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WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ Human lineage mutations (HLMs) are vital factors 
associated with human evolution. However, the 
effects of HLMs contributing to human evolution 
through post- transcriptional modification need to be 
further elucidated.

WHAT THIS STUDY ADDS
 ⇒ A small number of HLMs have played a role in human 
speciation by affecting post- transcriptional mod-
ifications of crucial brain- related genes. Notably, 
NTRK2 and ITPR1 exhibit the most compelling ev-
idence of functional significance, suggesting their 
essential involvement in cognition and bipedalism.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ These essential genes affected by HLMs play roles 
in synaptic functions and neurodevelopmental dis-
orders, making them ideal candidates for future 
analysis of human evolution.

AbSTRACT
background The role of human lineage mutations 
(HLMs) in human evolution through post- transcriptional 
modification is unclear.
Aims To investigate the contribution of HLMs to human 
evolution through post- transcriptional modification.
Methods We applied a deep learning model Seqweaver to 
predict how HLMs impact RNA- binding protein affinity.
Results We found that only 0.27% of HLMs had 
significant impacts on RNA- binding proteins at the 
threshold of the top 1% of human common variations. 
These HLMs enriched in a set of conserved genes 
highly expressed in adult excitatory neurons and 
prenatal Purkinje neurons, and were involved in synapse 
organisation and the GTPase pathway. These genes also 
carried excess damaging coding mutations that caused 
neurodevelopmental disorders, ataxia and schizophrenia. 
Among these genes, NTRK2 and ITPR1 had the most 
aggregated evidence of functional importance, suggesting 
their essential roles in cognition and bipedalism.
Conclusions Our findings suggest that a small subset 
of human- specific mutations have contributed to human 
speciation through impacts on post- transcriptional 
modification of critical brain- related genes.

INTRODUCTION
Human beings have long been interested in 
the question of what makes us unique from 
other animals. Around 4% of the genome of 
Homo sapiens is different compared with our 
closest relative species, the chimpanzee (Pan 
troglodytes), including around 35 million 
single nucleotide variations and around 
90 Mb regions with structural variations. 
With the rapid development of sequencing 
and computational techniques, comparative 
genomics with other primates and archaic 
humans has also revealed a novel genetic 
divergence. These genetic differences cover 
almost all evolutionary events that distinguish 
humans from other primates, except the 
small number of extranuclear DNA. Thus, 
researchers have conducted both biological 
and computational analyses to pinpoint the 

causal human lineage mutations (HLMs) 
that contributed to human speciation. These 
efforts provided valuable insights into evolu-
tion and biomedicine research, such as the 
discovery of the critical role of NOTCH2NL 
in neurogenesis and neurodevelopmental 
disorders.

However, the sparsity of influential HLMs 
greatly challenges such analyses. Homo 
sapiens have undergone millions of years 
of purifying selection starting from our 
common ancestor, which would have elim-
inated the vast majority of mutations that 
could lead to deleterious consequences.1 
Thus, the remaining HLMs would be mostly 
neutral. Based on this notion, the Combined 
Annotation- Dependent Depletion (CADD)1 
model directly used mutations that were 
fixed in human lineage as ‘proxy- neutral’ in 
the training set. These mutations served as a 
basis for learning the features of a ‘neutral’ 
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Figure 1 Overview of the study. ASD, autism spectrum disorder; Brain MD, brain Mendelian disorders; DD, development 
delay; GTP, guanosine triphosphate; LOEUF, loss- of- function observed/expected upper bound fraction; RBP, RNA- binding 
protein; SCG, selectively constrained genes; SCZ, schizophrenia.

mutation. The high accuracy of CADD in predicting 
mutation deleteriousness supports the hypothesis that 
most HLMs did not have phenotypic consequences. 
Thus, the candidate gene analysis focusing on specific 
fixed mutations has a low prior probability of identifying 
the causal and influential HLMs.

Another challenge lies in the functional analysis of non- 
protein- alternating mutations, which are synonymous 
mutations whose mutation effects could not be directly 
estimated. Thus, most comparative genomic studies only 
focus on amino acid alteration, such as the ratio of non- 
synonymous over synonymous coding mutations of a 
specific gene (dN/dS).2 Using dN/dS, a previous study2 
has revealed proteins that underwent significant posi-
tive selection during human speciation and their contri-
bution to human cognition. However, it is theoretically 
plausible that the HLMs that do not alter amino acids 
could also contribute to phenotypic consequences by 
altering transcription and post- transcriptional modifica-
tion. Researchers have found evidence of the role of gene 
expression level and alternative splicing alterations in 
human evolution. Some technical innovations like RNA 

sequencing of human- chimp fusion cells3 also provided 
new opportunities to study non- coding mechanisms of 
human evolution. However, a systematic assessment of 
their role in human evolution is still lacking for post- 
transcriptional modification.

The newly developed deep learning model Seqweaver4 
provides a new opportunity to tackle these challenges. 
Seqweaver takes a DNA sequence as input and predicts 
the binding affinity between the corresponding RNA 
sequence and 217 RNA- binding proteins (RBPs). For 
each mutation, Seqweaver predicts RNA- protein binding 
affinity for both reference and mutated sequences and 
takes their difference as the mutation’s impact on RBP 
binding. This prediction allows quantification of the 
HLMs’ effect on post- transcriptional modification, 
facilitating the identification of the most influential 
mutations and systematic assessment of the role of post- 
transcriptional modification in human evolution. In this 
study (figure 1), we applied Seqweaver to HLMs and anal-
ysed the signals of natural selection on them. Building 
on existing knowledge, our study aims to address the 
following questions: first, whether mutations with the 
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largest impacts on RBP have been eliminated from 
human lineage; second, whether the small number of 
survived influential mutations have promoted human 
evolution by modifying post- transcriptional modification; 
third, which highly influential mutations and target genes 
have important functions in Homo sapiens. We propose 
that such influential mutations could serve as ideal candi-
dates for future functional validation.

METHOD
Data preprocessing and characterisation
We downloaded the list of HLMs from the CADD training 
set,1 which was obtained by comparing hg38 against 
Enredo, Pecan and Ortheus (EPO) 6 primate alignment 
of the common ancestor.5 We removed HLMs within low- 
quality regions of hg38 (gap region defined in the UCSC 
genome browser6), including short arm gaps, heteroch-
romatin gaps, telomere gaps, gaps between contigs in 
scaffolds and gaps between scaffolds in chromosome 
assemblies. We also excluded HLMs within centromere 
regions. We then obtained a list of single nucleotide 
differences between humans and chimpanzees (hg38 vs 
Pantro5) from Gokhman et al3 and took the intersection 
to remove mutations that were not specific to the human 
lineage. For Seqweaver analysis, we retained only HLMs 
that fell on the transcription regions of coding genes, 
where the transcription start and end sites were obtained 
from Ensembl database, as provided by the Seqweaver 
toolkit.
We analysed whether the overall HLMs were enriched in 
or depleted from the following genomic regions:
1. Exonic, genic and transcribed regions, downloaded 

from the UCSC genome browser.
2. Active chromatin regions of 222 tissues and cell 

types: we downloaded from epimap database7 the 
chromHMM8 18- chromatin state annotations of each 
sample. We defined the following annotations as ‘ac-
tive chromatin regions’: ‘TssA’, ‘TssFlnk’, ‘TssFlnkU’, 
‘TssFlnkD’, ‘Tx’, ‘EnhG1’, ‘EnhG2’, ‘EnhA1’, ‘EnhA2’. 
We grouped all the samples according to tissue names 
and embryo/adult status, leading to 222 groups in to-
tal. Within each group, we kept all genomic regions 
that were marked as ‘active chromatin regions’ in at 
least half of the samples.

3. Open chromatin regions of 222 cell types: we down-
loaded the single- cellAssay for Transposase- Accessible 
Chromatin with high throughput sequencing (ATAC- 
seq) peak annotation from Zhang et al,9 which con-
sisted of 222 cell types covering both prenatal and 
postnatal cells from all parts of the body.

For all of these annotations, we excluded gap regions 
before analysis. HLMs were mapped to each annotation 
by bedtools.10 For each annotation, we summed up the 
total length and calculated the expected number of 
HLMs on them. We then applied a binomial test to see if 
the observed number of HLMs significantly differed from 
the expected number.

Seqweaver analysis
Seqweaver was applied at default settings.4 Only 217 
models on human RBP were applied, and mouse RBP 
models were excluded. To define the threshold of influ-
ential HLM, we obtained a list of common single nucleo-
tide variants (SNVs) in the human population, which had 
minor allele count >10 000 in GnomAD11 V.3.1.2 whole- 
genome sequencing data (non- neural disorder subset), 
and applied Seqweaver to them. We also excluded SNVs 
within the gap regions as defined above. For each of the 
217 RBPs, we calculated the top 1% threshold of the abso-
lute value of the predicted RBP binding affinity (ΔRBP) 
difference among all common SNVs. We also calculated 
the top 1% threshold of maximum absolute ΔRBP. HLMs 
that had a maximum ΔRBP larger than this threshold 
were considered influential HLMs.

We applied a saturated mutagenesis analysis by gener-
ating all the possible SNVs within 200 bp windows around 
each HLM and input them to Seqweaver. We assigned 
each of these generated SNVs to genes and tested if the 
overall maximum ΔRBP of generated SNV in each gene 
group significantly differed from each other.

For sequence- level Seqweaver analysis, we first down-
loaded the EPO primate common ancestor alignment 
(corresponding to hg38) from Ensembl.5 For each gene, 
we used a sliding window of 1000 bp and 500 bp per step 
size to cover its full length and extracted DNA sequences 
of hg38 and common ancestor alignment for each of the 
1000 bp- length blocks. These sequences in FASTA format 
were input to Seqweaver in sequence mode. We calcu-
lated the 217 RBPs’ binding affinity difference between 
the hg38 sequence and the ancestor sequence for each 
block.

Statistical analysis
SpliceAI analysis
SpliceAI12 is a deep learning tool that predicts the prob-
ability that a mutation could influence acceptor gain, 
acceptor loss, donor gain and donor loss of the closest 
splice site. We downloaded the masked prediction result 
of SpliceAI from the Illumina website, extracted results 
for both HLMs and common SNVs and calculated the 
maximum score for each variant. We also calculated the 
top 1% threshold of common SNVs similar to Seqweaver 
analysis.

Gene-level analysis
Taking all 17 329 protein- coding genes together, we 
applied the following Poisson regression with a log link 
to estimate the expected number of influential HLMs on 
each gene:

Number of influential HLMs ~ number of total HLMs + 
GC ratio + gene length

To avoid log (0), we added one pseudo count to all 
genes. We took the predicted value from this regression as 
the expected number of influential HLMs, and used the 
ratio of observed to expected number as the fold enrich-
ment. We ranked and grouped all genes into deciles in 
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the descending order of fold enrichment, and calculated 
the proportion of two sets of genes in each decile: first, 
human conserved genes were defined as the top 10% of 
genes in GnomAD LOEUF (loss- of- function observed/
expected upper bound fraction) score13; second, primate 
conserved genes were defined as genes with the lowest 
25% dN/dS across six primates calculated by Dumas et 
al.2 The significance of the enrichment of these gene lists 
in each decile was calculated by the Fisher test. We also 
repeated these analyses on common SNVs as a negative 
control.

Functional analysis
We defined genes with fold enrichment >2 as RBP- genes 
and used them for functional analysis. We used the 
WebCSEA tool to apply an expression enrichment test 
on a comprehensive set of published single- cell RNA 
sequencing data covering different embryo and adult 
tissues. The permutation- based combined p value for 
each cell type was used to define significantly enriched 
cell types. For the highlighted cell types, we extracted 
the top 5% genes showing specific expression, as defined 
by t- statistics calculated by WebCSEA. For highlighted 
genes, we additionally extracted their expression trajec-
tories among brain development using the online tool 
Brainspan.14

We used ClusterProfiler15 R package to conduct Gene 
Ontology (GO) Biological Process and Cell Compo-
nent enrichment analysis. We only retained pathways 
with >10 and <500 genes for analysis. Background genes 
were defined as all genes with GO annotation. We 
applied the simplify() function to remove similar path-
ways (highly overlapped or child–parent term of every 
other). We reported pathways with false discovery rate 
(FDR)- corrected p value<0.05. We also applied SynGO16 
enrichment analysis, with similar settings except that the 
background gene list was defined as all brain- expressed 
genes.
To analyse whether RBP- genes were significantly associ-
ated with neurodevelopmental disorders, we collected 
disease genes from the following resource:
1. Cross- sectional autism whole- exome sequencing 

(WES) data (11 986 cases, 23 598 control).17 All genes 
with FDR- adjusted p value of transmitted and de novo 
association <0.05 were collected.

2. Combined schizophrenia cross- sectional WES data (24 
248 cases, 97 328 controls) and trio WES data (3402 
trios).18 The significance threshold was FDR- adjusted 
p value of meta- analysis <0.05.

3. Trio- based WES data of developmental delay (31 058 
trios). We collected genes with FDR- adjusted p value of 
DeNovoWEST <0.05.

4. Family- based WES data (15 306 probands) of autism.19 
We collected genes with FDR- adjusted p value of De-
NovoWEST <0.05.

5. Risk genes of brain Mendelian disorders. We down-
loaded the gene- disease- organ association tables from 

the Gene ORGANizer database,20 and retained only the 
genes associated with the brain with high confidence.

We tested whether RBP- genes were enriched in these 
gene sets by the Fisher test. To control potential bias, for 
each gene set we additionally ran a logistic regression on 
all the included genes:

In gene set (0/1) ~ is RBP- gene (0/1) + is LOEUF gene 
(0/1) + GC content + length to verify the enrichment 
result. The positive regression coefficient of the term is 
RBP- gene (0/1) was considered evidence of enrichment, 
and its p value was used to evaluate the significance.

Heritability enrichment analysis of polygenic traits
We uniformly collected and preprocessed a set of 
Genome- Wide Association Studies(GWAS) summary 
statistics that (1) came from European ancestry; (2) 
SNV heritability h2>0.01; (3) z score of h2>4; (4) sample 
size >10 000. We applied linkage disequilibrium score 
regression (LDSC) to analyse whether the heritability of 
these traits enriched in common SNVs around RBP- gene 
(window size=100 kb). We used 1000 Genome21 European 
population as a reference panel, only the SNVs within 
the HapMap322 project were included, and the baseline 
model and other parameters of LDSC were set at default. 
To control the bias of incorrect SNV- to- gene mapping, 
we additionally applied the abstract mediation model 
(AMM),23 an extension of LDSC that also considered the 
k- nearest genes of each SNV. We used the default hyper-
parameters provided by AMM, which were estimated by 
the benchmark gene set of loss- of- function intolerant 
genes. We directly transformed the enrichment z score of 
AMM into p value under a normal distribution and used 
it for FDR adjustment, without log- transformation of the 
enrichment.

To analyse whether the human- specific directional 
impact of common SNVs on RBP profile has a phenotypic 
consequence, we first calculated a ‘humanisation score’ 
(HS) of each 1000 genome common SNVs. As described 
above, we first used 13 520 465 overlapping blocks (1000 bp 
length each) b=1, 2, …13 520 465 to cover the full length 
of all protein- coding genes. For each block b, we used 
sequence- mode Seqweaver to calculate a vector of RBP 
for the hg38 sequence on  b

(
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r
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A negative value of  HSs   indicated that SNV  s   modified 
the human RBP profile in the opposite direction to that 
in which all HLMs on block  f

(
s
)
  collectively modified 

the ancestor RBP profile, and it made the human profile 
closer to the ancestor profile, termed ‘de- humanisation’. 
Likewise, positive  HSs   indicated that  s   modified human 
RBP profile further from the ancestor RBP profile, corre-
sponding to ‘over- humanisation’. We assumed that, if 
human evolution on RBP profile is polygenic, then there 
will be a large number of blocks  b   whose  ∆RBPb

(
r
)
  had 

a small but non- zero phenotypic association. Then, SNVs 
on these blocks that impact  ∆RBP   would also slightly 
impact phenotypes. Thus,  HSs   would be associated with 
SNV- based trait heritability enrichment. We used two 
approaches to evaluate this association:
1. Signed linkage disequilibrium profile (SLDP) regres-

sion, an extension of LDSC that accounts for the direc-
tion of each genomic annotation. Significant positive 
SLDP regression coefficient on HS indicated that over- 
humanisation SNVs collectively explain excess her-
itability of a trait, and vice versa. Data preprocessing 
was the same as LDSC, and all parameters were set by 
default.

2. LDSC analysis on absolute HS value: we directly includ-
ed absolute HS as a continuous annotation in LDSC. 
Significant positive LDSC regression coefficient indi-
cated that SNVs with a relatively large RBP impact in 
regions with human- specific RBP profiles collectively 
explain the excess heritability of a trait.

RESULT
Strong negative selection was observed in HLM impacted 
post-transcriptional regulation
We obtained a list of SNVs between primate common 
ancestor (multiple alignments) and human hg38 from 
the CADD training set.3 After the removal of variants 
within low- quality genomic regions and retaining only 
human- specific and fixed mutation, we identified 13 007 
486 mutations for analysis, defined as HLMs. As expected, 
these HLMs were strongly depleted in functionally 
important genomic regions, including exonic (OR=0.49, 
p<0.001), genic (including exon, intron and flanking 
regions, OR=0.90, p<0.001) and transcribed (OR=0.84, 
p<0.001) regions (online supplemental table S1). These 
HLMs were also depleted in tissue- specific active chro-
matin states (OR=0.76–0.94 for 222 human tissues in the 
epimap database,7 (online supplemental table S2) and 
cell type- specific open chromatin regions (OR=0.82–0.96 
for single- cell ATAC peak from 222 human cell types,9 
online supplemental table S3). These results suggest that 
functional consequences of HLMs were mostly intolerant 
and subjected to strong negative selection.

Next, we proceeded to analyse the impact of HLMs on 
post- transcription modification and extracted a list of 5 
001 228 HLMs falling within transcribed regions of coding 
genes. By applying Seqweaver deep learning model,4 we 
quantified the impact of HLMs on 217 RBPs’ affinity 

(ΔRBP, figure 2A) and compared it with common SNVs in 
the human population in GnomAD13 (figure 2B). HLMs 
generally had a significantly smaller ΔRBP than human 
common SNVs (Wilcoxon test p<0.001). We calculated 
the maximum ΔRBP for each variant and found that 
only 13 475 transcribed HLMs (0.27% of all HLMs) had 
a maximum ΔRBP larger than the top 1% threshold of 
common SNVs (fold change (FC)=0.27%/1%=0.27, 
figure 2B), indicating a strong negative selection of 
HLM’s impact on RBP. When analysing each of the 217 
RBP profiles separately, we observed the strongest nega-
tive selection on ΔRBP related to alternative splicing 
(FC<0.01 for ΔRBP of TACA- spliced site binding, online 
supplemental table S4), indicating strict intolerance to 
RNA splicing alteration. To further validate this result, 
we directly quantified the impact of HLMs and common 
SNVs on alternative splicing by SpliceAI12 and observed 
a similar depletion of influential HLMs, indicating puri-
fying selection (FC=0.06, online supplemental figure S1).

Based on these results, we defined the 13 475 HLMs 
with the maximum ΔRBP as influential HLMs and hypoth-
esised that they may have an important role in human 
evolution. Top influential HLMs included gene encoding 
histamine receptor H1 (max ΔRBP=0.75), as well as HLMs 
on other brain- preferentially expressed genes like AMZ1 
(max ΔRBP=0.78) and MPRIP (max ΔRBP=0.73). Inter-
estingly, although HLMs generally had a small impact on 
RBP, these top influential HLMs had a larger impact than 
top common SNVs: the largest max ΔRBP for common 
SNVs was 0.70, smaller than these top HLMs. We used 
these RBP- HLMs for further functional research.

Influential HLMs enriched in genes are highly conserved in 
primates and human
Next, we analysed the biological significance of influen-
tial HLMs. By applying a Poisson regression model, we 
found that influential HLMs had a dramatically uneven 
distribution among protein- coding genes (figure 2C). 
For example, some genes like USP25 carried six times 
more influential HLMs than expected under null distri-
bution, whereas 112 genes were expected to carry at least 
three influential HLMs but actually carried none. Thus, 
we ranked all the protein- coding genes according to the 
extent to which they enriched for influential HLMs. We 
found that both the top 10% (most enriched for influ-
ential HLMs) and bottom 10% (most depleted for influ-
ential HLMs) genes are more likely to be intolerant to 
loss- of- function mutations13 (OR=2.16 and 1.70, Fisher 
test p<0.001, respectively, figure 2D). They were also both 
more conserved in the primate lineage2 (OR=1.53 and 
1.42, Fisher test p<0.001, respectively, figure 2E). One 
possible explanation of this result is that some sequences 
on some of the conserved genes are by nature more sensi-
tive to mutation than other genes, and the mutations on 
these sequences are naturally more likely to be influen-
tial. To rule out this possibility, we applied saturated muta-
genesis around HLMs and found that random mutations 
on each gene did not have a significant difference in the 
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Figure 2 Seqweaver and gene- level analysis. (A) Manhattan plot of Seqweaver result. Y axis denoted the maximum ΔRBP 
of each HLM. X axis denoted the chromosome position of each HLM. (B) Distribution of ΔRBP. (C) Observed versus expected 
number of influential HLMs on each gene. Colour and dot size showed the fold enrichment of influential HLMs. (D) Each bar 
represented a decile of gene ranked by fold enrichment of influential HLMs (the leftmost bar represented the most enriched 
decile). Bar colour showed the proportion of loss- of- function intolerant genes within each decile. (E) Same as D, but showing 
the proportion of primate lineage constraint genes defined by Dumas et al. HLM, human lineage mutations; LOEUF, loss- of- 
function observed/expected upper bound fraction; RBP, RNA- binding protein; SCG, selectively constrained genes; ΔRBP, RNA- 
binding profile difference.
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predicted effect on the RBP profile (online supplemental 
figure S2).

This bimodal distribution of conservation is in contrast 
with the classic notion of gene conservation: mutations 
on essential and conserved genes are less likely to survive 
natural selection, thus we would observe a depletion 
of influential mutations on these genes. As a negative 
control, we ranked all the genes according to the enrich-
ment of influential common SNVs, and observed the 
expected unimodal distribution under this classic notion 
(online supplemental figure S3). Specifically, genes more 
depleted for influential common SNVs were more likely 
to be loss- of- function- intolerant and conserved in the 
primate lineage, in contrast to RBP- HLM enrichment 
results. We hypothesised that, instead of surviving natural 
selection, these influential RBP- HLMs on essential genes 
were favoured by natural selection and contributed to the 
evolutionary force that made us human.

To further verify this hypothesis, we defined 900 genes 
carrying at least one time more RBP- HLMs than expected 
(fold enrichment >2), termed RBP- gene, for further func-
tional analysis. As revealed above, RBP- gene significantly 
enriched in loss- of- function intolerant genes13 (OR=2.10, 
Fisher test p<0.001), as well as primate constraint genes2 
(OR=1.42, Fisher test p<0.001). We reasoned that these 
genes underwent frequent influential mutations during 
human speciation, and thus might have an important role 
in human brain evolution and cognition function. There-
fore, we used these genes for further analysis.

RbP-gene involved in synaptic functions and GTPase pathway
Human brain has undergone the most outstanding alter-
ation during human evolution. Thus, if the RBP- genes 
truly contributed to human evolution, we would antici-
pate their crucial involvement in brain functions and 
high expression in neurons. Indeed, by analysing single- 
cell transcriptome data,25 we found that the RBP- genes 
were highly expressed in the central nervous system 
(CNS): in foetal tissue, RBP- genes were only enriched in 
cerebellum, including Purkinje cells and several other 
subtypes of neurons (p<0.001, figure 3A). RBP- genes 
that were highly expressed in Purkinje neurons included 
USP25, ITPR1, KCNH8, and SCN8A, etc. In adult tissue, 
RBP- genes were enriched in different subtypes of excit-
atory neurons from the visual cortex and the frontal 
cortex (p<0.001, figure 3B). RBP- genes that were highly 
expressed in cortex excitatory neurons included NTRK2, 
NLGN1, GABRB2, CACNA1D, etc. The number of CNS cell 
types with nominally significant enrichment (29) was also 
larger than all other systems and organs. Interestingly, the 
cerebral cortex and cerebellar Purkinje cells are vital for 
cognition functions and cooperation in bipedal walking,2 
both of which are key functions during human evolution.2 
Taken together, RBP- genes were mostly enriched in the 
foetal cerebellum and adult cortex, since both the enrich-
ment p value and the number of enriched cell types were 
the highest compared with other tissues and organs.

We further analysed the biological functions of 
RBP- genes by GO analysis. As shown in figure 3C and 
online supplemental table S5), RBP- genes significantly 
enriched in synapse organisation (p<0.001), regulation 
of membrane potential (p<0.001), dendrite development 
(p<0.001), synaptic vesicle cycle (p<0.001), cell junction 
assembly (p<0.001) as well as other pathways related to 
neuronal and synaptic functions. Despite neuron- related 
pathways, RBP- genes also showed strong enrichment in 
the regulation of GTPase activity (p<0.001). In cellular 
component analysis (figure 3D), we found that RBP- genes 
were mainly located in various components of neurons, 
including presynapse (p<0.001), postsynaptic specialisa-
tion (p<0.001) and dendritic spine (p<0.001).

Taken together, genes involved in the synaptic organ-
isation and other pathways of synapse carried an excess 
number of HLMs that had a large impact on post- 
transcriptional modification, which might contribute to 
the evolution of the human brain.

RbP-genes carried excess severe mutations of 
neurodevelopmental disorders
Human brain has shaped the cognitive functions of 
modern human, and the genetic architecture of human 
brain evolution contributes to the genetic basis of brain 
disorders.26 We hypothesised that rare, damaging vari-
ants that disrupt RBP- gene have contributed to brain 
disorders. As shown in figure 4A, using published cross- 
sectional burden test17 result for autism, we found that 
compared with background genes, RBP- genes generally 
carried the excess burden of damaging coding mutations 
in patients (fold enrichment=4.33, Fisher test p<0.001). A 
similar but less significant result was also found in schizo-
phrenia18 (fold enrichment=4.58, Fisher test p=0.004). In 
trio- based WES analysis, RBP- gene also carried excess de 
novo damaging mutations in probands with autism19 (fold 
enrichment=2.87, Fisher test p<0.001) and probands with 
developmental delay27 (fold enrichment=2.01, Fisher 
test p<0.001). Similarly, RBP- genes were also more likely 
to be the risk genes of brain Mendelian disorder (fold 
enrichment=1.34, Fisher test p=0.001). We repeated these 
analyses after controlling covariates like LOEUF and 
gene length and achieved consistently significant results, 
although with lower statistical power (online supple-
mental table S6). These results suggested that rare and 
severe mutations in RBP- genes are more likely to cause 
neurodevelopmental disorders.

We further analysed whether common variants on 
RBP- genes had a significant phenotypic consequence. 
By applying LDSC on a set of about 1000 polygenic 
traits, we found that the SNV around RBP- gene did not 
explain a significantly higher proportion of trait herita-
bility (FDR- adjusted p value>0.05, figure 4B and online 
supplemental table S6). Using AMM instead of LDSC 
also revealed no significant result (figure 4C and online 
supplemental table S7). This result could be expected if 
the effect of post- transcriptional modification on human 
evolution is oligogenic instead of polygenic. In fact, if 
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Figure 3 Functional characteristics of RBP- genes. (A & B) WebCSEA results of cell type- specific expression in different 
embryonic (A) and adult (B) tissues. A low p value indicates that RBP- genes specifically expressed in the cell type at high 
significance. (C & D) Gene ontology enrichment analysis of biological process (C) and cellular component (D). Font size indicates 
fold enrichment, and colour indicates enrichment p value. We manually selected specific terms with FDR- adjusted p<0.05. FDR, 
false discovery rate; RBP, RNA- binding protein.

human speciation were driven by a few vital mutations in 
a few vital genes, there would not be a large number of 
variations with small but non- zero contributions. Under 
this scenario, the large number of common SNVs actually 
had no association with post- transcriptional modification 
during human speciation. Given the fact that influential 
mutations are mostly eliminated by purifying selection 
and the remaining RBP- HLMs are very sparse, the oligo-
genic view is plausible.

Oligogenic view of post-transcriptional modification changes 
in human evolution
To assess this theory, we used Seqweaver to calculate 
the RBP difference of all the genome- wide transcribed 

regions between hg38 and primate common ancestor 
genome alignment. We then applied Seqweaver to calcu-
late how each 1000 genome common SNV intensifies 
(over- humanise) or weakens (de- humanise) this differ-
ence, termed humanisation score. If human evolution on 
RBP profile is polygenic, a large number of transcribed 
regions would have RBP alterations that have a small 
phenotypic effect. Then, the common SNVs with large 
over- humanisation or de- humanisation effects would 
collectively explain an excess proportion of trait herita-
bility. However, this is not true: humanisation score was 
not significantly associated with trait heritability in LDSC 
(all traits had FDR- adjusted p value>0.05, figure 4E and 
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Figure 4 Phenotypic consequence of RBP- genes. (A) Enrichment of RBP- genes in brain diseases gene lists. The error bar 
indicated a 95% CI. (B) Quantile- quantile plot of LDSC p value for trait heritability enrichment around RBP- gene. (C) Quantile- 
quantile plot of AMM p value for trait heritability enrichment around RBP- gene. (D) Quantile- quantile plot of SLDP p value for 
trait heritability enrichment around humanisation score. (E) Quantile- quantile plot of LDSC p value for trait heritability enrichment 
around absolute humanisation score. AMM, abstract mediation model; ASD, autism spectrum disorder; BrainMD, brain 
Mendelian disorders; Dnm: de novo mutation; LDSC, linkage disequilibrium score regression; RBP, RNA- binding protein; SCZ, 
schizophrenia; SLDP, sign linkage disequilibrium profile.
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online supplemental table S8); the result remained insig-
nificant when taking the direction of humanisation score 
into consideration by using the SLDP (figure 4D and 
online supplemental table S9). Taken together, these 
findings are in line with an oligogenic view of human 
evolution of RBP profile, although it is difficult to draw 
statistical conclusions from null results.

Prioritising ITPR1 and NTRK2 in human evolution
The oligogenic view of the human evolution of the RBP 
profile suggested that among the 900 RBP- genes showing 
enrichment of influential HLM, only a small subset might 
actually contribute to human evolution, which gave rise to 
the functional enrichment of RBP- genes. Thus, we sought 
to aggregate all functional and phenotypic evidence in 
the above analysis for all genes (online supplemental 
table S10) and prioritise the most probable genes that 
took part in the human evolution of the RBP profile. As 
shown in figure 5A, there were 22 RBP- genes that had at 
least five pieces of evidence of functional and phenotypic 
importance. Two top genes, NTRK2 and ITPR1, had seven 
pieces of aggregated evidence.

NTRK2 (chr9: 84668522–85027054) encodes neuro-
trophic receptor tyrosine kinase 2. NTRK2 is intolerant 
to loss- of- function in human and is conserved in the 
primate lineage, highly expressed in excitatory neurons 
and takes part in the synapse process and GTP pathway 
(figure 5A). Seqweaver revealed that HLM at the fourth 
intron of NTRK2 has profoundly decreased the binding 
affinity with EVAVL in the human brain (ΔRBP=–0.33, 
figure 5B), which was the largest alteration among all the 
217 RBPs. In Brainspan data,14 the cerebral expression 
level of NTRK2 consistently increased until childhood, 
and remained at peak expression level until adulthood 
(figure 5D). This is in line with the fact that NTRK2 is 
associated with neurodevelopmental disorders including 
developmental delay and multiple brain Mendelian disor-
ders (figure 5A) like astrocytoma and developmental and 
epileptic encephalopathy.

ITPR1 (chr3: 4493348–4847506) encodes inositol 
1,4,5- trisphosphate receptor type 1. ITPR1 is also 
conserved in both human and primate lineages, and is 
highly expressed in both excitatory neurons and Purkinje 
neurons (figure 5A). In Seqweaver analysis, the HLM in 
the second intron of ITPR1 caused the most profound 
alteration of RBP (ΔRBP=–0.30, figure 5C). Interestingly, 
this alteration was also on EVAVL binding affinity in the 
human brain, just like NTRK2. Consistent with its high 
expression in Purkinje neurons, ITPR1 has the highest 
expression in the cerebellum, and the expression value 
continuously increases throughout human developmental 
periods (figure 5E). Furthermore, ITPR1 has been iden-
tified as a risk gene for several cerebellar genetic disor-
ders, such as different subtypes of spinocerebellar ataxia 
and Gillespie syndrome, suggesting that ITPR1 may have 
played a role in the evolution of bipedal walking.

DISCUSSION
Main findings
In this study, we applied a deep learning model Seqweaver 
on genome- wide HLMs to predict their impact on post- 
transcriptional modification. We found that such impact 
is highly intolerant in the human lineage, and that a small 
number of influential HLMs have enriched on a set of 
conserved genes that had both functional and pheno-
typic significance. We inferred that the cis- regulation of 
post- transcriptional modification on this set of conserved 
genes has contributed to human evolution.

The major evidence for this conclusion is the bimodal 
relationship between influential HLM enrichment and 
gene conservation, as shown in figure 2. Using dN/
dS metric of coding mutations, a previous study2 has 
demonstrated that genes carrying an excess number of 
influential coding mutations during human speciation 
have undergone a positive selection and are key genes 
of human evolution. Expanding this view to non- coding 
regions, the study of human- accelerating regions28 
found that sequences that are conserved across species 
but carry excess HLMs are vital for human brain expan-
sion. In line with these studies, we also found that while 
conserved genes were generally depleted for influential 
HLMs on post- transcriptional modification, there was 
a subset of conserved genes carrying an unexpectedly 
large number of influential HLMs. Our results together 
with previous findings revealed that influential HLMs on 
conserved genes and regions contributed to the positive 
selection that made us human, via alterations of both 
protein sequence, transcription regulation and post- 
transcriptional modification.

Furthermore, the functional and phenotypic character-
istics of this set of RBP- genes also supported their role 
in human evolution. Cortical expansion and cerebellar 
reorganisation are the critical steps for evolving cognition 
and bipedal walking, two major characteristics of modern 
human. In our analysis, RBP- genes were highly expressed 
in excitatory neurons and Purkinje neuron of the cortex 
and cerebellum. The rare and severe mutations on them 
were also associated with both polygenic and Mende-
lian neurodevelopmental disorders characterised by a 
deficiency in cognition and bipedalism (ataxia). Given 
the fact that RBP- genes are conserved, carry an excess 
number of influential HLMs, and are associated with 
cognition and bipedalism, it is plausible to state that they 
had important roles in human evolution.

Among these RBP- genes, we prioritised NTRK2 and 
ITPR1 as the potential key genes of human evolution. Our 
result showed that they both carried excess HLMs that 
had a large impact on post- transcriptional modification, 
and are both conserved in human and primate lineage. 
NTRK2 encodes neurotrophic tyrosine kinase receptor 
type 2, a receptor that can be activated by multiple 
neurotrophins and regulated downstream neuronal 
proliferation, differentiation and neurotransmitter 
systems.29 NTRK2 also regulates astrocyte proliferation 
via Rho- GTPase system, and is associated with multiple 
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Figure 5 Prioritising top candidate genes. (A) All RBP- genes with at least five aggregated evidences. (B) Seqweaver predicted 
the difference of EVAVL- RNA binding affinity in the human brain between hg38 and primate common ancestor sequence of 
NTRK2. Each dot represented a 1000 bp block on NTRK2. (C) Same as B, but for ITPR1. (D) Spatiotemporal expression of 
NTRK2 in the human developing brain. Figure generated at Brainspan website. (E) Same as D, but for ITPR1. AMY, amygdala; 
ASD, autism spectrum disorder; Brain MD, brain Mendelian disorders; CBC, cerebellar cortex; DD, development delay; HIP, 
hippocampus; ITPR1, Inositol 1,4,5- Trisphosphate Receptor Type 1; LOEUF, loss- of- function observed/expected upper bound 
fraction; MD, mediodorsal nucleus of thalamus; NCX, neocortex; NTRK2, neurotrophic receptor tyrosine kinase 2; RBP, RNA- 
binding protein; SCG, selectively constrained genes; SCZ, schizophrenia; STR, striatum.
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neuropsychiatric disorders.29 It could be inferred that 
NTRK2 is a key gene in cortex development and human 
cognition. ITPR1, on the other hand, mainly expressed in 
Purkinje cells and controls the calcium release by binding 
Inositol 1,4,5- triphosphate. Thus, TIPR1 could have an 
important role in the coordination of bipedal walking 
during evolution.

Limitations
Several limitations must be acknowledged when inter-
preting the findings of our study. First, since Seqweaver 
was trained on human RBP data but not RBP data from 
other hominins, our study relied on the assumption that 
positive selection on post- transcriptional modification 
only happened in cis- manner instead of trans- manner. 
That is, only the HLMs on RNA have had an effect, but 
the entire RNA binding protein system itself was constant 
across species. We found two pieces of evidence to support 
this assumption. On one hand, Seqweaver models trained 
on mouse RBP data have proved valuable in predicting 
pathogenic mutations of autism,4 30 suggesting that cross- 
species differences in the RBP system may not drive a 
systematic bias. On the other hand, our result showed that 
RBPs like RBFOX1 were among the most depleted genes 
from influential HLMs (online supplemental table S10), 
further supporting that RBPs were highly conserved and 
were absent from significant alterations during evolution.

Second, structural variations have been shown to play 
an important role in human evolution, but current 
sequence- based deep learning models like Seqweaver 
are unable to evaluate their effects. The lack of statistical 
tests on Seqweaver estimation has also obstructed us from 
stating any particular HLMs to be confidentially influen-
tial. Instead, we could only analyse the overall patterns 
of influential HLMs, and prioritise some top HLMs and 
genes as the most probable causal mutations and genes. 
Future experimental validations on the top HLMs and 
RBP- genes will help fill in this gap.

Implications
In conclusion, we demonstrated that despite the strong 
purifying selection on human lineage mutations, there is 
a small number of HLMs that had a substantial impact on 
post- transcriptional modification of essential genes and 
contributed to human evolution. These essential genes 
take part in synaptic functions and neurodevelopmental 
disorders, and may serve as ideal candidates for future 
analysis.
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