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Abstract

Deregulation of RNA polymerase III (Pol III) transcription enhances cellular tRNAs and 5S rRNA 

production, leading to an increase in translational capacity to promote cell proliferation, 

transformation and tumor formation. Phosphorylation of histone H3 (H3ph) is induced by tumor 

promoters (EGF, UV and TPA) and immediate early genes, such as c-myc, c-jun and c-fos. 

However, it remains to be determined whether H3ph is involved in RNA Pol III transcription. 

Here, we report that EGF strongly induced H3ph at serine 28 (H3S28ph). EGF significantly 

increased transcription of RNA Pol III-dependent genes (Pol III genes), tRNALeu, tRNATyr, 5S 

rRNA, and 7SL RNA. Inhibition of EGFR, but not PI3K, reduced both H3S28ph and tRNALeu 

and 5S rRNA transcription. EGF enhanced occupancy of H3S28ph in the promoters of tRNALeu 

and 5S rRNA. Further analysis indicates that EGF augmented cellular levels of protein and mRNA 

of TFIIIB subunits, Brf1 and TBP. Brf1 is a specific transcription factor for RNA Pol III genes. 

EGF enhanced occupancy of H3S28ph in the Brf1 and TBP promoters. Inhibition of H3S28ph by 

mutant H3S28A repressed Brf1, TBP and tRNALeu and 5S rRNA expression and decreased 

occupancy of H3S28ph in their promoters. Reduction of Brf1 significantly decreased tRNALeu and 

5S rRNA transcription and repressed EGF-induced anchorage-independent growth. Blocking 

H3S28ph signaling by using mutant H3S28A reduced EGF-induced cell transformation. Together, 

these results indicate that EGF activates EGFR signaling to induce H3S28ph, which, in turn, 

upregulates tRNALeu and 5S rRNA transcription through Brf1 and TBP and promotes cell 

transformation. The studies demonstrate that epigenetic modification of H3S28ph plays a critical 

role in the activity of Pol III genes.
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Introduction

RNA polymerase (Pol) III transcribes a variety of untranslated RNAs, including tRNAs, 5S 

rRNAs, 7SL RNA, 7SK RNA and U6 RNA (Ullu E and Tschudi C, 1984; Dieci et al, 2007, 

Raha D et al., 2010), while tRNA and 5S rRNA control the translational and growth 

capacity of cells (Goodfellow et al., 2006; White R, 2004). Oncogenic proteins, such as Ras, 

c-Jun, and c-Myc, stimulate RNA Pol III-dependent gene (Pol III gene) transcription (Zhong 

et al., 2004; Johnson and Johnson, 2008); tumor suppressors, such as pRb, p53, PTEN and 

Maf1 repress transcription of this class of genes (White R, 2004; Johnson et al., 2008a; 

Woiwode et al., 2008). Studies have indicated that RNA Pol III transcription products are 

elevated in both transformed and tumor cells suggesting that they play a crucial role in 

tumorigenesis (White R, 2004; Winter et al., 2000). Consistent with this idea, enhanced Pol 

III transcription is required for oncogenic transformation (Johnson et al., 2008b, Marshall et 

al., 2008). The ability of these oncogenic and tumor suppressor proteins to deregulate Pol III 

transcription results from their capacity to regulate the TFIIIB complex. The TFIIIB 

complex consists of TATA box-binding protein (TBP) and its associated factors, Brf1 and 

Bdp1. TFIIIB, together with TFIIIC and RNA Pol III, are required to transcribe tRNA 

genes, whereas TFIIIB, together with TFIIIA, TFIIIC and RNA Pol III, are required to 

transcribe 5S rRNA genes. Earlier studies demonstrated that EGF activated EGFR, Ras, and 

MAP kinases to increase TBP expression, resulting in RNA Pol I and III transcription 

(Zhong et al., 2004). Further analysis indicated that alteration of cellular levels of TBP 

affected Bdp1 expression, but did not affect Brf1 expression (Zhong and Johnson, 2009). 

However, very little is known about whether H3 modifications modulate Pol III 

transcription. Recent studies have indicated that most active chromatin marks present in Pol 

II genes are also observed in active Pol III genes (Barski et al., 2010; Oler et al., 2010; 

Moqtaderi et al., 2010). This implies that epigenetic modifications of histones may regulate 

activity of Pol III genes.

The maintenance of a repressed or activated status of a gene is often necessary for 

embryonic development, cellular differentiation, and pathological states (Felsenfeld and 

Groudine, 2003), and may be regulated by a specific histone code (Jenuwein and Allis, 

2001). Post-translational modifications of histone H3 (i.e., phosphorylation, acetylation, 

methylation and ubiquitination) are known to be involved in chromatin remodeling and 

transcriptional regulation. Phosphorylation of histone H3 (H3ph) is induced by tumor 

promoters (EGF, UV, TPA) (Cheung et al., 2000; Zhong, 2001a, b; Kim et al., 2008) and 

immediate early genes, such as c-myc, c-jun and c-fos (Cheung et al., 2000; Wei et al., 

1999). The activation of these oncoproteins promotes cancer development. H3ph at serine 

28 (H3S28ph) is associated with mitotic chromosome condensation (Goto et al., 1999) and 

cell transformation (Kim et al., 2008). Studies have revealed that MAP kinases (i.e., ERK, 

p38, JNK) and the MAPK downstream component, MSK1, mediated H3S28ph (Zhong et 

al., 2000, 2001a,b). However, it remains to be determined which pathway upstream of 

MAPK mediates H3S28ph and whether H3S28ph affects the transcription machinery that 

regulates the activity of Pol III genes. Our previous study demonstrated that EGF activated 

EGFR and Ras to enhance TBP expression and RNA Pol III reporter transcription (Zhong et 

al., 2004). This implies that H3S28ph may mediate Pol III gene transcription. To explore the 
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epigenetic role of H3S28ph on Pol III transcription, we treated mouse epidermal JB6 cells 

with EGF to examine the effects of H3S28ph on Pol III genes. We have established that 

Brf1, TBP and tRNALeu and 5S rRNA are new targets of H3S28ph. Our results elucidate a 

novel role of H3S28ph on the regulation of RNA Pol III transcription machinery. H3S28ph 

regulates Brf1 expression through EGFR, but not the PI3K pathway to indirectly affect the 

activity of Pol III genes. In addition, H3S28ph also directly upregulates transcription of 

tRNALeu and 5S rRNA. These regulatory events serve to modulate cell transformation.

Results

EGF-induced H3S28ph modulates transcription of Pol III genes through EGFR pathway

To determine which pathway upstream of MAPK regulates H3S28ph, mouse epidermal JB6 

cells were treated with various amounts of EGF for 30 min. As shown in Fig.1A, EGF 

dramatically induced H3S28ph compared to a control without EGF treatment. Pretreatment 

of cells with the EGFR inhibitor, AG1478, but not the PI3K inhibitor, LY294002, blocked 

EGF-induced H3S28ph (Fig. 1B). To further determine whether this event specifically 

required EGFR, matched mouse embryo fibroblast cells that normally express EGFR were 

compared to cells that lack EGFR. Immunoblot analysis revealed that deletion of EGFR 

blocked EGF-induced H3S28ph in EGFR–/– cells compared to the EGFR+/+ cells (Chen et 

al., 2001) (Fig. 1C). Introduction of the dominant negative mutant of PI3K (ΔPI3K) into JB6 

cells did not decrease H3S28ph compared to JB6 cells transfected with empty vector alone 

(Fig 1D). As shown in Fig. 2A, EGF dramatically increased Pol III genes, tRNALeu, 

tRNATyr, 5S rRNA, and 7SL RNA transcription. Blocking EGFR using AG1478 reduced 

the induction of Pol III genes (Fig. 2B). Further analysis indicated that blocking H2S28ph 

by expressing mutant H3S28A reduced EGF-induced tRNALeu and 5S rRNA transcription 

(Fig. 2C). Together, these results indicate that activation of EGFR signaling serves to 

regulate cellular H3S28ph, which modulates transcription of tRNALeu and 5S rRNA.

H3S28ph occupies the Brf1 and TBP promoters to modulate their expression

It has previously been shown that EGF increases TBP expression to enhance tRNA reporter 

transcription (Zhong et al., 2004). It remains to be seen whether EGF affects the expression 

of the other two TFIIIB subunits, Brf1 and Bdp1. Further analysis indicated that the MAPK, 

JNK1 positively regulated expression of the TFIIIB subunits TBP, Brf1, and Bdp1. 

Regulation of Bdp1, but not Brf1, occurred through JNK-mediated alterations in TBP 

expression (Zhong and Johnson, 2009), suggesting Brf1 and Bdp1 may be regulated 

independently. As shown in Fig. 3, EGF treatment increased cellular levels of protein and 

mRNA of Brf1, TBP and Bdp1, but did not affect TFIIIC63. Thus, we further investigated 

the role of H3S28ph in the regulation of Brf1 and TBP. To determine whether the EGF-

mediated increase in H3S28ph required to stimulate Brf1 and TBP expression was due to 

enhanced occupancy of H3S28ph at the Brf1 and TBP promoters, chromatin 

immunoprecipition (ChIP) assays were performed. EGF induced a marked increase in the 

levels of Brf1 and TBP mRNA and occupancy of H3S28ph in the Brf1 and TBP promoters, 

but not in the TFIIIC63 (Fig. 4A and D). Reduction of H3S28ph by expressing mutant 

H3S28A decreased its occupancy in the Brf1 and TBP promoters, but did not affect 

TFIIIC63 (Fig. 4D). We next assessed whether the EGF-induced increase in H3S28ph 
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affected induction of Brf1 and TBP expression. The results indicated that increased H3 

expression by the WT H3 expression plasmid in JB6 cells enhanced EGF-mediated Brf1 and 

TBP expression, but not TFIIIC63 (Fig. 4B and C). In contrast, blocking H3S28ph by mutant 

H3S28A repressed the induction of Brf1 and TBP expression by EGF (Fig. 4B and C). 

These results support the idea that EGF mediates an increase in Brf1 and TBP expression 

primarily through enhanced H3S28ph occupancy of their promoters.

EGF enhanced the occupancy of H3S28ph in tRNA and 5S rRNA promoters

Next, we further determined whether H3S28ph mediated tRNALeu and 5S rRNA 

transcription. Since Brf1 specifically regulates Pol III gene transcription, we performed 

ChIP analysis to determine if Brf1 and H3S28ph occupy the Pol III gene promoters. The 

results revealed that EGF increased the occupancy of tRNALeu and 5S rRNA promoters by 

Brf1 and H3S28ph (Fig. 5A and B). In contrast, repression of H3S28ph by mutant H3S28A 

expression decreased occupancy of H3S28ph in the promoters (Fig. 5C). In addition, EGF 

reduced the H3K27me3 (a marker of gene repression) occupancy of tRNALeu and 5S rRNA 

promoters (Fig. 5A and B). Recently, by using ChIP-sequence analysis for human CD4+ T 

cells and human Leukemia K562 cells, Barski and Moqtaderi respectively reported that 

weak occupancy of H3K27me3 correlates with tRNA expression (Barski et al, 2010; 

Moqtaderi et al, 2010). Our results of HeK27me3 occupancy in tRNALeu and 5S rRNA 

promoter are consistent with the analysis of ChIP-sequence. Although the analysis of ChIP-

sequencing reveals strong H3K4me1/2/3 and H3Kac and weak H3K27me3 in tRNA genes, 

it remains to be determined whether H3S28ph modulates the activities of Pol III genes. Our 

studies demonstrate that H3S28ph may directly function at tRNALeu and 5S rRNA 

promoters to modulate their transcription.

Reduction of H3S28ph decreased transcription of tRNA and 5S rRNA and repressed cell 
transformation

Previous studies demonstrated that increasing Brf1 expression resulted in enhancement of 

Pol III gene transcription (Johnson et al., 2008b) and was sufficient for cell transformation 

(Marshall et al., 2008). Induction of Brf1 expression allowed anchorage-independent 

colonies to form and promoted tumor formation in mice (Marshall et al., 2008). In the 

present study we demonstrated that H3S28ph modulated Brf1 expression and tRNA and 5S 

rRNA transcription (Fig. 2 and 3). Thus, we investigated whether H3S28ph affected EGF-

induced cell transformation. The results indicate that inhibiting Brf1 expression with its 

siRNAs decreased cellular levels of Brf1 protein and mRNA, as well as Pol III gene 

transcription (Fig. 6A). EGF strongly induced JB6 cell anchorage-independent growth, 

while reducing Brf1 expression significantly decreased EGF-induced colony formation (Fig. 

6B). Furthermore, increasing H3 expression by using stable JB6 cells expressing WT H3 

enhanced EGF-induced anchorage-independent growth, compared to stable JB6 cells 

expressing vector alone. However, blocking H3S28ph by stably expressing mutant H3S28A 

decreased anchorage-independent growth (Fig. 6C). These results demonstrate that H3S28ph 

modulates Brf1 expression and enhances tRNA and 5S rRNA transcription, thereby 

promoting cell transformation.

Zhang et al. Page 4

Oncogene. Author manuscript; available in PMC 2012 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Discussion

This study presents a mechanistic analysis characterizing how the epigenetic modification of 

histone H3, H3S28ph, modulates endogenous tRNA and 5S rRNA gene transcription. Here, 

we report that EGF-induced H3S28ph occurs through EGFR, but not the PI3K pathway. Our 

studies identify the mechanism by which EGF-induced occupancy of H3S28ph in the Brf1 

and TBP promoters modulates their expression, which indirectly regulates tRNA and 5S 

rRNA transcription. In addition, H3S28ph occupies tRNA and 5S rRNA promoters to 

directly regulate tRNA and 5S rRNA transcription. H3S28ph-mediated Brf1 expression and 

Pol III gene transcription are critically important to cell transformation. Blocking H3S28ph 

is sufficient to inhibit tRNA and 5S rRNA transcription and to repress anchorage-

independent growth of JB6 cells. These findings support the novel notion that the histone H3 

epigenetic modification, H3S28ph, regulates Pol III gene activity.

Previous studies have shown that MAPKs, ERKs, p38 and JNKs are involved in the 

phosphorylation of histone H3 at serine 10 (H3S10ph) and serine 28 (Zhong et al., 2000, 

2001 b). Further analysis indicated that down-stream of MAPKs, MSK1 mediated H3S28ph 

(Zhong et al., 2001a). In this study, we report that EGFR, but not PI3K, mediated EGF-

induced H3S28ph (Fig. 1). Studies have identified H3S10ph and H3S28ph as mitotic 

markers (Wei et al., 1999; Goho et al., 1999). Phosphorylation of histone H3 at threonine 3 

(H3T3ph) has been shown to be necessary for accumulation of the chromosomal passenger 

complex at the centromere in mitosis (Wang et al., 2010). Phosphorylation of histone H3 at 

threonine 6 (H3T6ph) mediated androgen receptor (AR)-activated gene expression (Metzger 

et al., 2010). In addition, H3S10ph and H3S28ph were associated with cell transformation 

(Kim et al., 2008). These studies suggest that H3ph is critically important to numerous 

cellular processes. Pol III gene transcription is essential for cell transformation and 

tumorgenesis (Johnson et al., 2008b; Marshall et al., 2008). However, it is not clear whether 

H3ph modulates Pol III gene transcription. Our previous study has demonstrated that EGF 

increased TBP expression and enhanced tRNA reporter transcription through the EGFR-

Ras-MAPK pathway (Zhong et al., 2004). Here, we report that EGF induced H3S28ph 

through the EGFR pathway (Fig. 1) and that H3S28ph indeed modulated endogenous 

tRNALeu and 5S rRNA transcription.

Although our previous study indicated that EGF increased TBP expression and tRNA 

reporter transcription in JB6 cells (Zhong et al., 2004), we did not establish whether EGF 

affected the other two TFIIIB subunits, Brf1 and Bdp1. Our recent analysis further 

demonstrated that alteration of the cellular level of TBP affected Bdp1 expression, but did 

not change Brf1 expression (Zhong and Johnson, 2009). In the present study, the results 

reveal that EGF increased endogenous Pol III gene transcription (Fig. 2) and enhanced 

cellular levels of TFIIIB subunits, Brf1 and Bdp1 in JB6 cells (Fig. 3). Thus, we investigated 

whether H3S28ph mediated Brf1 expression, resulting in changes in endogenous Pol III 

gene transcription. EGF enhanced occupancy of H3S28ph in the promoters of Brf1, TBP, 

tRNALeu and 5S rRNA, and increased Brf1 and TBP expression as well as tRNALeu and 5S 

rRNA transcription. In contrast, expression of mutant H3S28A reduced occupancy of 

H3S28ph in the Brf1, TBP and tRNALeu and 5S rRNA promoters and decreased their 

expression (Fig. 4 and 5), resulting in repression of cell transformation (Fig. 6). These 
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studies demonstrate that H3S28ph directly and indirectly regulate Pol III genes leading to 

cell transformation.

It is possible that a balance of different histone H3 modifications in vivo control gene 

expression in various physiological and pathological states. The balance between acetylation 

and deacetylation of core histones is regulated by HATs and HDACs. It has been shown that 

removal of acetyl groups by HDACs is associated with transcriptional repression (Struhl, 

1998; Finnin et al., 1999). The treatment of mammalian cells with inhibitors of HDACs such 

as TSA or trapoxin was shown to result in increased expression of a variety of genes (Kijima 

et al., 1993; Yoshida et al., 1995). C-Myc induction enhanced occupancy of tRNALeu and 

5S rRNA promoters by acetylated histone H3 and increased the expression of these genes 

(Kenneth et al., 2007). In addition to increasing acetylation of histone H3, TSA activated 

MAPKs to induce H3S28ph, whereas H3S28ph, in turn, facilitated acetylation of histone H3 

at lysine 9 (Zhong et al., 2003). Immediate early genes, c-myc, c-jun and c-fos, induce H3ph 

(Cheung et al, 2000; Wei et al, 1999). This implies that c-Myc induction may enhance H3ph 

to elevate the activity of tRNA and 5S rRNA genes. The role of c-Myc in H3ph is worth 

further study. H3T6ph prevented demethylation of H3K4 to increase androgen receptor-

dependent gene activation (Metzger et al., 2010). H3S10ph was critical for full 

transcriptional activation of virus-like 30S elements (Brumeir et al., 2010). H3S10ph 

occupancy of the c-fos promoter mediated gene activity (Shimada et al., 2010). 

H3K4me1/2/3 is a marker of gene activation, whereas H3K27me3 is a marker of gene 

repression. Chip-sequence reveals strong H3K4me1/2/3 and H3Kac and weak H3K27me3 in 

tRNA genes (Barski et al, 2010). Phosphorylation of H3K27me3S28 occurs in response to 

stress signaling, mitogenic signaling, and retinoic acid (RA)-induced neuronal 

differentiation. MSK1/2-mediated phosphorylation of H3K27me3S28 activates a subset of 

polycomb group target genes and modulates the gene expression program which determines 

cell fate (Gehani et al, 2010). Our results reveal that EGF decreased occupancy of 

H3K27me3 in tRNALeu and 5S rRNA promoter, while EGF enhanced occupancy of 

H3S28ph in tRNALeu and 5S rRNA promoters, resulting in upregulation of their 

transcription. Our studies indicate that epigenetic modifications of histone H3 takes part in 

the regulation of tRNA and 5S rRNA genes. Together, these analyses support the idea that 

changes in the balance of different modifications of histone H3 provide a mechanism for the 

regulation of tRNA and 5S rRNA transcription. H3S28ph not only directly occupies 

promoters of Pol II genes, such as c-fos and Brf1 and TBP, but also is directly associated 

with promoters of Pol III genes, tRNALeu and 5S rRNA. It suggests that a common 

epigenetic regulation of histone H3 mediates both RNA Pol II and RNA Pol III-dependent 

gene activity. In summary, increased Pol III gene transcription, observed in transformed 

cells and human tumors, is required for oncogenic transformation. In this present study, we 

provide evidence that increasing H3S28ph enhances Pol III gene transcription and the rate of 

cell transformation. The novel findings suggest the possibility that blocking H3S28ph by an 

inhibitor may be a potential approach to repress cell transformation and tumor development 

(Fig. 7).
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Materials and methods

Reagents and antibodies

EGF was from Sigma-Aldrich. Cell culture medium (MEM) and DMEM, G418, Lipofectin 

reagent, Lipofectamine 2000, TRIzol reagent and OPTI-MEM were from Invitrogen. 

Antibodies against TBP, Bdp1, β-actin, TFIIIC63 and c-Myc probe were obtained from San 

Cruz. Histone H3 and phospho-H3S28 antibodies were from Cell Signaling. Brf1 antibody 

was from Bethyl laboratories Inc. Inhibitors of AG1478 and LY294002 were from A.G. 

Scientific, Inc. The sequences of primers and Brf1 siRNAs and primers were listed in 

supplements. Expression plasmids of histone H3 were kindly provided by Dr. Masaki 

Inagaki (Aichi, Japan).

RT-qPCR and transfection assays

Total RNA was isolated from mouse epidermal JB6 cells or engineered JB6 cells using 

single step extraction method with TRIzol reagent (Invitrogen). Precursor of tRNALeu and 

tRNATyr, 7SL RNA and 5S rRNA transcripts were measured as described previously 

(Crighton et al., 2003). For transient transfection assays, JB6 cells were transfected with 

plasmids or siRNAs as described previously (Zhong et al., 2004). Serum-free medium was 

added to each dish with Lipofectin-DNA or Lipofectamine2000-siRNA complexes, and cells 

were further incubated for 4h. The medium was changed with 5% FBS/MEM and cells were 

incubated for 48h before harvesting. Protein concentrations of the resultant lysates were 

measured by the Bradford method.

Stable transfection and cell Anchorage-independent growth

Stable transfections were conducted using the Lipofectin reagent (Invitrogen) and pCMV-

Tag3 vector (Vector), pCMV-Tag3-wild-type histone H3 (WT H3) or pCMV-Tag3-mutant 

histone H3S28A (H3S28A). The stable transfections were carried out as described in the 

protocol from Invitrogen. In brief, for each 6 cm dish of JB6 cells to be transfected, 4 μg 

DNA vector, WT H3 or H3S28A into 100 μl OPTI-MEM media and 4 μl lipofectin reagent 

in 100 μl OPTI-MEM media were incubated for 5 min at room temperature, respectively. 

Diluted DNA and lipofectin reagent were mixed and incubated for 30 min at room 

temperature to form the DNA-lipofectin complexes. DNA-lipofectin complex was added 

into each dish and mixed. The cells were incubated at 37 °C for 4 h and then media were 

changed to fresh growth media for 48 h. Selective media containing 400μg/ml G-418 were 

added to each dish and the surviving G418-resistant cell populations were pooled. Early 

passage number of selected cells were used and maintained in the presence of G-418 

(200μg/ml). G418 selected cells were tested for c-Myc epitope-tagged histone H3 by 

immunoblot analysis with a c-Myc-tag antibody.

JB6 cells transfected with mismatch RNA and mouse Brf1 siRNAs (Table S1). The Brf1 

siRNAs are pooled and correspond to nucleotide positions 723-741, 1623-1641 and 

2415-2435 within exon 4, 12 and 18 of mouse Brf1, respectively. The transiently transfected 

JB6 cells or JB6 stable cell lines expressing vector, WT H3 or H3S28A (2 × 104 cells/well 

in 6-well plate) were suspended in 0.35% (w/v) agar in 10% FBS/MEM with or without 
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EGF (20ng/ml), over a bottom layer of media with 0.5% (w/v) agar. Cells were fed fresh 

complete media with EGF twice weekly. Colonies were counted 1-2 weeks after plating.

Immunoblot analysis

Immunoblot analysis was carried out as previously described (Zhong and Johnson, 2009). 

Cells were grown to 85% confluency in 5% FBS/MEM and then serum deprived using 0.1% 

FBS/MEM for 3 h. Where noted, cells were pretreated with 2 μM of the EGFR inhibitor, AG 

1478 or 25μM PI3K inhibitor, LY 294002 for 1 hr and then incubated with or without 20 

ng/ml of EGF. Lysates (50 μg of protein) were subjected to immunoblot analysis. 

Membranes were probed with specific antibodies as indicated. Hybond-P membrane was 

used for protein transfer. Bound primary antibody was visualized using horseradish 

peroxidase-conjugated secondary antibody (Vector Laboratories) and enhanced 

chemiluminescence reagents (Amersham).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. EGF-induced H3S28ph requires EGFR, but not PI3K
(A) EGF induces H3S28ph in JB6 cells. JB6 cells were starved in 0.1% FBS/MEM and 

treated with 0, 5, 10, 20 or 50ng/ml EGF for 30 min. H3S28ph and total H3 were determined 

by antibodies as designated. (B) EGFR inhibitor reduces H3S28ph. JB6 cells were 

pretreated with 2μM AG1478 or 25μM LY294002 for 1h and then treated with 20 ng/ml 

EGF as indicated. H3S28ph.was detected as in A. (C) EGFR deficiency blocks H3S28ph. 

EGFR-/- and EGFR+/+ MEFs were treated with 20ng/ml EGF and immunoblot analysis was 

performed using lysates derived from these MEFs as designated. (D) Dominant negative 

mutant PI3K (ΔPI3K) did not affect H3S28ph. JB6 cells expressing ΔPI3K or vector were 

treated with EGF to detect H3S28ph as in C. A representative blot from three independent 

determinations is shown.
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Fig. 2. Blocking H3S28ph represses endogenous Pol III gene transcription
(A) EGF enhances Pol III gene transcription in JB6 cells. Cells were treated with 20 ng/ml 

EGF for 60 min and total RNAs were extracted from these cells. The pre-tRNALeu, pre-

tRNATyr, 7SL RNA, 5S rRNA, and GAPDH transcripts were measured by RT-qPCR. The 

fold change was calculated by normalizing to the amount of GAPDH mRNA. (B) Inhibitor 

of EGFR represses the activity of pre-tRNALeu and 5S rRNA genes. The cells were 

pretreated with AG1478 for 1h and treated with EGF for 60 min. tRNALeu and 5S rRNA 

was determined by RT-qPCR. (C) Inhibition of H3S28ph reduces Pol III gene transcription. 

JB6 cells were transiently transfected with WT H3 and mutant H3S28A expression 

constructs for 48h and treated with EGF, the amounts of pre-tRNALeu, 5S rRNA, and 

GAPDH transcripts were measured by RT-qPCR. The bars represent means ± SE of at least 

three independent determinations.
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Fig. 3. EGF enhances expression of TFIIIB subunits
(A) EGF increases cellular levels of TFIIIB subunits in JB6 cells. JB6 cells were treated 

with EGF. Immunoblot analysis was performed using protein lysates derived from these 

cells and antibodies against Brf1, TBP, Bdp1, TFIIIC63 and β-actin as designated. A 

representative blot from three independent determinations is shown. (B) EGF enhances 

mRNA levels of Brf1, TBP, Bdp1 and TFIIIC63. JB6 cells were treated with EGF. The 

amounts of Brf1, TBP, Bdp1, TFIIIC63 and GAPDH transcription were measured by RT-

qPCR. The values represent means ± SE of three independent determinations.
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Fig. 4. EGF induces H3S28ph occupancy in Brf1 and TBP promoters and enhances their 
expression
(A) EGF enhances occupancy of H3S28ph in the Brf1 promoter. Schematic of the mouse 

Brf1 promoter and primers used for ChIP assays are designated relative to putative 

transcription start sites (TSS) and upstream of TSS (top). JB6 cells were treated with EGF 

and ChIP assays were performed using antibodies to H3S28ph and H3 and qPCR was used 

to quantify the amplified DNA. The relative occupancy of the proteins was calculated based 

on the control (no EGF treatment). (B and C) Inhibiting H3S28ph abrogates EGF-enhanced 
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Brf1 and TBP expression. JB6 cells were transfected with WT H3 or mutant H3S28A 

expression plasmids for 48 hours and then treated with EGF. H3S28ph, H3, c-Myc, Brf1, 

TBP, TFIIIC63 and β-actin were determined by immunoblot analysis. A representative blot 

is shown (B). RT-qPCR was performed on RNA isolated from these cells to measure Brf1, 

TBP, TFIIIC63 and GAPDH transcripts (C). (D) Expression of mutant H3S28A reduces 

H3S28ph occupancy in Brf1 and TBP promoters. These cells were treated as indicated in B 
and C. Chromatin was extracted from these cells to perform ChIP assay with H3S28ph 

antibody. All values shown are the means ± SEM of at least three independent chromatin 

preparations.
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Fig. 5. EGF increases occupancies of Brf1 and H3S28ph, but decreases H3K27me3 in tRNALeu 

and 5S rRNA promoters
(A) EGF-mediated occupancy in the tRNALeu promoter. JB6 cells were treated with or 

without EGF and ChIP assays were performed using Brf1, H3S28ph, H3K27me3 and H3 

antibodies and qPCR with specific tRNALeu primers to quantify the amplified DNA. (B) 

EGF enhances Brf1, H3S28ph occupancy in the 5S rRNA promoter. ChIP assays were 

performed as indicated in Fig. 4 and qPCR was used with 5S rRNA primers to quantify the 

DNA. (C) Expression of mutant H3S28A reduces H3S28ph occupancy in tRNALeu and 5S 

rRNA promoters. These cells were treated as designed Fig 4B and C. Chromatin was 

extracted from these cells to perform ChIP assays with H3S28ph antibody. The relative 

occupancy of the proteins was calculated based on the control (no EGF treatment). All 

values shown are the means ± SEM of at least three independent chromatin preparations.
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Fig. 6. Reduction of Brf1 and H3S28ph represses EGF-induced cell transformation
(A) Repression of Brf1 expression inhibits EGF-induced Pol III gene transcription. JB6 cells 

were transfected with mismatch (mm) RNA or Brf1 siRNAs for 48 h and treated with EGF. 

Cell lysates and RNA were isolated from these cells. Immunoblot analysis was performed to 

determine cellular level of Brf1 protein (left) and pre-tRNALeu (middle), 5S rRNA (right) 

and GAPDH transcripts were measured by RT-qPCR. (B) Down-regulating Brf1 expression 

decreases EGF-induced anchorage-independent growth. JB6 cells expressing Brf1 siRNAs 

were poured in triplicate into 6-well plate with 0.35% agar containing 0ng or 20ng/ml EGF. 

The cells in A were analyzed for growth in soft agar. (C) Blocking H3S28ph signaling 

represses EGF-induced cell transformation. JB6 stable cell lines expressing pcDNA3 vector 

(vector), pcDNA3-wild type H3 (WT H3) or pcDNA3-H3S28A (H3S28A) were poured into 

6-well plate with EGF as designated at (B). Cells in (A) and (B) were be incubated at 37°C 

in 5% CO2 for 1-2 weeks and were fed with fresh complete media with or without EGF 

twice weekly. Colonies were counted at 1-2 weeks after plating. Values are the means ± 

SEM (n ≥ 3).
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Fig. 7. Schematic illustration of H3S28ph mediating Pol III gene transcription
EGF induces H3S28ph through the EGFR pathway. H3S28ph increases TFIIIB expression, 

which in turn regulates Pol III gene transcription. H3S28ph also directly upregulates Pol III 

gene transcription. Both direct and indirect roles of H3S28ph enhance Pol III gene activity 

to promote cell transformation.
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