the hotspots, making it possible to systematically study the functions of hotspot regulators. These

genes were less likely to be essential or to have a human homolog than other yeast genes but did

not differ from other genes in their expression level or the number of physical or genetic interaction

partners (Supplementary file 7). The hotspot genes had highly significant enrichments for gene

ontology (GO) terms related to transcriptional regulation (e.g. GO:0006357 ‘regulation of transcrip-

tion from RNA polymerase II promoter’: 19 genes among the 58; 4 expected; p=4e-9; Figure 4—fig-

ure supplement 1; Source data 12), as well as weaker enrichments for terms related to response to

nutrient levels (GO:0031669; ‘cellular response to nutrient levels’: 8 genes, 1 expected, p=6e-6)

These analyses indicate that causal hotspot genes are disproportionately involved in transcrip-

tional regulation, a signal that was not picked up in an earlier study with fewer, less-well-resolved

hotspots (Yvert et al., 2003). For example, we fine-mapped a new hotspot that affected 382 genes

to a single gene, the transcription factor STB5 (Figure 4B). STB5 is a transcriptional activator of mul-

tidrug resistance genes (Kasten and Stillman, 1997). A previous analysis suggested reduced activity

of the STB5 BY allele compared to the RM allele (Lee and Bussemaker, 2010). Consistent with this

observation, we found that the promoters of genes whose expression was lower in the presence of

the STB5 BY allele were strongly enriched for STB5 binding sites (Figure 4C).

To further examine the role of sequence variation in transcription factor genes, we focused on

transcription factors with variants predicted to be damaging to protein function such as premature

stop codons or frameshifts. There are eight such genes in our data. Remarkably, six of these (GAT1,

HMS1, PUT3, RFX1, SRD1, TBS1) were located in a hotspot, often very close to the estimated peak

location (Figure 4—figure supplement 2). None of these expression hotspots have been reported

previously, although variation at GAT1 has been reported to influence traits relevant for wine pro-

duction (Salinas et al., 2012), and a premature stop codon in the RM allele of RFX1 has been linked

to reduced activity of this transcriptional repressor (Lee and Bussemaker, 2010). The remaining two

transcription factors with predicted damaging mutations did not overlap a hotspot. Of these, a pre-

dicted frameshift in YRM1 is very close to the end of the coding region, while a predicted frameshift

in STB4 appears to be an annotation artifact: it resides in a region that is annotated as coding but

that does not in fact appear to be transcribed (Figure 4—figure supplement 3, [Albert et al.,

2014a]).

Hotspot genes can also influence mRNA levels more indirectly – for instance, by shaping the cel-

lular response to external stimuli such as nutrient availability. For example, we fine-mapped a hot-

spot, which influenced 645 genes, to an interval on chromosome VIII containing six genes

(Figure 4—figure supplement 4A). One of these is ERC1, which encodes a transmembrane trans-

porter. BY but not RM carries a frameshift in this gene, which removes the last two out of 12 pre-

dicted transmembrane helices of the protein (Fehrmann et al., 2013). This variant is known to

reduce cell-to-cell variability (or ‘noise’) in the expression of a MET17 gene tagged with green fluo-

rescent protein (Fehrmann et al., 2013). We found that the BY allele at this hotspot reduced the

Figure 3 continued

The number of gene expression traits linking to each of 102 identified eQTL hotspots (Methods) are shown as vertical bars. Text labels identify genes in

hotspots referred to in the text.

DOI: https://doi.org/10.7554/eLife.35471.009
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Figure 4. Genes located in hotspot regions. (A) Histogram showing the number of genes located in the hotspot regions. (B) A hotspot on chromosome

VIII maps to the gene STB5. From top to bottom: the general region on the chromosome, the empirical frequency distribution of hotspot peak

locations from 1000 bootstrap samples (Materials and methods), locations of BY/RM sequence variants (red: variants with ‘high’ impact such as

premature stop codons (McLaren et al., 2016); orange: ‘moderate’ impact such as nonsynonymous variants; grey: ‘low’ impact such as synonymous or

intergenic variants), and gene locations. The light blue area shows the 95% confidence interval of the hotspot location as determined from the

bootstraps. The red line shows the position of the most frequent bootstrap marker. (C) Genes for which the BY allele at the STB5 hotspot is linked to

lower expression are enriched for STB5 transcription factor (TF) binding sites in their promoter regions. The figure shows enrichment results for all

annotated TFs (grey dots), with the strength of enrichment (odds ratio) on the x-axis vs. significance of the enrichment on the y-axis. The STB5 result is

highlighted in red.

DOI: https://doi.org/10.7554/eLife.35471.010

The following figure supplements are available for figure 4:

Figure supplement 1. Gene ontology (GO) enrichments of genes located in hotspots.

DOI: https://doi.org/10.7554/eLife.35471.011

Figure supplement 2. Hotspots at six transcription factor genes with damaging mutations.

DOI: https://doi.org/10.7554/eLife.35471.012

Figure supplement 3. mRNA and translation at STB4.

DOI: https://doi.org/10.7554/eLife.35471.013

Figure supplement 4. The ERC1 hotspot.

DOI: https://doi.org/10.7554/eLife.35471.014
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expression of genes that are highly enriched for the GO category ‘methionine biosynthetic process’

(GO:0009086, p=2e-22; Source data 8 and Source data 10). Thus, in addition to reducing MET17

expression noise, the ERC1 frameshift variant is linked to reduced mean expression levels of multiple

genes in the methionine biosynthesis pathway (the MET regulon; Figure 4—figure supplement 4B).

While the precise compounds that are imported or exported by Erc1p are not known, the ERC1 BY

allele reduces cellular levels of S-Adenosylmethionine (SAM) (Breunig et al., 2014), a key compo-

nent of methionine and cysteine amino acid metabolism (Sadhu et al., 2014). The ERC1 BY allele

may down-regulate the MET regulon via its effects on SAM, triggering further transcriptional

changes in hundreds of genes.

Relationship of local eQTLs and trans eQTLs
Most known causal variants underlying yeast eQTL hotspots are coding (HAP1 (Brem et al., 2002),

MKT1 (Zhu et al., 2008), GPA1, AMN1 (Yvert et al., 2003), SSY1 (Brown et al., 2008);

[Fay, 2013]); however, change in the expression of a trans-acting factor by a local eQTL is another

plausible causal mechanism (Sudarsanam and Cohen, 2014; Yao et al., 2017). We found that a

higher proportion of hotspots contained genes with a local eQTL than expected by chance

(p=0.007; Figure 5A). The median effect size of the strongest local eQTL in these hotspots was

larger than expected (p=0.003). These enrichments are consistent with some hotspots being caused

by local eQTLs that alter the expression of a gene located at the hotspot position, which in turn

leads to changes in the other transcript levels that map to the hotspot.

On the other hand, the majority of local eQTLs (60%) did not overlap any of the hotspots. Evi-

dently, the expression changes caused by these local eQTLs did not in turn lead to detectable trans

effects on many unlinked genes, within the limits of our statistical power.

Figure 5. Relationship of local eQTLs and distant eQTL hotspots. (A) The fraction of hotspots that contain a genome-wide significant local eQTL. The

black histogram shows the distribution observed in 1000 random, size-matched regions of the genome. Because of the high number of local eQTLs,

most hotspots are expected to contain a local eQTL even by chance. The observed fraction (red line) still exceeds this random expectation. (B)

Distribution of trans eQTLs at local eQTLs outside of hotspot regions. The genome was divided into non-overlapping bins centered on local eQTLs that

did not overlap a hotspot. We counted the number of trans-eQTL peaks in each bin. The figure shows the frequency of bins with a given number of

trans-eQTLs. The distribution observed in real data is shown by red lines, and distributions obtained in 1000 randomizations of trans-eQTL positions is

show by clouds of black circles. The inset shows the observed less the expected frequency for each bin. Error bars indicate the 95% range from the

randomizations.

DOI: https://doi.org/10.7554/eLife.35471.015
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To quantify this observation further, we focused on ‘non-hotspot’ local eQTLs that did not overlap

a hotspot and asked how they related to the 10% of non-hotspot trans eQTLs that did not overlap a

hotspot. We created non-overlapping genomic bins, each centered on a non-hotspot local eQTL.

We then counted how many non-hotspot trans eQTL peaks fell into these bins (Figure 5B). The

resulting distribution roughly matched the distribution expected if non-hotspot trans peaks occurred

at random locations. To the extent that the distribution differed from random, we found an excess

of bins with six or more trans eQTLs (p<0.001). There was also an excess of bins with zero trans

peaks (p<0.001). This class comprised the great majority of the distribution (Figure 5B). The genetic

architecture that is most consistent with these observations is one in which some local eQTLs are

accompanied by multiple trans eQTLs, while most local eQTLs have no detectable trans consequen-

ces on the expression of other genes.

Even when the causal gene in a hotspot has a local eQTL, it does not automatically follow that

this is the causal mechanism. For example, STB5 and ERC1 each had a local eQTL. However, STB5

did not show allele-specific expression, and while there was weak allele-specific expression for

ERC1, it was in the opposite direction of the local ERC1 eQTL (Source data 7). Therefore, these

local eQTLs are unlikely to be caused by cis-acting variants.

STB5 and ERC1 carry protein-altering variants between BY and RM, including the known causal

ERC1 frameshift in BY. Altered protein activity due to these coding variants may be responsible for

the many distant linkages to these hotspots and may also cause the observed local eQTLs in trans,

as previously shown for AMN1 (Ronald et al., 2005). The Stb5p transcription factor is predicted to

target its own promoter (MacIsaac et al., 2006), such that its altered activity could influence its own

expression. For the transmembrane transporter encoded by ERC1, the local eQTL might reflect a

more indirect mechanism. For each of these hotspots, it seems plausible that a change in protein

function, rather than change in gene expression, underlies the hotspot.

Genetics of mRNA vs. protein levels
The degree to which mRNA-based eQTLs also affect the protein levels of their target genes is a fun-

damental open question (Battle et al., 2015; Chick et al., 2016; Foss et al., 2007;

Ghazalpour et al., 2011; Picotti et al., 2013) that has been difficult to resolve as a consequence of

low statistical power in eQTL and protein QTL (pQTL) studies. Low power is expected to lead to

poor overlap between eQTLs and pQTLs solely as a result of high false-negative rates. We compared

our eQTLs to pQTLs that we had identified earlier for 160 proteins using a powerful bulk segregant

approach (Albert et al., 2014b) (Source data 13). Here, we present results comparing the distant

QTLs in both datasets because – by design of our earlier study – the set of distant pQTLs is much

larger than the set of local pQTLs. Results for local QTLs are broadly consistent with those for distant

QTLs (Supplementary Discussion 5).

Distant pQTLs clustered at hotspots, which broadly mirrored the mRNA hotspots identified here

(Figure 6A). However, differences in hotspot architecture exist. For example, a hotspot on chromo-

some II showed strong pQTL effects (Albert et al., 2014b) but only weak effects on mRNA levels for

the same genes, none of which rose to genome-wide significance.

In order to avoid downward bias in the overlap between eQTLs and pQTLs caused by false nega-

tives, we focused on strong QTLs in each dataset and asked if they overlapped a significant QTL in

the other dataset (Materials and methods; see Supplementary Note 5 for results based on all distant

QTLs). Of the 236 strongest eQTLs, 47% (111) overlapped a pQTL for the same gene. Of the 218

strongest pQTLs, 50% (108) overlapped an eQTL for the same gene. As a more sensitive alternative

to QTL overlap analyses, we computed estimates of agreement based on the p1 statistic

(Storey and Tibshirani, 2003). Of the strong eQTLs, 92% were estimated to match a pQTL. Of

strong pQTLs, 63% were estimated to match an eQTL. Thus, while nearly all eQTLs with strong

effects on mRNA levels also affect protein levels for the same gene, a larger fraction of strong

pQTLs appear to be specific to protein levels.

Strong eQTLs without a pQTL clustered primarily at the HAP1 and MKT1 hotspots

(Supplementary file 8; Figure 6B). These two hotspots also showed the clearest examples of over-

lapping eQTLs and pQTLs with opposite direction of effect on the same genes (Supplementary file

9; Figure 6C). Thus, while these hotspots influence both mRNA and protein levels of many genes,

their effects on mRNA vs. protein levels of a given gene can be quite different. Strong pQTLs with-

out an eQTL were more widely distributed across the genome (Supplementary file 10; Figure 6D).
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Detection of non-additive eQTL interactions from a genome-wide
search
The contribution of non-additive or ‘epistatic’ genetic interactions to trait variation is a topic of

ongoing debate (Hill et al., 2008; Mackay, 2014; Mäki-Tanila and Hill, 2014). In particular, demon-

stration of non-additive effects on human gene expression has been challenging (Becker et al.,

Figure 6. eQTLs and pQTLs. (A) Distant eQTL and pQTL hotspots. The figure shows the fraction of 154 genes (Albert et al., 2014b) that have an eQTL

or pQTL in a given bin along the genome. eQTLs from the current dataset are shown in the upper half of the figure, and pQTLs from (Albert et al.,

2014b) are shown in the bottom half with an inverted scale. Chromosome III is omitted from the figure because no pQTLs can be detected on this

chromosome due to the experimental design of (Albert et al., 2014b). (B–D) Comparison of individual distant eQTLs and pQTLs. Each panel shows

the effect size of linkage of mRNA levels for a given gene to a given genomic position (x-axis; correlation coefficient between mRNA level and marker

genotype) compared to the effect size of linkage of protein levels for the same gene to the same genomic position (y-axis; difference in frequency of

the BY allele between segregant pools with high and low expression of the protein [Albert et al., 2014b]). Positive values indicate higher expression in

RM compared to BY. Only distant QTLs located on different chromosomes than their target gene are shown. (B) All distant eQTLs, irrespective of

significance in pQTL data. Dot size scales as a function of eQTL effect size. Red circles: eQTLs that overlap a significant pQTL. Blue circles: strong

eQTLs that do not overlap a pQTL (Supplementary file 8); extreme cases are indicated by QTL location and the name of the affected gene. (C)

Overlapping significant eQTLs and significant pQTLs. Blue circles: overlapping QTLs with different direction of effect (Supplementary file 9); extreme

cases are indicated. (D) All distant pQTLs, irrespective of significance in eQTL data. Dot size scales as a function of pQTL effect size. Red circles: pQTLs

that overlap a significant eQTL. Blue circles: strong pQTLs that do not overlap an eQTL (Supplementary file 10); extreme cases are indicated.

DOI: https://doi.org/10.7554/eLife.35471.016
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2012; Brown et al., 2014; Buil et al., 2015; Fish et al., 2016; Hemani et al., 2014; Wood et al.,

2014). Although clear examples of epistasis have been revealed for yeast gene expression

(Brem and Kruglyak, 2005; Storey et al., 2005), the limited power of earlier studies had necessi-

tated targeted search strategies rather than a full genome-by-genome scan.

We reasoned that the high power of our current dataset should permit a more unbiased view of

the contribution of epistasis to mRNA expression variation. We carried out a genome-by-genome

scan for non-additive interaction effects on the expression levels of all genes and detected 387

eQTL-eQTL interactions influencing 306 genes (FDR = 10%; Source data 14). To our knowledge,

this is the first unequivocal identification of eQTL interactions from an unbiased genome-by-genome

scan. Targeted scans with a reduced multiple testing burden identified larger numbers of interacting

pairs of loci: a total of 784 from a scan for interactions between genome-wide significant additive

eQTLs and the genome, and a total of 1464 interactions between significant additive eQTLs.

We examined the 387 eQTL-eQTL interactions detected in the genome-wide scan in more detail.

The locations of interacting eQTLs clustered at certain positions in the genome, generally overlap-

ping the hotspots described above (Figure 7A). In particular, many epistatic interactions involved

the HAP1 hotspot (79 interactions), the KRE33 hotspot (66 interactions), as well as hotspots contain-

ing MKT1, GAP1, the mating type locus, and IRA2. Many interactions connected these hotspots with

each other (Figure 7B). For example, 30 genes shared an eQTL interaction between HAP1 and

KRE33, 14 genes shared an eQTL interaction between HAP1 and MKT1, 13 genes shared an eQTL

interaction between KRE33 with IRA2, and 14 genes shared eQTL interactions between GPA1 and

the mating-type locus (Brem et al., 2005).

The fact that interacting eQTLs colocalize with additive hotspots suggests that epistatic interac-

tions often involve eQTLs that also have additive effects. Indeed, of the 774 markers in the 387 epi-

static pairs, 558 (72%) were within 10 kb of a genome-wide significant additive eQTL influencing the

same gene. An estimate based on the p1 statistic (Storey and Tibshirani, 2003) showed that at least

84% of epistatic markers have additive effects. An example is SAG1, which encodes the Alpha-

agglutinin of cells with the alpha mating type. In our cross, the alpha mating type was carried by the

RM parent. Consequently, expression of SAG1 was higher in segregants that carried the RM allele at

the mating type locus (Figure 7C). In addition to this additive effect, the mating type locus was also

involved in an interaction with the GPA1 locus, replicating the finding from a targeted search that a

BY-specific S469I variant in GPA1 modulates SAG1 expression in alpha but not a cells (Brem et al.,

2005).

Of the 387 interactions, 158 (41%) involved ‘cis by trans’ interactions between distant and local

loci (Figure 7—figure supplement 1A). For example, the HAP1 hotspot interacted with local eQTLs

for 15 genes (Figure 7—figure supplement 1A). Among these, the RM alleles of HAP1 and SCM4

both increased SCM4 expression, and segregants with the RM genotype at both loci had higher

expression levels than expected from additive effects (Figure 7—figure supplement 1B). The HAP1

BY allele is less active due to a transposon insertion (Brem et al., 2002). The local SCM4 eQTL may

arise from variants that disrupt a HAP1 binding site (Ter Linde and Steensma, 2002) in BY, and this

allelic difference may result in a stronger expression difference in the presence of the more active

RM Hap1p. In agreement with this model, an epistatic interaction between inferred Hap1p activity

and SCM4 expression has been reported (Parts et al., 2011).

Interestingly, SCM4 is the only annotated direct HAP1 target among the local eQTLs that interact

with HAP1 (Harbison et al., 2004). Further, the effect sizes of local eQTLs that interacted with HAP1

were not statistically different in segregants that carried the more active RM vs. the less active BY

allele at HAP1 (T-test, p=0.9). In all the cases we examined (KRE33, MKT1, GPA1, and IRA2), the

local eQTLs that interacted with these hotspots did not show consistently larger or smaller effect

sizes depending on the hotspot allele (all p�0.3). This argues against a scenario in which most cis by

trans interactions are due to variants in transcription factor binding sites whose effect increases with

a more active trans regulator. Instead, most cis by trans interaction effects may be mediated through

more indirect mechanisms.

We quantified the fraction of variation in gene expression that is contributed by epistatic interac-

tions. Pairwise interactions typically explained about 1/10th as much expression variance as did addi-

tive loci (Figure 7—figure supplement 2), with a median of 2.2% of expression variance per pair.

Thus, genetic interactions contributed only a small minority of trait variance for gene expression
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Figure 7. Non-additive interactions between eQTLs. (A) Locations of markers of epistatic pairs (pointing downward) compared to those of additive

eQTLs (pointing upward). Epistatic hotspots discussed in the text are highlighted. (B) Interactions between two trans loci. The plot shows the genome

broken up into chromosomes (indicated as roman numerals), with arches connecting two interacting loci. Arches are shaded such that multiple

overlapping interactions appear darker. Epistatic hotspots are indicated as in panel A. The outer histogram shows the density of additive eQTLs. (C)

Expression levels of SAG1 as a function of genotypes at the mating type locus and GPA1.

DOI: https://doi.org/10.7554/eLife.35471.017

The following figure supplements are available for figure 7:

Figure supplement 1. Cis by trans interactions.

DOI: https://doi.org/10.7554/eLife.35471.018

Figure supplement 2. Distribution of the fraction of phenotypic variance (y-axis) explained by genetic variation as captured by genome-wide

relatedness in an additive (left), and interactive (right) model.

DOI: https://doi.org/10.7554/eLife.35471.019

Figure supplement 3. Epistatic interactions without additive effects.

Figure 7 continued on next page
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levels, which is consistent with what we previously reported for organism-level traits (Bloom et al.,

2015).

We asked if any of the epistatic pairs identified from our unbiased search corresponded to

‘purely’ epistatic interactions without any additive effects. Of the 387 pairs, 111 (29%) were not

found in the search between additive loci. Given the small effects of most interactions, this group is

likely enriched for false positives from the full search as well as false negatives from the search

between additive loci. We searched for specific epistatic pairs in which neither locus had an additive

effect (p>0.05), overlapped an additive hotspot (to avoid any potential undetected additive hotspot

effects), and where the affected gene was on a different chromosome from both interacting markers

(to avoid any potential undetected additive local eQTLs). Only three such pairs existed in our data

(Figure 7—figure supplement 3). In each case, the two genotype classes with non-parental geno-

type combinations (BY-RM and RM-BY) had similar expression levels that differed from those in the

two parental genotype combinations (BY-BY and RM-RM), such that the marginal genotype effects

canceled out. Even in these three cases, the variance resulting from the interaction was only 2.6–

3.6%. We conclude that any contribution of ‘purely’ epistatic pairs to transcriptome variation must

be small.

Discussion
The high power of our study allowed us to identify genome-wide significant eQTLs that jointly

explain over 70% of gene expression heritability. Thus, our eQTL map shows a high degree of com-

pleteness, capturing most genetic sources of transcriptome variation in this cross. In particular, our

results allowed us to examine the contribution of trans-acting regulatory variation in much greater

detail than previously possible in any species.

We showed that trans-acting eQTLs are the predominant source of expression variation in this

cross. Specifically, trans-eQTLs contribute 2.6-fold more to gene expression variance than local

eQTLs, remarkably similar to genome-wide estimates in humans of 1.8-fold (Grundberg et al.,

2012) and 3.4-fold (Wright et al., 2014). While based on different experimental designs and study

populations, these results from yeast and humans clearly demonstrate the importance of trans-acting

variation in eukaryotic species.

The vast majority of trans-eQTLs are concentrated at a limited number of hotspot regions that

harbor variants with widespread effects on the expression of other genes. The strongest of these

hotspots affected the expression of most genes in the genome. The minority of trans eQTLs that fell

outside the statistically defined hotspots also clustered more than expected by chance. We saw little

evidence for isolated trans-acting loci that affect the expression of one or a few genes. The high

density of sequence differences in this cross might have been expected to produce a more diffuse

trans-regulatory architecture, with many loci each influencing one or a few genes. Instead, trans-act-

ing regulatory variation arises primarily from several dozen specific loci.

The large number and fine resolution of our hotspots allowed us to conduct unbiased analyses of

the genes located in these regions. Unlike earlier work examining fewer, less well localized hotspots

(Yvert et al., 2003), we found a strong enrichment for transcription factors, a class of genes with

obvious relevance to gene regulation. Guided by this enrichment, we noticed that almost all tran-

scription factor genes with predicted damaging variants in this cross appear to produce a trans-act-

ing hotspot, with the exception of two genes in which the damaging variants may affect gene

function only weakly if at all. This result clearly illustrates the importance of variation in transcription

factors in shaping gene expression in trans. At the same time, many trans-acting hotspots are caused

by variation in genes other than transcription factors. These hotspots illustrate the importance of

indirect trans effects that alter cellular networks and physiology, which in turn results in gene expres-

sion change.

In an unbiased search, we revealed hundreds of non-additive genetic interactions that influence

mRNA levels. Many of these eQTL-eQTL interactions were between eQTLs at two different hotspot

regions, or interactions between an eQTL at a hotspot and a local eQTL. Hotspots may play such

Figure 7 continued
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prominent roles in epistatic interactions because their wide-reaching effects effectively alter the

global state of the cell. The effects of many other variants may be larger in some cellular states than

others, similar to what is seen when yeast are grown in different environments (Lewis et al., 2014;

Smith and Kruglyak, 2008).

Previous searches for epistatic interactions on gene expression levels in this cross were targeted

to genes and loci chosen based on prior additive scans (Brem et al., 2005; Storey et al., 2005). Our

unbiased search confirmed the validity of this strategy. The vast majority of epistatic markers we

detected also had additive effects, and there was little evidence for interactions without any additive

effects. Conversely, many additive eQTLs, including several major additive hotspots, were involved

in few if any epistatic interactions (Figure 7A). Thus, epistatic interactions cannot be simply assumed

to exist for all additive loci, and the most fruitful strategy to detect epistasis is to test loci with addi-

tive effects for interactions with other loci.

In our cross between two yeast strains, we identified over one hundred hotspot regions, and

found evidence for additional, weaker hotspots. Studies in many multicellular organisms, including

plants (Cubillos et al., 2012; Fu et al., 2009; West et al., 2007; Zhang et al., 2011), nematodes (Li

et al., 2006; Rockman et al., 2010), mice (Hasin-Brumshtein et al., 2016; Kelly et al., 2012;

Orozco et al., 2012) and rats (Heinig et al., 2010; Hubner et al., 2005; Kaisaki et al., 2016) have

also observed trans-eQTL hotspots, showing that this phenomenon is not restricted to yeast. Com-

pared to our yeast cross, human populations harbor orders of magnitudes more variants, and the

human genome has many more genes and more extensive and complex regulatory regions that offer

a large target space for regulatory variation. We would expect these characteristics to result in

human trans-eQTL architectures even more complex than that we have uncovered here in yeast.

Recent studies have made progress in identifying trans-eQTLs in humans. Many of the human

trans-eQTLs discovered to date tend to influence the expression of multiple genes (Battle et al.,

2014; Brynedal et al., 2017; Fehrmann et al., 2011; Grundberg et al., 2012; Heinig et al., 2010;

Lee et al., 2014; Small et al., 2011; Wright et al., 2014; Yao et al., 2017). Specifically, work in

blood and blood-derived cells from up to ~5000 individuals (Battle et al., 2014; Fairfax et al.,

2012; Fehrmann et al., 2011; Pierce et al., 2014; Westra et al., 2013; Wright et al., 2014;

Yao et al., 2017) revealed SNPs that were associated with multiple genes in trans, including the

HLA locus (Fehrmann et al., 2011), LZY in monocytes, and KLF4 in B-cells (Fairfax et al., 2012).

Multiple genes linking to single SNPs were also found in human adipose tissue (e.g.in the KLF14

transcription factor gene (Aguet et al., 2017; Hore et al., 2016; Small et al., 2011, 2018), skin and

lymphoblastoid cell lines (Grundberg et al., 2012), and other tissues (Aguet et al., 2017). In

immune cells, condition-specific hotspots at known regulators of the immune response were seen

upon stimulation, and these altered expression of specific immune response pathways

(Fairfax et al., 2014; Lee et al., 2014). Shared, weak effects across transcripts (Brynedal et al.,

2017; Hore et al., 2016) indicated that ‘hundreds of trans-eQTLs each affect hundreds of tran-

scripts’ (Brynedal et al., 2017). Together, these observations show that trans-eQTL hotspots exist in

humans.

Whether trans-eQTL hotspots are as predominant in humans as they are in yeast (where 90% of

our trans-eQTLs mapped to a hotspot) remains an open question. Human trans-eQTLs could be dis-

tributed more uniformly, such that hotspots make up a smaller fraction of all trans-eQTLs, leaving

room for more gene-specific trans-eQTLs. There could also be more hotspots, each affecting fewer

genes than the strongest hotspots in our cross. While it is difficult to extrapolate from the current,

still underpowered human studies, it may be informative to consider that the initial eQTL searches in

our yeast cross only found eight hotspots, each affecting at most dozens of genes (Brem et al.,

2002). The observation that hotspots are the main source of trans variation required the higher sta-

tistical power of the present dataset. It remains to be seen if human trans-eQTL discovery in larger

samples will follow a similar trajectory.

The recently proposed omnigenic model (Boyle et al., 2017) for the genetic basis of complex

trait variation posits that gene regulatory networks are sufficiently densely connected that the

change in expression of any one gene, caused by a local eQTL, will ‘percolate’ through the network

and alter the expression of all other genes that are expressed in a given cell type. The hotspot loci

we described here offer evidence that some regulatory variants can indeed have widespread effects

on the transcriptome, in some cases altering the expression of the majority of genes in the genome

through precisely the combination of strong direct effects on ‘core’ genes in specific pathways and
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weak indirect effects on other ‘peripheral’ genes envisioned in the omnigenic model. Hundreds of

hotspots may exist in the human genome (Brynedal et al., 2017), providing a rich substrate through

which regulatory variation may influence complex traits.

On the other hand, although we detected local eQTLs for most genes in our cross, the majority

of these had no detectable trans effects on the expression of other genes, within the limits of our

statistical power. Given that our study had sufficient power to detect weak indirect effects of trans-

eQTL hotspots, we believe that most local eQTLs indeed have no meaningful downstream conse-

quences for gene expression. By extension, such local eQTLs may be unlikely to contribute to varia-

tion in complex traits. Consistent with this conclusion, modest expression changes for dozens of

yeast genes have been found to result in minimal fitness effects (Duveau et al., 2017; Keren et al.,

2016). These results argue against the simplest form of the omnigenic model, in which a variant that

changes the expression of any one gene has meaningful effects on every other gene. Instead, we

observed that trans-eQTLs effects preferentially arise from variation in certain classes of genes.

Given the crucial importance of regulatory variation for many complex traits (Albert and Kruglyak,

2015), the organismal consequences of expression changes caused by different types of eQTLs

remain a key area for further research.

Materials and methods
Unless otherwise specified, all computational analyses were performed in R. Analysis code is avail-

able at https://github.com/joshsbloom/eQTL_BYxRM (Bloom and Albert, 2018; copy archived at

https://github.com/elifesciences-publications/eQTL_BYxRM). Supplementary Data files are also avail-

able at https://figshare.com/s/83bddc1ddf3f97108ad4.

Yeast growth
We used 1012 meiotic segregants previously generated (Bloom et al., 2013) from a cross between

the prototrophic yeast laboratory strain BY (MATa; derived from a cross between BY4716 and

BY4700) and the prototrophic vineyard strain RM (MATa hoD::hphMX4 flo8D::natMX4 AMN1-BY;

derived from RM11-1a). The segregants were grouped according to their previously measured

(Bloom et al., 2013) endpoint colony radius on YNB agar plates into groups of 96. The strains in

each group were rearranged from existing stock plates into a total of 13 96-well plates in YNB

medium, grown to saturation, and frozen as glycerol stocks for later growth. Within each group of

96, strain locations in the 96-well plate were selected at random. Culture and liquid handling was

performed on a BioMek FXP instrument or with multichannel pipettes in 96-well format.

Our strategy of batching segregants according to their growth on YNB ensures that each 96-well

plate contains segregants that grow at comparable rates. This facilitates growing all segregants on a

plate such that they reach a similar optical density at 600 nm (OD) at the same time. Our batching

strategy produces experimental batches that are correlated with growth rates. Because we statisti-

cally removed variation among experimental batches prior to eQTL mapping (see below), this design

reduces our ability to compare variation in growth rates with variation in gene expression. We

deemed this an acceptable trade-off because it considerably simplified handling >1000 samples in a

systematic fashion. We processed the batches in a randomized order with respect to their growth

rate to avoid confounding processing date with faster or slower growth.

We used the rearranged stock plates to inoculate growth cultures in 1 ml YNB medium (recipe for

1 L: 6.7 g yeast nitrogen base with ammonium sulfate and without amino acids; 900 ml H2O; auto-

clave; add 100 mL of separately autoclaved 20% glucose solution) in 2 mL deep well plates sealed

with Breathe-Easy membranes (Sigma Aldrich), and grew the cultures to saturation on Eppendorf

MixMate instruments situated in a 30˚C incubator and set to 1100 rounds per minute (rpm). We set

the saturated cultures back to OD = 0.05 in 1 mL YNB in a fresh deep well plate and continued

growth at 30˚C. We monitored OD during growth by splitting out 100 mL of culture every other

hour, measuring OD on a Synergy two plate reader (BioTek) and returning the 100 mL used for mea-

suring OD to the deep-well culture plate. We increased the frequency of measurements as cultures

approached OD = 0.4.

Once average OD in the plate reached 0.4, we transferred the cultures to sterile Norgen nylon fil-

ter plates (#40008) situated on a vacuum manifold. We applied vacuum to remove all growth

medium, sealed with aluminum foil seals, and flash froze the entire plate in liquid N2. The frozen
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plates were placed on a standard 96-well plate to protect their bottom, wrapped with parafilm, and

stored at �80˚C until RNA extraction. Note that this procedure provided us with OD measurements

up to the exact time point at which cells were harvested.

RNA extraction
We used Dynabeads mRNA DIRECT kits (Ambion/Thermo Fisher) to directly isolate mRNA from cell

lysates. To perform the RNA extractions on the BioMek robot, we prepared excess lysis/binding and

Wash buffers that permitted the use liquid reservoirs with volumes that exceed that provided in the

kits. These buffers were prepared as specified in the Dynabeads kit protocol:

Lysis/Binding Buffer:

100 mM Tris-HCl, pH 7.5

500 mM LiCl

10 mM EDTA, pH 8

1% LiDS

5 mM dithiothreitol (DTT)

Washing Buffer A:

10 mM Tris-HCl, pH 7.5

0.15 M LiCl

1 mM EDTA

0.1% LiDS

Washing Buffer B:

10 mM Tris-HCl, pH 7.5

0.15 M LiCl

1 mM EDTA

We filled the wells of an Axygen 1.1 mL plate (P-DW-11-C-S) with about 250 ml acid washed 425–

600 mm beads (Sigma G8722). We added 700 mL lysis buffer to our frozen cell plates, pipetted up

and down to resuspend the cells, and applied them to the glass beads in the Axygen plate. The Axy-

gen plate was tightly sealed with an Axymat rubber plate seal (AM-2ML-RD-S), and ground for 10

cycles on a plate-based mini bead beater (Biospec). Each cycle consisted of 1 min beating followed

by 1 min on ice.

We centrifuged the plate for 4 min at 3000 rpm to separate glass beads and cell debris from the

lysate. We pipetted two aliquots of 200 mL of lysate supernatant into two 96-well PCR plates for a

total of 400 mL lysate. These plates were sealed, and the RNA melted for 2 min at 65˚C in a thermo-

cycler. We implemented a BioMek-assisted procedure to perform the Dynabead protocol with two

mRNA enrichment steps. We did not quantify the resulting 11 mL of mRNA and simply used the

entire mRNA for reverse transcription and sequencing library preparation. While piloting this proce-

dure, we obtained typical yields of ~30 ng / mL and excellent RNA quality as judged by visualization

on 1.1% agarose gels stained with ethidium bromide. Ribosomal RNA bands were clearly visible in

crude lysate, less visible after the first mRNA enrichment, and absent after the second mRNA enrich-

ment step. After the second mRNA enrichment, mRNA was clearly visible on the gel, with no visible

RNA degradation.

RNA sequencing library construction and sequencing
We performed reverse transcription and sequencing library preparation using the Kapa Stranded

mRNA-Seq Kit (KK8420/21). This kit usually begins by enriching mRNA from total RNA. Because we

had already performed mRNA enrichment, we used our entire mRNA as input and began at the

RNA fragmentation step by adding 11 mL of ‘KAPA fragment, prime and elute buffer’ to our 11 mL

of mRNA. RNA fragmentation was performed on a thermocycler for 6 min at 94˚C.
The remaining procedure was performed as specified in the Kapa kit manual. Briefly, the frag-

mented RNA is randomly primed and used for first strand cDNA synthesis, second strand synthesis

and marking with dUTP, A-tailing of the double-stranded cDNA, adapter ligation, and PCR for 12

cycles. The dUTP marked second strand is not amplified in PCR, resulting in strand-specific libraries.

We used custom designed Truseq-compatible indexing adapters (IDT) to allow multiplexing all 96

samples per batch. Prior to use, the two types of Truseq adapters were annealed (2 min at 97˚C; 72
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steps of 1 min at 1˚C decreasing temperature; 5 min at 25˚C) to generate forked adapters that can

be ligated to the A-tailed cDNA. We did not pool samples between batches.

Sequencing libraries were quantified by combining 1 mL of library with 100 mL of Qubit High Sen-

sitivity dsDNA reagent in 96-well plates with black bottom and wells, and reading fluorescence (exci-

tation 485 nm, emission 528 nm) on the Synergy two plate reader. We calculated library

concentrations by comparing to a standard series obtained by diluting the standard solutions

included in the Qubit quantification kit. Standards were measured in triplicate on each library plate.

We pooled the libraries in each group to equal molarity and used qPCR (KAPA Biosystems #KK4854)

on the pool to obtain the molarity for loading on the sequencer. Gel extraction was not necessary

because the RNA fragmentation and bead clean-up that are part of the Kapa protocol resulted in

library fragments of the desired size of 200–400 bp.

Sequencing was performed for 100 bp single end on Illumina HiSeq 2500 instruments at the

UCLA BSRC sequencing core for two lanes per batch, for 26 total lanes. On average, we obtained

approximately 3 million reads per sample. Sequencing reads are available in SRA under the acces-

sion codes listed in the data availability statement.

Sequence processing and gene expression quantitation
Adapter sequences were trimmed using trimmomatic (Bolger et al., 2014). Reads were pseudoa-

ligned to the 6713 annotated yeast ORF coding sequences from Ensembl build R64-1-1 using kallisto

v.43.0 (Bray et al., 2016). Kallisto was run in strand-specific mode with parameters –l 150 and –s 8.

For each transcript, we computed transcripts per million reads (TPM) as a measure of expression

and used log2(TPM + 0.5) for downstream analysis. Segregants with fewer than one million reads

were removed from downstream analysis, and 1012 segregants passed this filter. We removed 993

invariant transcripts with identical expression across all segregants or with log2(TPM + 0.5) less than

1 in 50% or more of the segregants. Our final dataset included 5720 transcripts, which were used for

downstream analyses (Source data 1). These transcripts cover 5506 of 5971 open reading frames

annotated as ‘verified’ or ‘uncharacterized’ in the yeast genome (Cherry et al., 2012).

Growth rate covariate
Unless otherwise specified, all remaining analyses were conducted in R (www.r-project.org). Based

on the OD measurements collected during growth prior to harvesting, growth rates were calculated

for each segregant using the R package grofit and the function gcFitSpline (Kahm et al., 2010). The

difference between the maximum and minimum OD was recorded for each culture and used as a

covariate for downstream analysis (Source data 2).

Sequence variants
Our BY and RM parent strains had earlier been sequenced to very high depth (>200 fold coverage

of the genome), and GATK (McKenna et al., 2010) used to identify 48,254 sequence variants

between them. These variants (irrespective of whether or not they are part of our marker map) were

screened for potential functional impact using the Ensembl Variant Effect Predictor (McLaren et al.,

2016).

The segregant genotyping is described in (Bloom et al., 2013) and (Bloom et al., 2015). The

1012 segregants used for this study were genotyped at 42,052 highly reliable markers, which are a

subset of the total 48,254 sequence differences between BY and RM. Sets of markers that were in

perfect linkage disequilibrium (i.e. markers never separated by recombination) among the 1012 seg-

regants were collapsed to one marker. Our final linkage map comprised 11,530 unique markers

(Source data 3).

Heritability
A variance component model was used to estimate additive heritability. First, gene expression meas-

urements were corrected for batch covariates and the growth measurement covariate described

above using a linear model for each gene

P=DG + R

where P is a vector of log2(TPM + 0.5) measurements for n segregants for that gene. D is a vector

of estimated fixed effect coefficients for technical covariates. G is a matrix of n total segregants by
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m technical covariates. Technical covariates included experimental batch and the growth rate covari-

ate described above. The vector of residuals is denoted as R. R contains expression phenotypes cor-

rected for batch effect and growth covariate.

We fit the variance component model

R = a + e

where a is the vector of additive genetic effects, and the residual error is denoted by e. The distri-

butions of these effects are assumed to be normal with mean zero and variance–covariance as

follows:

a ~ N(0, s2
AA); e ~ N(0, s2

EVI)

Here, A is the additive relatedness matrix – the fraction of the genome shared between pairs of

segregants. A was calculated using the ‘A.mat’ function in the rrBLUP R package (Endelman, 2011).

s
2
A is the additive genetic variance captured by markers. s2

EV is the error variance and I is the iden-

tity matrix. Additive heritability was estimated using custom code adapted from Kang

et al (Kang et al., 2008).

Although our heritability estimates are lower bounds due to counting noise in the number of

sequencing reads per gene, downsampling of reads suggested that additional sequencing would

increase heritability for most genes by at most a few percent (Figure 1—figure supplement 1).

Additionally, we fit a model to estimate the relative contribution of pairwise interactions with

R = a + i+e

where i ~ N(0, s2
AA(A˚A)) and A˚A is the Hadamard (entry-wise) product of A, which can be inter-

preted as the fraction of pairs of markers shared between pairs of segregants. s2
AA is the interaction

genetic variance captured by all pairwise combinations of markers. The other terms are the same as

in the additive-only model. The result of ~1/10 as much variance arising from interactions relative to

additive loci is based on the ratio of the average of the A˚A term across genes to the average of the

A term across genes. When we instead calculated this variance ratio for each gene, we found that

the mean across genes was greatly inflated by a few extreme outliers, while the median was very low

(less than 1/100) because almost half of the genes had an estimate of zero for the A˚A term.

Gene annotations and features
Gene positions were extracted from Ensembl (Yates et al., 2016) (www.ensembl.org) build 83. Vari-

ous analyses throughout the paper made use of a range of gene-specific features, factors and covari-

ates: (1) Total variance in expression was calculated as the sum of the additive and residual variance

components obtained in our heritability estimates. (2) Expression level was calculated as the mean

log2(TPM) across segregants, (3) Gene essentiality was coded as a binary factor and obtained from

SGD (Cherry et al., 2012) (www.yeastgenome.org) by searching for genes whose SGD deletion phe-

notype contained the term ‘inviable’. (4) dN/dS values were obtained from Supplementary Table S4

in (Wall et al., 2005). (5) The number of protein-protein interactions was obtained from SGD by

downloading all ‘physical’ interactions between genes and counting their number per gene. (6) Syn-

thetic genetic interactions were extracted from data from Costanzo et al. (2016) which provides

genetic interaction data for pairwise gene deletions or disruptions between nearly all essential (E)

and nonessential (N) genes (Costanzo et al., 2016). Specifically, we downloaded the ‘NxN’, ‘NxE’,

and ‘ExE’ raw genetic interaction datasets from http://thecellmap.org/costanzo2016/, combined

them into one table, and extracted the lowest interaction p-value for each gene pair. We restricted

this set using the ‘strict’ definition from (Costanzo et al., 2016) and kept only pairs with interaction

p-value<0.05 and interaction strength (epsilon) >0.16 or<�0.12. For each gene, we counted how

many genes showed a genetic interaction at these thresholds and used this as our measure of syn-

thetic genetic interactions. Using the ‘lenient’ or ‘intermediate’ definitions did not alter our conclu-

sions. (7) We defined whether or not a gene is a transcription factor by downloading from SGD all

genes annotated to the GO term GO:0003700 ‘transcription_factor_activity_sequencespecific_D-

NA_binding’ and its child GO terms. (8) As a proxy for deep evolutionary conservation, we extracted

from Ensembl biomart whether or not a gene has a human homolog.

Gene ontology (GO) associations for each gene were downloaded from the Gene Ontology Con-

sortium (geneontology.org) on February 16, 2016. We used paralogy information downloaded from

the yeast gene order browser (Byrne and Wolfe, 2005) (http://ygob.ucd.ie/).
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Characteristics of genes with high or low heritability
We tested for gene features associated with the degree of heritability by multiple linear regression.

This regression modeled heritability as the dependent variable and the various gene features as pre-

dictor variables. We used the ‘summary’ and ‘lm’ functions, and the ‘car’ package in R to perform

Type III sum-of-squares ANOVA. This analysis tests for the influence of each feature by dropping it

from a full model that includes all other terms, and asking whether this results in a significantly worse

fit as judged by F-statistics. The analysis controls for correlations among predictor variables and

reports marginal associations only if they are significant over all other terms. We did not include

interaction terms among predictor variables.

Gene ontology enrichment analyses
We tested for GO enrichments using the R package topGO (Alexa et al., 2006). For analyses in

which genes were classified as ‘interesting’ or not (e.g. whether a gene has heritability �90%, or

whether it is located in a hotspot), we used the Fisher test for enrichment. When using a quantitative

gene score as the measure of interest (e.g. the heritability), we used the one-sided t.test imple-

mented in topGO. We used the ‘classic’ scoring method (Alexa et al., 2006), that is we did not

adjust the enrichments for significance of child GO terms.

eQTL mapping
We (Bloom et al., 2015) and others (Yang et al., 2014; Zeng, 1994) have previously noticed that

power and precision of QTL mapping on a given chromosome can be increased by controlling for

genetic contributions that arise from the other chromosomes in the genome. Our eQTL mapping

strategy controls for genomic background in two ways. For each gene, we identified large genetic

effects segregating on other chromosomes and included them as covariates while mapping on a

given chromosome. We also corrected for any additional polygenic additive background signal on

other chromosomes. Then, for each gene we used a forward stepwise procedure to map eQTLs with

a false discovery rate procedure. Below we describe our algorithm in greater detail. Throughout, we

use the terms ‘eQTL’ and ‘linkage’ interchangeably.

Identification of large background genetic effects
In the process of eQTL mapping on a given chromosome, we wanted to control for the genetic con-

tributions from the remainder of the genome. Although this background control is sometimes done

using a polygenic model with a random effect that captures overall relatedness across the genome

(Yang et al., 2014) (see below), large individual eQTL effects may not be adequately accounted for

by one genome-wide relatedness matrix. Therefore, we performed the following procedure to iden-

tify large genetic effects. Our goal at this stage was not to formally identify these large effects as

eQTLs, but to perform a simple scan for large effects that can be included as covariates to control

for their effects while mapping on a given chromosome. As our algorithm progresses along each

chromosome, these large background effects will eventually be detected as formal eQTLs.

1.Gene expression measurements were corrected for batch covariates and the growth covariate

using a linear model

P=DG + R

where P is log2(TPM + 0.5), D is the vector of estimated fixed effect coefficients for technical

covariates (batch and growth), and G is a matrix of n total segregants by m technical covariates as

described in the section on Heritability above. The residual vector is denoted as R and contains the

corrected expression measurements.

We sought to identify a set of markers linked to large-to-moderate effect QTLs. For each gene

and for each chromosome, we calculated logarithm of the odds (LOD) scores between corrected

expression levels R and the marker genotypes on that chromosome as

�n(ln(1�r2)/2ln(10))

where n is the number of segregants with genotypes and phenotypes, and r is the Pearson corre-

lation coefficient between segregant genotypes and R. The marker with the largest LOD per chro-

mosome was added to a matrix, Z, if it had LOD > 3.5.

For each gene we calculated

P=DG + CZ+R
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where C is a vector of genotype effects. This step controls for technical covariates as above, but

additionally controls for large effects included in Z. It results in a new vector of residual expression

levels R. We repeated steps 2 and 3 twice with this new R, appending additional markers to Z for

each gene and each chromosome if they passed the threshold of LOD > 3.5. The goal of this

repeated search for large effect eQTLs was to control for large effect loci that were detected only

after expression values were corrected for the effects of previously identified large effect loci. For

example, a given chromosome may harbor several large effect QTLs, and repeated runs of steps 2

and 3 ensure that such loci are captured. At the end of this procedure, we had a matrix Z of up to

three markers per chromosome per gene that were linked to large-to-moderate effect loci.

Correcting gene expression measurements for large background
effects and additive polygenic background for all chromosomes except
the chromosome of interest
For each chromosome of interest and for each gene expression trait we calculated

P=DG + CLZL+aL + R

CL and ZL are the background eQTL effects identified from the procedure above that are not

located on the chromosome of interest. aL ~N(0, s2
aLAL) s

2
aL is the additive genetic variance from all

chromosomes excluding the chromosome of interest. AL was calculated using the ‘A.mat’ function in

the rrBLUP package using a genetic relatedness matrix that excludes markers from the chromosome

of interest. The goal of this step was to obtain expression phenotypes R that can be used to scan for

eQTLs on a given chromosome by correcting for sources of variation that do not arise from that

chromosome: batch and growth effects, large effects on other chromosomes, and a polygenic term

accounting for any additional genetic contributions arising from other chromosomes.

Mapping additive eQTLs
We mapped additive eQTLs using a forward stepwise procedure. For each chromosome and for

each gene we tested for linkage at each maker on the given chromosome with residual expression

values R (calculated above) using the formula in Step 2 of ‘Identification of large background genetic

effects’. We recorded the location and LOD score of the marker with the highest LOD score. To

decide if this marker should be included as a QTL in the model, we used a permutation-based FDR

criterion of 5%.

FDR was calculated as the ratio of the number of genes expected by chance to show a maximum

LOD score greater than a particular LOD threshold vs. the number of genes observed in the real

data with a maximum LOD score greater than that threshold, for a series of LOD thresholds ranging

from 1.5 to 9 with 151 equal-sized steps of 0.05. The number of genes expected by chance was cal-

culated by permuting R relative to segregant genotypes, calculating LOD scores for all genes across

the chromosome and recording the maximum LOD score for each gene. In each run of the permuta-

tions, the permutation ordering was the same across all genes. We repeated this permutation proce-

dure 1000 times. Then, for each of the 151 LOD thresholds, we calculated the average number of

genes with maximum LOD greater than the given threshold across the 1000 permutations. We found

the lowest of the 151 LOD thresholds at which the ratio of the number of expected genes with an

eQTL of at least this threshold to the number of observed genes of at least this threshold was <5%.

This LOD threshold was used as a criterion for declaring a given QTL in the real data as significant.

For all genes with a significant linkage (FDR < 5%), the peak marker was added to the linear

model for that gene as X:

R = QX + e

Genes without a significant linkage were excluded from additional testing on that chromosome.

For the set of genes with a significant linkage, we repeated the procedure above by replacing R with

e. The procedure was repeated for each chromosome until no genes had additional significant

linkages.

Cross-validation
The amount of additive variance explained by detected eQTLs was estimated using cross-validation.

Segregants were grouped based on the batches used for RNA and library preparation. Each batch

of segregants was left out of the procedure one at a time. The eQTL mapping procedure was
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performed for all the other batches. For the QTL markers detected in this training set and with

effects estimated in the training set, the amount of variance explained by the joint model of the set

of significant QTL markers was estimated in the held out batch.

eQTL confidence intervals
eQTL confidence intervals were calculated as 1.5 LOD drops. We extended the eQTL location confi-

dence intervals to include all markers in perfect LD with the markers used in eQTL detection (marker

correlation = 1).

Hotspot identification
We devised an algorithm with the goal of identifying a set of eQTL hotspots by combining informa-

tion across genetically correlated transcripts and, most importantly, using co-localizing trans-eQTLs

to better narrow hotspot confidence intervals. The algorithm has three major steps. First, we control

for unmodeled factors affecting gene expression that may obscure hotspot detection and localiza-

tion. Second, we use a multivariate statistic to identify eQTL hotspots. Finally, we use a bootstrap

procedure to delineate confidence intervals for hotspot location. We describe the steps in greater

detail below.

Identification of unmodeled factors affecting gene expression
For each gene with at least one statistically significant eQTL we fit a linear model

P=DG + QX+a + Re

where P is log2(TPM +0.5), D is the vector of estimated fixed effect coefficients for technical

covariates, and G is a matrix of n total segregants by m technical covariates as described in the sec-

tion on Heritability. X is a matrix of the statistically significant additive QTL peak markers for the

gene, Q is a column vector of QTL effects, and a is random effect for the contribution of polygenic

background to additive variance, where a ~ N(0, s2
aA), s

2
a is the additive genetic variance from all

markers and A is constructed as described above in the section on calculating heritability. Re is the

residual expression level after the contributions of all additive influences on gene expression varia-

tion in the model have been removed.

For each gene, Re was scaled to have mean 0 and variance 1. Re for each gene was concatenated

to form the columns of the matrix R.

We calculated the singular value decomposition (SVD) of R. We also calculated the SVD after

each column of R was individually permuted. We visually inspected a Scree plot for both decomposi-

tions and observed that the top 20 eigenvectors explained more variance than expected by chance.

The top 20 eigenvectors were appended to the matrix G of covariates. These eigenvectors cap-

ture systematic expression variation that is shared across genes but that does not arise from any

known technical covariate, identifiable eQTLs, or additive genomic background as captured by our

markers. These components presumably reflect undetected sources of variation from unmodeled

experimental factors or non-additive genetic factors shared across genes. Their inclusion as covari-

ates in G below follows from the same logic that motivates SVA (Leek and Storey, 2007); we want

to account for unmodeled factors that are contributing to gene expression variation to increase

power to map and resolve eQTL hotspots.

We note that because we cannot explicitly model all possible expected trans effects per gene first

as fixed effects, it is theoretically possible that small effects not captured by the QTL model or addi-

tive polygenic background per gene could contribute to the matrix R and the top 20 eigenvectors.

Regressing out genetic effects captured by these eigenvectors could then induce spurious trans-

associations (Dahl et al., 2017).

Correcting gene expression for technical covariates, detected additive
eQTLs on other chromosomes, and unmodeled factors
For each chromosome, we extracted all genes that have a significant linkage to that chromosome

but do not physically reside on that chromosome (i.e. all genes that had a statistically significant

trans-eQTL on the given chromosome) and fit the linear model

P=DG + QLXL+Re
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This model is similar to that in Step 1, ‘identification of unmodeled factors affecting gene expres-

sion’, except that the matrix G is extended to include the 20 eigenvectors corresponding to unmod-

eled factors, and XL only contains statistically significant additive eQTLs that do not reside on the

chromosome of interest. Thus, Re is corrected for all influences on expression that are not relevant

to mapping hotspots on the given chromosome, but retains all signal that does arise from the chro-

mosome of interest.

For each gene, Re was scaled to have mean 0 and variance 1. Re for each gene was concatenated

to form the columns of the matrix R.

Dimensionality reduction of R
Our algorithm for fine-mapping eQTL hotspots makes use of a multivariate statistic (see section

‘multitrait mapping to localize eQTL hotspots’). We observed that on many chromosomes, the num-

ber of genes with trans linkages exceeded our total sample size. Because the multivariate statistic is

not defined in this case, we reduced the dimensionality of R using SVD. The top m eigenvectors with

corresponding eigenvalues greater than those observed from an SVD on permuted data were

retained as matrix L. The entries of L can be interpreted as weighted linear combinations of the

expression levels from individual genes, from which all sources of variation that do not arise from the

chromosomes of interest have been eliminated. These combinations capture the majority of additive

genetic influences on the given chromosome that are shared across genes (i.e. the effects of hot-

spots on multiple genes), and serve as the input to our hotspot detection algorithm.

Multitrait mapping to localize eQTL hotspots
We computed

L = u + BX+E

where u is a vector of means for each of the columns of L, B is a vector of coefficients for the

effects of X on each of the columns of L, X is the genotype vector for each marker on the target

chromosome (the model is fit one marker at a time), and E is a matrix of residuals. Next, we calcu-

lated the residual sum of squares matrix RSS as E‘E and LOD scores as (n/2)log10(|RSS0|/|RSS|),

where |RSS| denotes the determinant of the RSS matrix and RSS0 is the residual sum of squares

matrix for the null model with no QTL effect (Knott and Haley, 2000; Tian et al., 2016). This LOD

score reflects linkage of genetic markers with the joint expression of the eigenvectors in L. To distin-

guish significant linkages affecting multiple genes from eQTLs for individual genes, we refer to them

as jointQTLs (jQTLs) in the remainder of this method section.

We fit the equation above 100 times with permutations of phenotype to genotype for matrix L.

The 99% quantile of the maximum observed LOD score per permutation was used to decide

whether the maximum multivariate LOD was significant. If it was significant, then the effect of that

marker was subtracted from L and the procedure repeated until no more jQTLs were detected.

Refining jQTL locations and test for hotspots that are better modeled as
two neighboring hotspots
We sought to better refine the location of the jQTLs given all other jQTLs on that chromosome

(Zeng et al., 1999). We collected the statistically significant peak markers for the jQTLs identified

above. Each peak marker was dropped from a joint model one at a time and the peak position was

recomputed. Peaks that moved by more than 75 kb at this step were removed from the model. For

all peaks with LOD >200 we tested the possibility that the multivariate peak was a ‘ghost’ jQTL,

that is a jQTL that appears to be localized between two or more true jQTLs that are very closely

linked and that influence a similar set of genes. We fit a model where the one significant jQTL was

replaced by a two-jQTLs model, with the added criterion that the two jQTLs could not be within 10

markers on either side of the original peak. Permutations for this two-locus model were performed

as in ‘multitrait mapping to localize eQTL hotspots’, with the relevant test and null statistics being

the difference between the fit of the best two-locus model and the best one-locus model. Single

jQTL peaks were replaced with the best two-locus model if the observed LOD was more than 10

greater than the 99% quantile LOD for the permuted data. Through the combination of the steps

above, this procedure identified significant jQTLs that correspond to hotspots that influence the

expression of multiple genes.
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Bootstrap resampling to identify confidence intervals for jQTL location
For each detected jQTL, segregants were sampled with replacement 1000 times. For each sample,

we refit

Lsi = u + BsXs+BsiXsi + E

where s indicates a bootstrap resample of the rows of a matrix. Xs contained the other significant

jQTL peak markers from the interrogated chromosome and XSi is the genotype vector for each

marker on the target chromosome within a window of 80 markers centered on the observed QTL

peak being interrogated, with the effect of each marker fit one at a time. LOD scores were com-

puted as in Step 1 of ‘multitrait mapping to localize eQTL hotspots’ and the position of the marker

with the maximum LOD score was retained for each bootstrap resampling.

For all further analyses, we defined hotspot location confidence intervals as the central 95% confi-

dence interval of bootstrap peaks. These intervals were extended to include all markers that are in

perfect linkage disequilibrium with the markers at the ends of the confidence intervals.

Local eQTLs
To classify an eQTL as local, we required its location confidence interval to overlap the position of

the gene. We used gene locations expanded by 1000 bp upstream and 200 bp downstream to

account for regulatory variants that may be located in the promoter or the 3’UTR. We initially classi-

fied 2969 eQTLs as local. These 2969 eQTLs affected 2884 genes. Closer inspection revealed that

these multiple ‘local’ eQTLs per gene often involved one eQTL with a peak very close to the gene

and other, more distant eQTLs. These more distant eQTLs probably reflect trans-eQTLs on the same

chromosome as their target gene with location confidence intervals broad enough that they hap-

pened to overlap the target gene. For our ASE comparisons below, we only used the local eQTLs

that were located closest to a given gene.

Allele-specific expression analyses and comparison to local eQTLs
We used ASE data from two sources. The first source is the mRNA data from Supplementary Data

S2 from (Albert et al., 2014a). The second source is previously unpublished data generated by Dr.

Noorossadat Torabi in the Kruglyak laboratory (available in SRA under accession code SRP149494).

Both datasets performed mRNA sequencing on a BY/RM diploid hybrid strain. Reads from Albert

et al. were ~30 bp in length to match ribosome profiling data presented in that paper, while reads

from Torabi et al. were 100 bp. In contrast to (Albert et al., 2014a), the Torabi data was not strand-

specific.

We processed the Torabi data exactly as described in (Albert et al., 2014a). Briefly, reads were

aligned to both the BY reference genome and the RM reference genome provided by the Broad

Institute (https://www.broadinstitute.org/fungal-genome-initiative/saccharomyces-cerevisiae-rm11-

1a-genome-project). We retained reads that mapped uniquely and without mismatch. We consid-

ered reads mapping to a set of coding SNPs carefully curated to only contain SNPs with good map-

ping characteristics (Albert et al., 2014a) and counted the number of reads arising from each allele.

Counts for multiple SNPs per gene were summed. We performed hypergeometric downsampling to

account for a small difference (0.5%) in total read counts mapping to BY vs. RM alleles. Genes with

fewer than 20 reads were discarded. Significance of ASE was gauged using a binomial test, and

p-values Bonferroni-corrected for multiple testing. Effect sizes are expressed as log2-transformed

fold changes, which in turn are calculated as the RM allele count divided by the BY allele count for

each gene.

The Torabi and Albert dataset are independent replicates of a BY/RM hybrid. We can use this

fact to gain confidence in significance calls (we keep track of whether a gene was determined to

have significant ASE in one or both of the datasets) and the magnitude of ASE (for each gene, we

use the mean log2 fold change of the two datasets). Across the two datasets, we had ASE data avail-

able for 3340 genes.

To compare effect sizes between eQTLs and ASE, we used log2-transformed eQTL fold changes

re-computed on un-scaled expression data. ASE fold changes were computed as the log2 of the

ratio of RM to BY allele counts. Comparisons of effect size across genes were performed using stan-

dardized major axis (SMA) analysis (Warton et al., 2012). To correlate ASE and eQTL effect sizes to

the number of sequence variants upstream of each gene, we defined the upstream interval as the
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sequence upstream of the start codon up to the neighboring gene for a maximum of 1,000 bp. We

acknowledge that the length of sequence considered is therefore different for different genes but

believe that this is a reasonable approximation of the regulatory upstream regions in yeast

(Lin et al., 2010). Sequence variants had been obtained from short-read sequencing of the BY and

RM strains used in this study (Bloom et al., 2013).

All data necessary to reproduce the ASE analyses and eQTL comparisons is available in

Source data 7.

Power analyses for ASE data
To gauge the statistical power to detect ASE in the two available ASE datasets, we performed simu-

lations. We focused on two variables: the effect size (i.e. fold change) and the total read coverage

available for the given gene. ASE data is overdispersed compared to a binomial distribution

(Castel et al., 2015). To properly account for this overdispersion in our simulations, we used the

available ASE data to estimate the overdispersion parameter � in a beta-binomial distribution using

the R function ‘optim’. We provided the function with the total read count and the observed allele

count for each gene and used 0.5 as the ‘true’ probability of success. We estimated r separately for

the Torabi and the Albert data and found that the latter was somewhat more overdispersed

(� = 0.0054) than the former (� = 0.0041).

We confirmed that these overdispersion estimates fit the data reasonably well by generating sim-

ulated datasets using the observed read counts from the Albert and Torabi datasets for each gene,

along with the estimated r’s. For each gene, we used the mean of the Albert and Torabi ASE fold

changes to compute the target probability of success. These simulated data are meant to represent

a random instance of allelic counts across genes, using distributions that closely mimic the real data.

We generated 50 such datasets using the Albert and Torabi parameters, respectively. We computed

all pairwise correlations between these simulated Albert and Torabi datasets. The median correlation

coefficient across genes was r = 0.42 in the simulated data, compared to r = 0.39 for the observed

Albert and Torabi data. Thus, while the simulations underestimate the overdispersion in the real

data by a small amount, they provide a reasonable approximation.

We used these estimates of � to simulate 1000 instances of allele counts for several combinations

of total read count and fold change (Figure 2—figure supplement 2). We computed power as the

fraction of simulations in which a binomial test yielded p<0.05 or p<1.5e-5, the Bonferroni-corrected

threshold for 3340 tests. We also computed the fraction of simulations in which the direction of fold

change agreed with the true change.

These simulations show that power increases with increasing read counts and effect sizes. Cru-

cially, even with very high sequencing depth of 5000 allele-specific reads per gene, the power to

detect ASE of a magnitude typical for the majority of local eQTLs detected here is less than 60%.

Most genes in the ASE data have substantially lower coverage: the median coverage is ~1000 in the

Torabi data and ~200 in the Albert data. Thus, we expect to miss the ASE effects of the majority of

local eQTLs.

To explore this relationship more precisely, we conducted gene-matched power simulations. For

each gene, we conducted 100 simulations using the estimated r and sequencing coverage for the

given ASE dataset. We used the observed eQTL fold changes to compute expected probabilities of

success. We conducted these simulations separately for the Albert and Torabi data.

Genes affected by hotspots
To estimate which genes are influenced by a given hotspot irrespective of whether these associa-

tions reached genome-wide significance for the given gene, we performed a targeted forward scan

for linkage at the hotspot locations. For each chromosome and for each gene, we regressed out the

effects of significant eQTLs detected on other chromosomes as well as the effects of technical cova-

riates. Then, for each gene, we repeated the procedure described above under ‘Mapping additive

eQTL’. However, here X was defined to be the set of detected hotspot markers for that chromo-

some, as well as either the closest marker to each gene or, if a gene had a genome-wide significant

local eQTL, the local eQTL peak marker for that gene. The same FDR threshold (5%) was used to

identify the best model for each gene. For each gene, coefficients for the effects of all significant

markers identified by this procedure were determined by multiple regression.
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The regression coefficients from this model were used to count the number of genes affected by

a given hotspot (i.e. all nonzero entries) and to rank genes for inclusion in gene ontology (GO) and

transcription factor (TF) binding site (TFBS) enrichments, and for plotting in networks. Source data 8

also presents the number of genes with a genome-wide significant eQTL overlapping each hotspot.

For each hotspot, TFBS and GO enrichments were calculated on the 100 genes with the strongest

increases or decreases in expression from the RM allele at the hotspot, respectively. When fewer

than 100 genes were influenced by the hotspot in the given direction, we used all genes influenced

in this direction.

In Source data 8, we report GO enrichments for the genes affected by each hotspot. This table

shows the top five GO categories for each hotspot that exceeded an enrichment p-value of p�0.05

divided by the number of GO categories tested. We adjusted p-values separately for the Biological

Process, Molecular Function, and Cellular Compartment GO subtrees. We did not adjust for the fact

that multiple hotspots were tested, nor for the fact that two directions of effect (higher expression

linked to the BY or the RM allele) were tested. Source data 10 lists all GO enrichment results.

TFBS enrichments for genes affected by hotspots were computed using Fisher’s exact test. The

underlying relationships between TFs and target genes were based on regulatory relationships

between genes downloaded from SGD (Cherry et al., 2012) on May 1st, 2016. In Source data 8, we

show all TFs with significant enrichments at a threshold of p�1.3e-6, corresponding to a Bonferroni-

corrected p-value controlling for 38,556 tests (189 TFs, 102 hotspots, and two directions of effect

per hotspot). Source data 8 also shows the most significant TFBS enrichment, irrespective of

whether this enrichment was significant after multiple testing or not. Source data 11 lists all TFBS

enrichment results.

We displayed the genes that are affected by each hotspot in a manner that reflects significant

correlations between the genes’ expression levels in order to highlight groups of genes that may be

functionally related. Because expression levels will become correlated when they are linked to the

same hotspot, we wanted to estimate the underlying correlation matrix in a manner that is as free as

possible from correlations induced by the hotspots. We fit a sparse conditional Gaussian graphical

model (sCGGM [Zhang and Kim, 2014]) to the expression data and the genotypes at the hotspot

markers. sCGGM decomposes the total correlation matrix among gene expression levels into ‘direct’

effects of the genetic markers on each gene expression level as well as a matrix �yy of ‘indirect’

effects that genes exert on each other. We fit the model on a multi-core processor using an R instal-

lation compiled using the Intel Math Kernel Library to speed up linear algebra operations, as pro-

vided by the University of Minnesota Supercomputing Institute. Following preliminary cross-

validation on a subset of 2000 genes, we set the sCGGM regularization parameters l1 and l2 to 0.1.

We fit log2(TPM) values for all 5720 expressed genes. Prior to fitting, effects of experimental

batch and yeast culture optical density were removed using a linear model. We also removed the

effect of the marker closest to each gene. This latter correction was not performed for genes that

reside in the window tested by bootstrapping around each hotspot, and for genes with a local eQTL

that overlaps the given hotspot. We chose to keep the local effects for these genes because local

eQTLs at these genes may underlie the hotspot, and we were interested in preserving such potential

‘direct’ local effects for our visualizations.

We used the entries of �yy to generate the network plots in Figure 4—figure supplement 4 and

Supplementary file 6. In spite of the shrinkage imposed by the sCGGM algorithm, very few entries

were estimated to be zero. As a practical threshold for plotting, we excluded entries of �yy with

absolute values less than 1e-5.5. This threshold was set based on visual inspection of a histogram of

all entries in �yy, which showed a bimodal distribution with a clear peak of values exceeding this

threshold separated from a peak centered on much smaller values. Network plots were generated

using the R igraph package (Csárdi and Nepusz, 2006). Supplementary file 6 shows the resulting

network plots for all hotspots.

Analysis of genes located in hotspots
Several hotspots were located close to chromosome ends. Yeast chromosome ends contain complex

structural variation that segregates among isolates and influences traits (Cubillos et al., 2011). In

some cases, BY and RM differ for the presence of entire subtelomeric blocks of genes

(Bergström et al., 2014). When a hotspot arises from these regions, the identity of the causal gene

cannot be determined using our present segregant panel because each segregant either carries all
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or none of the genes in these regions. Further, the marker map we used for mapping stops at the

borders of these regions. Therefore, these hotspots often have very sharp bootstrap distributions on

the first or last marker of the linkage map on the given chromosome. We excluded subtelomeric hot-

spots from the analyses of genes located in hotspots because the position of the final marker on a

chromosome is unlikely to reflect the position of the causal gene, which may well be located distally

to the marker. We excluded 13 hotspots whose peak marker is within 5 kb of the end of our linkage

map. We focused the remaining analyses of hotspot genes on 26 non-subtelomeric hotspots with

confidence regions that contain three or fewer genes, for a total of 58 genes.

To analyze features of genes located in hotspots, we performed multiple logistic regression. The

dependent variable indicates whether or not a gene resides in one of these hotspots, and the set of

gene features described above served as potential predictor variables. Significance tests were per-

formed using likelihood ratio tests for dropping each term from a full additive model without interac-

tions, as implemented in the R car package.

Gene ontology analysis on these genes was conducted using Fisher’s exact test in topGO

(Alexa et al., 2006). Genes in the yeast genome tend to be clustered in co-localized groups with

similar functions (Hurst et al., 2004). To test if this clustering influences our GO analyses of genes

located in hotspots, we performed a randomization analysis. We sampled 1000 sets of 58 neighbor-

ing genes that mirror the distribution of the number of genes across the 26 hotspots. For each set,

we performed the same GO enrichment analysis as for the actual 58 hotspot genes. Within each set,

we counted the number of significant (at p<0.05) GO terms and used the fraction of this distribution

that matched or exceeded the number observed in the real set as an empirical p-value for whether

the enrichment was globally significant. This test showed significantly more enriched terms than ran-

domly expected for the GO Biological Process category (p=0.001), but only a marginal excess for

Molecular Function (p=0.060) and no significant excess for Cellular Compartment (p=0.695).

This analysis is conservative because in the real data we considered GO terms at much more strin-

gent p-value cutoffs than �0.05. We further explored the FDR for GO term enrichment at more strin-

gent p-values by dividing the mean number of terms significant at a given threshold across the

permutations by the number of significant terms observed in real data. We found that for Biological

Process, FDR was <0.05 for GO enrichments with p<0.005, which includes all terms described in the

paper.

Finally, we computed an empirical p-value for each GO term by asking how often its observed

p-value is matched or exceeded in the permutations. This analysis controls for different sizes and

compositions of the different GO terms. All terms reported to be significant in the text had p<0.001

in these analyses; enrichments as strong or exceeding the observed ones were never seen in 1000

random gene sets. We conclude that our GO analysis of genes in hotspots is unlikely to reflect ran-

dom sampling of genomic regions.

Plots of hotspot location and gene content were generated using the R package Gviz

(Hahne and Ivanek, 2016). Supplementary file 5 shows plots of gene content for all hotspots.

Comparisons to pQTLs
We used pQTLs for 160 proteins identified in the BY/RM cross (Albert et al., 2014b). The pQTL

coordinates were mapped from the sacCer2 to the sacCer3 genome using the UCSC liftover tool

(https://genome.ucsc.edu/cgi-bin/hgLiftOver).

The pQTLs were mapped using bulk-segregant analysis (BSA) in large pools of segregants where

each gene was tagged with green fluorescent protein (Albert et al., 2014b). BSA does not produce

effect sizes in units of gene expression levels or variance. We instead used the allele frequency dif-

ference between high and low GFP pools at the pQTL peak position as a measure of pQTL effect

size. For eQTLs, we used the coefficient of the correlation between scaled expression levels and

marker genotype. We chose this effect size measure because it, like the BSA allele frequency esti-

mates, is bounded by �1 and 1, resulting in more easily interpretable scatterplots. Using other

measures of eQTL effect such as multiple regression coefficients did not change our conclusions

about pQTL overlap.

For the comparison of strong eQTLs to significant pQTLs, we defined ‘strong’ eQTLs as those

eQTLs that explained �3.5% of phenotypic variance. Our eQTL data had �99% power to detect

such eQTLs. Under the assumption that the bulk-segregant based pQTL data had similar statistical

power as the current eQTL data, these eQTLs should be easily detectable as pQTL if their effects on
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proteins are similarly strong. For the comparison of strong pQTLs to significant eQTLs, we defined

‘strong’ pQTLs as pQTLs with LOD �15. This threshold was chosen to pick a set of strong pQTLs

that had similar size (218 pQTLs) to the set of strong eQTLs (238 eQTLs).

For eQTLs that did not overlap a significant pQTL or vice versa, we used the effect size point esti-

mate at the respective peak position in the non-significant dataset for plotting in Figure 6B and D

and for results presented in Supplementary files 8 and 10. Data underlying these analyses is avail-

able as Source data 13.

To compute p1 at eQTL positions in X-pQTL data, we summed counts for 21 SNPs centered on

the given eQTL marker for the BY and RM allele in the high and low GFP populations (Albert et al.,

2014b), performed a G-test on these summed counts, and analyzed the resulting p-values using the

qvalue package in R (Storey and Tibshirani, 2003). We chose to sum counts from multiple SNPs

because in X-QTL data with relatively low sequencing coverage, the counts at any one SNP are sub-

ject to counting noise. For reference, p1 computed based only at the nearest SNP to each eQTL was

0.14 for the comparison using all eQTLs, compared to 0.66 using the 21 SNP window. We computed

p1 on 5 sets of randomly selected genome positions. These random p1 values were all �0.52. These

high random estimates reflect the high density of X-pQTLs in the genome as well as a potential

upward bias due to our choice of SNP window, but are all clearly lower than the observed value.

To compute p1 at pQTL positions in eQTL data, we performed t-tests comparing the normalized

expression levels for segregants with the BY allele at pQTL markers to those with the RM allele. The

resulting p-values were analyzed using the qvalue package (Storey and Tibshirani, 2003).

Genetic interactions
For each transcript with at least one significant additive eQTL, we fit a model that included the batch

and growth covariates, the significant additive eQTLs, and a random effect for polygenic back-

ground. The residuals from this model were used for the detection of eQTL-eQTL interactions.

The set of markers used for the detection of eQTL-eQTL interactions was reduced to 3106 using

the findCorrelation function in the R package caret (https://cran.r-project.org/web/packages/caret/

index.html), using a cutoff of 0.99. All unique combinations of markers were tested for each tran-

script, with the exclusion of the 20 closest markers on the same chromosome. eQTL-eQTL peaks,

including the rare case of closely linked eQTL-eQTL interactions occurring on the same chromosome

pair, were identified using custom code provided in our code repository. The same procedure was

repeated for five random permutations of segregant identities. A false discovery rate was calculated

as the ratio of expected to observed peaks at different LOD thresholds. A false discovery rate for

the marginal scan was calculated as the ratio of expected to observed peaks at different LOD thresh-

olds for the subset of marker pairs where one of the pairs had a significant additive effect. False dis-

covery rate was controlled at 10% for both scans.

Additionally, we tested a model of eQTL-eQTL interactions between significant additive eQTLs

only. For each gene, we regressed out the effects of significant additive eQTLs, the effect of poly-

genic background, and the effects of technical covariates. Then, for each gene we tested only the

eQTL-eQTL interaction effect between significant additive eQTL markers. This procedure involved

the peak markers detected in the section on eQTL mapping without any marker downsampling. An

F-statistic was calculated for each test. The same procedure was repeated 10 times with permuta-

tions of segregant identities. From the permutations, the expected number of significant eQTL-

eQTL linkages was calculated at various thresholds. False discovery rate was controlled at 10% for

this procedure. Source data 14 lists all identified genetic interactions.

Circle plots were generated using the ggBio package in R (Yin et al., 2012). Pair markers were

deemed to overlap an additive eQTL hotspot if they were within 10 kb of the given hotspot interval.

Supplementary discussion
Supplementary discussion 1 – Genes with many eQTLs
Some genes were affected by a large number of eQTLs. The five genes with the maximum identified

number of 21 eQTLs included the gene OCH1 as well as two pairs of genes that are physically

located right next to each other, respectively. In each pair, the upstream gene (NIT1 and AQY2,

respectively) is annotated as a protein coding gene, while the downstream genes (YIL165C and

YLL053C, respectively) is annotated as a ‘putative’ protein. In several yeast strains other than the
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reference strain (a version of which is the BY strain we use here), these gene pairs each form a single

open reading frame (ORF). In BY, this ORF is interrupted by a premature stop codon, resulting in

truncated ORF annotations. The fact that BY tolerates the presence of a premature stop variant in

these genes suggests that these genes are under low evolutionary constraint, which may help

explain why these genes are also tolerant of regulatory influences from a large number of eQTLs.

Supplementary discussion 2 – Comparison of heritability to various gene
features
We asked whether the heritability for each gene was correlated with various gene characteristics.

Heritability was positively correlated with expression level (Figure 1—figure supplement 2;

Supplementary file 1). This result may in part be caused by higher power in more highly expressed

genes. Therefore, we controlled for expression level in a multivariate analysis that tested the correla-

tion of various gene features with heritability while controlling for all other features, including gene

expression level.

Genes with higher heritability were less likely to be essential and had fewer protein-protein inter-

action and synthetic genetic interaction partners (Supplementary file 1). This suggests that highly

connected ‘hub’ genes with many interaction partners may be less tolerant of regulatory variation.

The amino acid sequence of genes with higher heritability evolved more slowly, perhaps reflecting

higher sequence conservation.

Genes with higher heritability were enriched (T-test of heritability of genes in GO group vs. genes

not in GO group as implemented in topGO (Alexa et al., 2006) for biological processes involved in

mitochondrial function and cellular respiration (e.g. GO:0055114 ‘oxidation-reduction process’:

p<1e-30; GO:0045333 ‘cellular respiration’: p=5e-8). In yeast, respiration is an optional and highly

regulated means of energy production, and it is conceivable that the respiratory machinery provides

a disproportionally large target for regulatory genetic variation.

Genes with lower heritability were enriched for processes involved in general biogenesis (e.g.

GO:0042254 ‘ribosome biogenesis’ p<1e-30, GO:0010467 ‘gene expression’ p=2e-25, and

GO:0000278 ‘mitotic cell cycle’ p<1e-30), suggesting that these cellular processes may be less toler-

ant of regulatory variation.

The 28 genes with the highest heritability of at least 0.9 were strongly enriched for genes

involved in yeast mating. For example, they included five out of seven genes annotated as ‘regula-

tion of mating-type specific transcription, DNA-templated’ (GO:0007532, p=4e-11). The yeast mat-

ing type pathway involves the a and alpha mating types that are determined by alternative alleles at

the mating type locus. Each mating type expresses a set of highly abundant genes that are almost

completely shut off in the other mating type. Our mapping population includes both mating types at

equal frequency. Genes involved in mating are thus expected to fall into two genetically determined

groups in which their expression is either very high or nearly absent, resulting in high heritability

across the segregant population.

Supplementary discussion 3 – Relationship of eQTL number and heritability
The number of eQTLs that influenced a given gene was correlated with heritability (r = 0.56, p<2.2e-

16, Figure 1—figure supplement 2B), as expected if each additional eQTL adds to the genetic vari-

ance. However, among genes with the highest heritability (423 genes with h2 �0.6), heritability was

negatively correlated with the number of eQTLs (r = �0.47, p<2.2e-16; Figure 1—figure supple-

ment 2B). For these genes, the strongest eQTL accounts for a progressively larger fraction of herita-

bility (r = 0.56, p<2.2e-16, Figure 1—figure supplement 2C & D), while for genes with lower

heritability this relationship was slightly negative (r = �0.04, p=0.001). Thus, while the lower herita-

bility typical of most genes tended to arise from multiple eQTLs that each had small to intermediate

effect, high heritability tended to arise from single, strong eQTLs. The single eQTLs that by them-

selves generated heritability of �0.9 were all local eQTLs for genes in regions of the genome with

high, structurally complex variation (e.g. the ENA locus (Treusch et al., 2015) or subtelomeres

[Bergström et al., 2014]), as well as the gene HO, which is deleted in our RM but not in the BY

strain.
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Supplementary discussion 4 – Allele-specific expression analyses
To estimate the fraction of local eQTLs that act in cis vs. in trans, we compared the local eQTLs to

RNA-Seq data from a diploid BY/RM hybrid. In the hybrid, trans-acting genetic variation influences

both alleles at a gene similarly. By contrast, cis effects can be detected as an allelic imbalance in

expression (also called ’allele specific expression’, ASE) between the BY and the RM allele. We ana-

lyzed two independent BY/RM hybrid datasets and quantified ASE for 3340 genes that have at least

one variant in their coding sequence. Of these, 1974 (59%) had a genome-wide significant local

eQTL.

Genes with significant ASE (Bonferroni-corrected p<0.05) had more local eQTLs than expected

by chance (at least one significant ASE dataset: 451/598 genes, p<2.2e-16, odds ratio (OR)=2.5;

both ASE datasets significant: 100/121; p=3e-8, OR=3.4). Most genes with ASE but without a local

eQTL had ASE of very small magnitude. For these genes, the local eQTLs that would be expected to

correspond to the ASE may have been missed in spite of high power in our current dataset. The

remaining genes with ASE but without a local eQTL were located very close to strong eQTLs that

may have been misclassified as distant (Supplementary file 2 and Figure 2—figure supplement 1A

and B). Overall, significant ASE typically resulted in a detectable local eQTL.

We next examined what fraction of the local eQTLs arises in cis from ASE vs. from local trans act-

ing variation. A simulation analysis of the diploid hybrid data showed that even if there is perfect

agreement between ASE and local eQTLs, the statistical power to detect ASE of the magnitude typi-

cal for most local eQTLs is limited (Materials and Methods, Figure 2—figure supplement 2). Indeed,

77% (1523/1974) of the local eQTLs did not have significant ASE. Those local eQTLs that had signifi-

cant ASE had larger effects than those that did not (Figure 2—figure supplement 1C). Of the 35

local eQTLs for which power to detect ASE was at least 80%, 30 had ASE in at least one ASE dataset

(26 in both datasets; Figure 2—figure supplement 1D). Thus, most cases of missing ASE were prob-

ably due to low statistical power, rather than caused by local trans effects. We present genes with

the strongest discrepancies between ASE and local eQTLs in Supplementary files 2, 3 and 4.

Regulatory sequence variants in upstream regulatory regions such as the promoter are expected

to act in cis and should result in both ASE and local eQTLs. Genes vary in the number of variants in

their upstream regions. While the number of upstream variants was only weakly correlated with ASE

(Spearman’s rho = 0.04, p=0.01), there was a stronger correlation with the fold changes of local

eQTLs (rho=0.23, p<2.2e-16). This analysis is imperfect because not every upstream variant has

effects on expression, and because multiple variants with opposite effects could cancel each other’s

effect on expression. Therefore, cis effects are not expected to be a simple function of upstream var-

iant number. Nevertheless, better correlation of variant number with local eQTLs than with ASE is

consistent with cis regulatory effects that were better detected in the current well-powered eQTL

data than in the available ASE data.

The absolute values of the fold changes agreed remarkably well between ASE and local eQTLs.

The standardized major axis (SMA) slope for all local eQTL effects compared to ASE was 0.94

(r2=0.45, p<2.2e-16). Thus, the effects of cis-acting variation on allelic expression were typically car-

ried forward to local eQTLs of nearly the same magnitude. The SMA slope was just less than one

(confidence interval 0.91–0.97), which may indicate a small tendency for local trans-acting variation

to buffer some cis-acting variants (Bader et al., 2015).

Supplementary discussion 5 – Comparison of eQTLs and protein QTLs
(pQTLs)
The main text presents a comparison focused on the strongest distant eQTLs and pQTLs. The results

for all genome-wide significant distant QTLs, as well as for local QTLs are presented here.

The 154 genes that were present in both our current dataset and our earlier X-pQTL data

(Albert et al., 2014b) had 1,059 distant eQTLs and 1,024 distant pQTLs. Of these eQTLs, 30% (321)

overlapped a pQTL, while of the pQTLs, 31% (314) overlapped an eQTL. The number of overlapping

QTLs differed between these two comparisons because a QTL in one dataset can overlap two neigh-

boring QTLs in the other dataset due to wide confidence intervals of weaker QTLs. Of the overlap-

ping QTLs, 77% (254 / 331) had the same direction of effect (Figure 6C). p1 statistics suggested that

66% of all distant eQTLs have a matching pQTL, while 47% of all distant pQTLs match an eQTL.

These estimates for overlap among all distant QTLs are lower than those for strong QTLs reported

Albert et al. eLife 2018;7:e35471. DOI: https://doi.org/10.7554/eLife.35471 30 of 39

Research article Chromosomes and Gene Expression Genetics and Genomics

https://doi.org/10.7554/eLife.35471


in the main text. This is expected, given the small effect sizes of most distant QTLs will frequently be

missed even when comparing two datasets with high statistical power.

Our X-pQTL dataset comprised experiments for testing the effects of local pQTLs for 41 genes

(Albert et al., 2014b), which revealed local pQTLs for 21 genes (at a LOD of >3). From the current

mRNA data, we observed local eQTLs for 27 of these 41 genes. We found both a local pQTL and a

local eQTL for 16 genes, which was not more than expected by chance (one-sided Fisher’s exact

test, p=0.14, odds ratio=2.6). However, there was a positive correlation between effect sizes for

local eQTLs and pQTLs for all 41 genes (Spearman’s rho=0.6, p=0.0001). Tests for local pQTLs with

high statistical power at more genes will be necessary to draw firm conclusions about the agreement

of local eQTLs and pQTLs.
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. Source data 1. Expression values. This xlsx file contains expression levels in units of log2(TPM) for

all genes and segregants.

DOI: https://doi.org/10.7554/eLife.35471.021

. Source data 2. Covariates. This xlsx file contains information on experimental batch and growth

covariates for all segregants.

DOI: https://doi.org/10.7554/eLife.35471.022

. Source data 3. Genotypes. This xlsx file contains genotypes at 42,052 markers for all segregants.

BY (i.e. reference) alleles are denoted by ‘�1’. RM alleles are denoted by ‘1’.

DOI: https://doi.org/10.7554/eLife.35471.023

. Source data 4. Detected eQTLs. This xlsx file contains all detected eQTLs.

DOI: https://doi.org/10.7554/eLife.35471.024

. Source data 5. Heritability estimates. This xlsx file contains additive and pairwise interactive genetic

variance estimates for all genes.

DOI: https://doi.org/10.7554/eLife.35471.025

. Source data 6. Gene characteristics and annotations. This xlsx file contains gene features used for

comparisons with heritability.

DOI: https://doi.org/10.7554/eLife.35471.026

. Source data 7. Data for allele-specific expression comparisons. This xlsx file contains processed

data used to compare ASE and local eQTLs.

DOI: https://doi.org/10.7554/eLife.35471.027

. Source data 8. Overview of eQTL hotspots. This xlsx file presents information on the detected hot-

spots such as position, number of genes affected, genes located in the region, GO and transcription

factor binding site enrichments of the affected genes. The file has a legend in a separate work sheet.

DOI: https://doi.org/10.7554/eLife.35471.028

. Source data 9. Hotspot effect matrix. This xlsx file contains estimated effects of all hotspots on all

genes.

DOI: https://doi.org/10.7554/eLife.35471.029

. Source data 10. GO enrichment results for genes affected by each hotspot. This txt file contains

GO enrichment results for the 102 hotspots in one file. Columns indicate hotspot identity, GO sub-

category (‘biological process’, ‘molecular function’, or ‘cellular compartment’), and the group of

genes tested for enrichment (‘RM’=up to 100 genes with the strongest hotspot effects with higher

expression linked to the RM allele, ‘BY’=as for ‘RM’, but higher expression linked to the BY allele).

DOI: https://doi.org/10.7554/eLife.35471.030

. Source data 11. Enrichments for transcription factor binding sites at genes affected by each hot-

spot. This txt file contains enrichment results for the 102 hotspots in one file. Columns indicate hot-

spot identity, and the group of genes tested for enrichment (‘RM’=up to 100 genes with the

strongest hotspot effects with higher expression linked to the RM allele, ‘BY’=as for ‘RM’, but higher

expression linked to the BY allele).

DOI: https://doi.org/10.7554/eLife.35471.031

. Source data 12. GO enrichment results for genes located in hotspots. This xlsx file contains the

results of a GO enrichment analysis of genes physically located in hotspot regions.

DOI: https://doi.org/10.7554/eLife.35471.032

. Source data 13. Comparison with pQTLs. This xlsx file contains processed data used for the com-

parisons of eQTLs and pQTLs.

DOI: https://doi.org/10.7554/eLife.35471.033

. Source data 14. Detected interactions between eQTL pairs. This xlsx file contains all detected pairs

of eQTLs with non-additive genetic interactions. There are separate sheets for the genome-wide

scan, the scan between additive eQTLs and the genome, and the scan between additive eQTLs.

There is also a legend in a separate sheet.

DOI: https://doi.org/10.7554/eLife.35471.034
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. Supplementary file 1. Multiple regression of heritability on various gene features. Sums of squares,

degrees of freedom and F-values were computed using Type II analysis of variance as implemented

in the R car package. (1) log2(TPM).

DOI: https://doi.org/10.7554/eLife.35471.035

. Supplementary file 2. Genes with strong (more than 2-fold) and significant ASE in both datasets

but no local eQTL. (1) Shown is the less significant p-value from the two ASE datasets. (2) The LOD

score at the gene position itself irrespective of whether this eQTL is significant. (3) Positive values

indicate higher expression in RM compared to BY. (4) These genes have strong eQTLs close to the

gene, but with a confidence interval that just excludes the gene. The may be influenced by cis acting

local eQTLs where the causal variant is located further away from the gene than captured by our def-

inition of upstream regulatory regions as 1000 base pairs upstream of the start codon.

DOI: https://doi.org/10.7554/eLife.35471.036

. Supplementary file 3. Genes with a local eQTL but no ASE in spite of �80% power to detect ASE.

(1) Positive values indicate higher expression in RM compared to BY. (2) Shown is the more signifi-

cant p-value from the two ASE datasets. (3) The nominally significant p-values in this column do not

pass Bonferroni cutoff for significance. Therefore, ASE at these genes was not identified as

significant.

DOI: https://doi.org/10.7554/eLife.35471.037

. Supplementary file 4. Genes with a local eQTL and significant ASE, and discordant direction of

effect. (1) Positive values indicate higher expression in RM compared to BY. (2) Shown is the less sig-

nificant p-value from the two ASE datasets. (3) The table shows only genes where both ASE datasets

agreed in the direction of effect. Shown is the average effect.

DOI: https://doi.org/10.7554/eLife.35471.038

. Supplementary file 5. Hotspot region plots. This pdf file contains one page per hotspot region,

showing the position, bootstrap distribution, variant and gene content for each hotspot. See legend

of Figure 4 and Figure 4—figure supplement 4 for further details.

DOI: https://doi.org/10.7554/eLife.35471.039

. Supplementary file 6. Plots of genes affected by hotspots. This pdf file contains one page per hot-

spot region. Each page shows three gene co-expression networks. Each network displays connec-

tions among genes with the strongest linkages to the hotspot. The left plots show genes with higher

expression in the presence of the RM allele. The middle plot shows genes with higher expression in

the presence of the BY allele. The left and middle panels each show up to 50 genes with the stron-

gest linkages to the hotspot in the given direction. If fewer than 50 genes were affected by the hot-

spot in the given direction, all genes affected in this direction are plotted, and their number

indicated in the panel title. The right panel shows the joint network formed by the genes in the left

and middle panel, with colors indicating up- or down-regulation by the hotspot. Genes with local

eQTL located in the 95% confidence interval for hotspot location are indicated by red circles. Genes

local eQTL located anywhere in the region tested by bootstraps are indicated by orange circles. See

legend of Figure 4—figure supplement 4 for further details.

DOI: https://doi.org/10.7554/eLife.35471.040

. Supplementary file 7. Multiple logistic regression of genes located in hotspots on various gene fea-

tures. Likelihood ratios, degrees of freedom and p-values were computed using Type II analysis of

variance as implemented in the R car package. (1) log2(TPM).

DOI: https://doi.org/10.7554/eLife.35471.041

. Supplementary file 8. Strong eQTLs without pQTL. (1) Positive values indicate higher expression in

RM compared to BY.

DOI: https://doi.org/10.7554/eLife.35471.042

. Supplementary file 9. Strong mRNA and protein QTLs with opposite effect. (1) Positive values indi-

cate higher expression in RM compared to BY.

DOI: https://doi.org/10.7554/eLife.35471.043

. Supplementary file 10. Strong pQTLs without eQTL. (1) Positive values indicate higher expression

in RM compared to BY.

DOI: https://doi.org/10.7554/eLife.35471.044

. Transparent reporting form
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Data availability

Sequencing reads have been deposited at SRA under accession codes SRP148919 and SRP149494.

Processed datasets are included with this manuscript, and are also available in a FigShare repository

at https://figshare.com/s/83bddc1ddf3f97108ad4. All data are available freely and without

restriction.
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Zappala Z, Cummings BB, Gelfand ET, Hadley K, Huang KH, Lek M, Li X, Nedzel JL, Nguyen DY, et al. , 2017.
Genetic effects on gene expression across human tissues. Nature 550:204–213. DOI: https://doi.org/10.1038/
nature24277

Albert FW, Kruglyak L. 2015. The role of regulatory variation in complex traits and disease. Nature Reviews
Genetics 16:197–212. DOI: https://doi.org/10.1038/nrg3891, PMID: 25707927

Albert FW, Muzzey D, Weissman JS, Kruglyak L. 2014a. Genetic influences on translation in yeast. PLoS Genetics
10:e1004692. DOI: https://doi.org/10.1371/journal.pgen.1004692

Albert FW, Treusch S, Shockley AH, Bloom JS, Kruglyak L. 2014b. Genetics of single-cell protein abundance
variation in large yeast populations. Nature 506:494–497. DOI: https://doi.org/10.1038/nature12904,
PMID: 24402228

Albert et al. eLife 2018;7:e35471. DOI: https://doi.org/10.7554/eLife.35471 34 of 39

Research article Chromosomes and Gene Expression Genetics and Genomics

https://doi.org/10.7554/eLife.35471.045
https://figshare.com/s/83bddc1ddf3f97108ad4
https://www.ncbi.nlm.nih.gov/sra/SRP148919
https://www.ncbi.nlm.nih.gov/sra/SRP148919
https://www.ncbi.nlm.nih.gov/sra/SRP149494
https://www.ncbi.nlm.nih.gov/sra/SRP149494
https://figshare.com/s/83bddc1ddf3f97108ad4
https://figshare.com/s/83bddc1ddf3f97108ad4
https://www.nature.com/articles/nature12904
https://www.nature.com/articles/nature12904
http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1004692
http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1004692
http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1004692
http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1004692
http://thecellmap.org/costanzo2016/
http://thecellmap.org/costanzo2016/
http://genomics-pubs.princeton.edu/YeastCross_BYxRM/data.shtml
http://genomics-pubs.princeton.edu/YeastCross_BYxRM/data.shtml
http://genomics-pubs.princeton.edu/YeastCross_BYxRM/data.shtml
https://doi.org/10.1038/nature24277
https://doi.org/10.1038/nature24277
https://doi.org/10.1038/nrg3891
http://www.ncbi.nlm.nih.gov/pubmed/25707927
https://doi.org/10.1371/journal.pgen.1004692
https://doi.org/10.1038/nature12904
http://www.ncbi.nlm.nih.gov/pubmed/24402228
https://doi.org/10.7554/eLife.35471


Alexa A, Rahnenführer J, Lengauer T. 2006. Improved scoring of functional groups from gene expression data by
decorrelating GO graph structure. Bioinformatics 22:1600–1607. DOI: https://doi.org/10.1093/bioinformatics/
btl140, PMID: 16606683

Bader DM, Wilkening S, Lin G, Tekkedil MM, Dietrich K, Steinmetz LM, Gagneur J. 2015. Negative feedback
buffers effects of regulatory variants. Molecular Systems Biology 11:785. DOI: https://doi.org/10.15252/msb.
20145844, PMID: 25634765

Battle A, Khan Z, Wang SH, Mitrano A, Ford MJ, Pritchard JK, Gilad Y. 2015. Impact of regulatory variation from
RNA to protein. Science 347:664–667. DOI: https://doi.org/10.1126/science.1260793

Battle A, Mostafavi S, Zhu X, Potash JB, Weissman MM, McCormick C, Haudenschild CD, Beckman KB, Shi J,
Mei R, Urban AE, Montgomery SB, Levinson DF, Koller D. 2014. Characterizing the genetic basis of
transcriptome diversity through RNA-sequencing of 922 individuals. Genome Research 24:14–24. DOI: https://
doi.org/10.1101/gr.155192.113, PMID: 24092820
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