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Background: Multiple myeloma (MM) is a malignant hematopoietic disease that is
usually incurable. RNA-binding proteins (RBPs) are involved in the development of
many tumors, but their prognostic significance has not been systematically described in
MM. Here, we developed a prognostic signature based on eight RBP-related genes to
distinguish MM cohorts with different prognoses.

Method: After screening the differentially expressed RBPs, univariate Cox regression
was performed to evaluate the prognostic relevance of each gene using The Cancer
Genome Atlas (TCGA)-Multiple Myeloma Research Foundation (MMRF) dataset. Lasso
and stepwise Cox regressions were used to establish a risk prediction model through the
training set, and they were validated in three Gene Expression Omnibus (GEO) datasets.
We developed a signature based on eight RBP-related genes, which could classify
MM patients into high- and low-score groups. The predictive ability was evaluated
using bioinformatics methods. Gene ontology (GO), Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment, and gene set enrichment analyses were performed to
identify potentially significant biological processes (BPs) in MM.

Result: The prognostic signature performed well in the TCGA-MMRF dataset. The
signature includes eight hub genes: HNRNPC, RPLP2, SNRPB, EXOSC8, RARS2,
MRPS31, ZC3H6, and DROSHA. Kaplan–Meier survival curves showed that the
prognosis of the risk status showed significant differences. A nomogram was
constructed with age; B2M, LDH, and ALB levels; and risk status as prognostic
parameters. Receiver operating characteristic (ROC) curve, C-index, calibration analysis,
and decision curve analysis (DCA) showed that the risk module and nomogram
performed well in 1, 3, 5, and 7-year overall survival (OS). Functional analysis suggested
that the spliceosome pathway may be a major pathway by which RBPs are involved
in myeloma development. Moreover, our signature can improve on the R-International
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Staging System (ISS)/ISS scoring system (especially for stage II), which may have
guiding significance for the future.

Conclusion: We constructed and verified the 8-RBP signature, which can effectively
predict the prognosis of myeloma patients, and suggested that RBPs are promising
biomarkers for MM.

Keywords: RBP, prediction, prognosis, multiple myeloma, model

INTRODUCTION

Multiple myeloma (MM) is a malignant clonal plasma cell
disease of the bone marrow. The main clinical manifestations
are monoclonal proteins in the blood or urine and related
organ dysfunction (Palumbo and Anderson, 2011). Improved
understanding of myeloma and the application of new treatment
methods and drugs have greatly improved the survival of
patients with myeloma. However, MM is a highly heterogeneous
disease, both in response to treatment and in survival, for
which the overall survival (OS) of patients ranges from less than
2 years to more than 10 years (Palumbo and Anderson, 2011;
Sonneveld et al., 2016). This stark difference may be related to
the heterogeneity of myeloma cell biology and multiple host
factors (Greipp et al., 2005). Therefore, it is essential to identify
disease-related biomarkers and use them to distinguish patients
with different prognoses, which will be beneficial for formulating
individualized treatments to cope with tumor heterogeneity,
thereby improving patients’ final prognosis.

Post-transcriptional gene regulation (PTGR) is a crucial
biological process (BP). It is involved in maintaining cellular
metabolism, coordinating the maturation, transport, stability,
and degradation of all classes of RNAs (Gerstberger et al., 2014).
RNA-binding proteins (RBPs) are involved in nearly all steps
of PTGR, determining the fate and function of each transcript
in the cell, and ensuring cellular homeostasis (Pereira et al.,
2017). Gerstberger et al. identified 1542 RBP-associated genes,
accounting for 7.5% of all protein-coding genes in humans,
and half of these genes are involved in mRNA metabolic
pathways. Eleven percent of the RBPs constitute ribosomal
proteins, and the rest are involved in multiple non-coding RNA
metabolic processes (Gerstberger et al., 2014). RBPs constitute
a complex network with cancer-associated RNA targets, and
these interactions maintain tumor growth, allowing them to
escape death and become more invasive (Tu et al., 2015; Pereira
et al., 2017). Overexpression of the LIN28 paralog was shown to
synergize with the Wnt pathway to promote aggressive intestinal
adenocarcinoma development in mouse models; it has also been
detected in a variety of other solid tumors and hematological
malignancies. LIN28/LIN28B blocks let-7 microRNA (miRNA)
biogenesis and, in turn, downregulates the expression of let-7
miRNA target genes, which play an important role in tumor
progression and metastasis.

The International Staging System (ISS) distinguishes myeloma
patients into stages I, II, and III by serum β2 microglobulin
and albumin (Greipp et al., 2005). However, this staging only
considers the biochemical factors. The R-ISS staging groups

patients into stages I, II, and III based on ISS staging, which
integrates chromosomal abnormalities (CA) and serum lactate
dehydrogenase (LDH) (Palumbo et al., 2015). Although R-ISS
distinguishes patients with a good prognosis (stage I) from those
with a poor prognosis (stage III), this staging classifies the larger
cohort patients into stage II, which is composed of those who
still show significant survival heterogeneity (Gonsalves et al.,
2020). RBP-associated genes such as DIS3 have been shown to be
associated with myeloma prognosis (Boyle et al., 2020). Here, we
identified several prognostically relevant differentially expressed
genes (DEGs) for RBP by analyzing public databases and found
that these molecular biomarkers can enrich the understanding
of myeloma. We also performed Cox regression to construct an
8-gene prognostic model and nomogram that could effectively
predict the survival of MM patients and found that this model
could improve on the ISS and R-ISS staging ability.

MATERIALS AND METHODS

Data Processing and DEG Identification
All analyses in this study were conducted using R version
4.03. A list of 1542 RBP-related genes was obtained from
a previous study (Gerstberger et al., 2014). Gene expression
profiles GSE47552, GSE136337, GSE24080, and GSE57317
were downloaded from the Gene Expression Omnibus (GEO)
database1. The data for MMRF-CoMMpass were obtained from
The Cancer Genome Atlas (TCGA2). The array data of GSE47552
were obtained using the GPL6244 platform (HuGene-1.0-st
Affymetrix Human Gene 1.0 ST Array). GSE136337 was obtained
using the GPL27143 platform (HG-U133 Plus 2) Affymetrix
Human Genome U133 Plus 2.0 Array; GSE24080 and GSE57317
were obtained using the GPL570 platform (HG-U133 Plus
2) Affymetrix Human Genome U133 Plus 2.0 Array. The
data of GSE47552 included bone marrow samples from five
healthy donors and 41 newly diagnosed patients with MM.
DEGs between MM patients and healthy donors were identified
using the R package “limma.” Genes with P < 0.05, and
[log2FoldChange (log2FC)] > 1 were considered as DEGs.
Volcanic maps and heat maps were drawn using the R package
“ggplot2” and “pheatmap” to visualize DEGs.

The Cancer Genome Atlas-MMRF was used as a training set
to develop a prognostic signature, while GSE136337, GSE24080,
and GSE57317 were used for validation. To meet the needs of this

1https://www.ncbi.nlm.nih.gov/geo/
2https://tcga-data.nci.nih.gov/
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analysis, we set the following conditions to control data quality:
(1) Samples must have complete survival information, including
survival status and OS time, where death had to be tumor-related
and OS time had to be greater than 30 days (2). Samples must
have complete R-ISS or ISS information. Finally, 709 cases of
MMRF, 559 cases of GSE24080, 559 cases of GSE136337, and 55
cases of GSE57317 were selected for subsequent analysis.

Gene Ontology and KEGG Enrichment
Analysis of DEGs
Gene ontology (GO) term analysis and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis were performed
using the R package “clusterProfiler” to identify the functional
roles of the upregulated and downregulated DEGs, respectively.
GO enrichment was described from three sub-ontologies: BP,
molecular function (MF), and cellular component (CC).

Gene Set Enrichment Analysis
Gene Set Enrichment Analysis (GSEA) version 4.1.0 was used to
explore significant BPs between patients in different risk groups.
KEGG gene sets as Gene Symbols3 were chosen as the gene set
database and the cut-off values for the significance of outcomes
were FDR < 0.25, NOM P < 0.05, and | NES| > 1.

RNA-Binding Protein-Related Gene
Signature Construction
Screening for Hub Genes in the Training Dataset
The TCGA dataset was used as the training cohort, and three
datasets (GSE136337, GSE24080, and GSE57317) were used for
validation. Univariate Cox regression analysis and multivariate
regression analysis (Cox, 1972) were chosen to screen for RBP-
related genes that were closely related to the OS of patients. In
the univariate Cox regression analysis, P < 0.05 was the criterion
to screen candidate genes. Next, the least absolute shrinkage
and selection operator (Lasso) (Friedman et al., 2010) regression
model was applied to minimize overfitting and identify the
most significant survival-associated DEGs of RBP-related genes
in myeloma. Stepwise multivariate Cox regression analysis was
then applied to further establish the RBP-related risk signature.
Finally, the hazard ratios (HRs) and regression coefficients of
every gene were calculated, and the satisfactory ones were chosen.

Construction of the Gene-Related Prognostic
Signature in the Training Dataset
The prognostic risk-score signature for prognosis prediction
of MM patients was to multiply the expression level of each
selected prognostic gene by its corresponding relative regression
coefficient weight as follows:

Risk score =
∑N

i=1 βi× Ei: (N represents the total number
of signature genes, and βi and Ei represent the coefficient index
and the gene expression value of each gene, respectively).

The risk score of each patient and the median risk score
were calculated using the training dataset. Those with a
higher risk score than the median were classified into the

3http://www.gsea-msigdb.org/gsea/downloads.jsp

high-score group, while those with a lower risk score were
classified into the low-score group. Kaplan–Meier survival curves
(Ranstam and Cook, 2017) and receiver operating characteristic
(ROC) curves (Kamarudin et al., 2017) of the two groups
were plotted to evaluate the sensitivity and specificity of the
signature we established.

Validation of the Gene-Related Prognostic
Signature’s Efficacy in the Validation Datasets
As in the training set, the patients in the validation datasets
were classified into the high- and low-score groups by comparing
the risk score of each patient with the calculated median risk
score from each dataset. The time-dependent prognostic values
of the gene signature were investigated using the Kaplan–Meier
curve and log-rank test (Kleinbaum, 1998) was used to compare
the survival difference between the above-mentioned high- and
low-score groups.

Construction of the Nomogram
In the GSE24080 dataset, we used the lasso regression analysis
to analyze all clinical factors and finally selected the clinical
prognostic factors together with risk status as the prognostic
parameters, ensuring that the nomogram model will not
overfit. Then, through “rms” and “regplot” R packages, a
prognostic nomogram was established to evaluate the probability
of OS in MM patients at 1/3/5/7 years with the regression
coefficients based on the lasso analysis. Calibration plots were
used to evaluate the discriminative ability of the nomogram.
Harrell’s concordance index (C-index) was used to verify the
nomogram performance. The ROC curve and calibration curve
varying with time were also drawn to estimate the accuracy
of the actual observed rate with the predicted survival for
1/3/5/7-year OS of the nomogram. In addition, the clinical
application prospects of the eight-gene prognostic signature
were determined through decision curve analysis (DCA)
(Vickers and Elkin, 2006).

RESULTS

Identification of DEGs
We set a P < 0.05, and [log2FoldChange (log2FC)] > 1 as the cut-
off criterion. Based on this standard, we identified 866 DEGs in
MM cases compared with healthy donors, among which 202 were
considered significantly upregulated, and 664 were considered
significantly downregulated. The volcano plot of DEGs and the
heat map of the top 200 DEGs are shown in Figures 1A,B. As
shown in Figure 1C, we obtained 96 differentially expressed RBPs
by taking the intersection of DEGs and 1,542 RBPs.

Functional Analysis of Differential RBP
Genes
For exploring the potential function of these differentially
expressed RBPs, we performed GO and KEGG enrichment
analysis using the R package “clusterProfiler.” The results
of the GO enrichment analysis are presented in three parts.
For BP, differentially expressed RNA-binding proteins
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FIGURE 1 | Identification of differentially expressed genes. (A) Volcano plot of DEGs; (B) heat map of the top 200 DEGs; and (C) differentially expressed RBPs.

(DERBPs) were significantly associated with the following
terms: RNA catabolic process, mRNA catabolic process,
nuclear-transcribed mRNA catabolic process, translational
initiation, nuclear-transcribed mRNA catabolic process,
nonsense-mediated decay, other important BPs, SRP-dependent
cotranslational protein targeting to membrane, cotranslational
protein targeting to membrane, protein targeting to ER, the
establishment of protein localization to the endoplasmic
reticulum, and protein localization to the endoplasmic reticulum
(Figure 2A). Four of the top five BP terms were related to
various RNA catabolic meaning that these processes may be
involved with MM disease progression. The CCs analysis
indicated that DERBPs were mostly involved in the following
terms: ribosome, ribosomal subunit, cytosolic ribosome,
large ribosomal subunit, cytosolic large ribosomal subunit,
small ribosomal subunit, cytoplasmic ribonucleoprotein
granule, cytosolic small ribosomal subunit, polysome, and
the polysomal ribosome (Figure 2B). MF terms were
mainly enriched for the structural constituent of ribosome,
catalytic activity (acting on RNA), mRNA 3’-UTR binding,
rRNA binding, ribonuclease activity, ribonucleoprotein
complex binding, translation regulator activity, telomerase
RNA binding, nucleocytoplasmic carrier activity, and Ran
GTPase binding (Figure 2C). The ribosome, coronavirus
disease – COVID-19, RNA degradation, spliceosome, ribosome
biogenesis in eukaryotes, and RNA transport pathway terms

were significantly enriched in DERBPs, as shown by KEGG
enrichment analysis (Figure 2D).

Exploration of the Prognostic RBPs in
MM
We enrolled 709 patients with a follow-up time of more than
30 days from TCGA as the training dataset for the construction
of the signature. Although 96 differentially expressed RBPs were
screened before (Figure 1C), only 94 of them were included in
the TCGA dataset. The prognostic significance of the 94 genes
was investigated using univariate Cox regression. As a result, 34
prognostic-associated candidate RBPs were obtained (P < 0.05)
(Table 1). LASSO regression was then performed to identify 34
candidate genes closely related to the prognosis of MM patients,
including the following 19 genes: HNRNPC, RPLP2, SNRPB,
SNRPE, SF3B3, KPNB1, GAPDH, RPS12, NFX1, MTIF3, CIRBP,
EXOSC8, RARS2, MRPS31, ZC3H6, DROSHA, NAT10, LSM5,
and PRIM1 (Supplementary Figure 1). To further screen out the
RBPs with the greatest prognostic value, a multiple stepwise Cox
regression was conducted to investigate their impact, and eight
hub RBPs, HNRNPC, RPLP2, SNRPB, EXOSC8, RARS2, MRPS31,
ZC3H6, and DROSHA were selected to construct the risk model
in MM patients (Figure 3A). All of the above genes showed
an independent prognostic effect (P < 0.05). Among them,
HNRNPC, SNRPB, EXOSC8, and DROSHA may be regarded as
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FIGURE 2 | Functional enrichment analysis of DEGs showed by bubble plots. (A–C) Three sub ontologies of GO enrichment analysis. (A) The biological process (BP)
enrichment analysis. (B) The cellular component (CC) enrichment analysis. (C) The molecular function (MF) enrichment analysis. (D) The KEGG enrichment analysis.

oncogenes, whereas RPLP2, RARS2, MRPS31, and ZC3H6 may be
tumor suppressor genes. The coefficients of these genes indicated
their impact on survival prediction.

Construction and Validation of the RBP
Prognostic Signature
We used the eight hub RBPs selected by multiple Cox regression
to establish the eight-gene predictive signature in the TCGA
dataset. The risk score for each patient was calculated based on
the expression level and the corresponding beta value using the
following formula:

Risk score = (−0.6071)× ExpZC3H6+ (0.9575)× ExpSNRPB
+ (−0.4821)× ExpRPLP2+ (−0.5116)× ExpRARS2+ (−0.4890)
× ExpMRPS31 + (0.7192) × ExpHNRNPC + (0.5315) × Exp
EXOSC8+ (0.9987)× ExpDROSHA

We then divided MM patients into the low-score group
(n = 355) and high-score group (n = 354) based on the median
risk score as the cut-off point. The patients’ gene expression levels,
status, and survival time are shown in Figures 3B–D. The K-M
results showed that the OS rate of patients in the high-score
group was significantly lower than that in the low-score group
(P < 0.001, Figure 3E). In addition, the time-dependent ROC
curve showed that the area under the ROC curve (AUC) of this
risk score signature at 1, 2, 3, 4, and 5 years were 0.78, 0.74,
0.77, 0.77, and 0.81, respectively (Figure 3F), indicating that this
signature has moderate performance.

To verify the predictive value of the 8-gene signature in other
MM cohorts, we performed a similar analysis in three datasets:
GSE136377, GSE24080, and GSE57317, which all included the

risk-related genes selected. The risk score formula described
above was validated for the three datasets. We only compared the
OS differences of 1–5 years in the TCGA dataset. But when the
risk model was applied to the GSE24080 and GSE136337 datasets,
comparing for up to 10 years, the results showed that the OS of
patients in the high-score group was worse than that of patients
in the low-score group (all P < 0.01) (Figures 4A,C). The AUC
of this risk score signature was >0.6, proving the performance
of this scoring system (Figures 4B,D). More interestingly, in the
GSE57317 dataset, the OS difference between the two groups
was very significant, with AUC values of 0.84,0.88, and 0.96 at
1, 2, and 3 years, respectively, proving the prognostic value in
this dataset (Figures 4E,F). In conclusion, this scoring model
exhibited acceptable performance for all three datasets.

Establishment and Validation of
Nomogram Survival Model
Univariate and Multivariate COX Regression Analysis
of the Model
Univariate and multivariate Cox regression analyses were
performed using clinical data from the GSE24080 dataset.
Using univariate Cox regression analysis, age, B2M, CRP,
LDH, ALB, HGB, and risk score status were selected to
assess the independent prognostic factors in the MM sample
(Figure 5A). Multivariate Cox regression analysis confirmed
that age (HR = 1.02, 95% CI [1.00−1.03]; P = 0.042),
B2M (HR = 1.41, 95% CI [1.17−1.69]; P = 0.000354), LDH
(HR = 1.00, 95% CI [1.00−1.01]; P = 6.89 × 10−8), ALB
(HR = 0.60, 95% CI [0.42−0.86]; P = 0.005), and multigene
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TABLE 1 | Unicox results of differential RNA-binding proteins.

Gene Hazard ratios CI95 P-value

SUPT4H1 1.76 1.02–3.06 0.043

HNRNPC 3.67 2.1–6.43 0

RPLP2 0.66 0.5–0.89 0.007

SNRPB 5.09 3.39–7.64 0

EIF3K 0.62 0.43–0.9 0.012

GEMIN5 1.95 1.31–2.89 0.001

SNRPE 2.54 1.79–3.61 0

UTP6 2.7 1.59–4.61 0

SF3B3 2.24 1.39–3.62 0.001

KPNB1 3.97 2.46–6.39 0

GAPDH 2.14 1.51–3.03 0

CNOT1 1.65 1.06–2.58 0.027

DDX17 0.77 0.6–0.98 0.033

NFX1 0.54 0.35–0.83 0.005

MTIF3 0.52 0.38–0.72 0

CPSF2 1.75 1.09–2.81 0.02

NOL11 1.88 1.19–2.98 0.007

ESF1 2.57 1.57–4.2 0

CIRBP 0.5 0.35–0.72 0

EXOSC8 1.9 1.28–2.84 0.002

DDX21 1.89 1.31–2.73 0.001

INTS2 2 1.32–3.01 0.001

RARS2 0.58 0.38–0.88 0.01

MRPS31 0.59 0.46–0.77 0

ZC3H6 0.45 0.29–0.71 0.001

RPF2 2.08 1.45–2.99 0

DROSHA 2.16 1.3–3.6 0.003

NAT10 1.84 1.18–2.89 0.007

XPO1 2.14 1.38–3.3 0.001

LSM5 1.7 1.05–2.74 0.032

PRIM1 2.66 1.97–3.58 0

CPEB2 0.7 0.52–0.93 0.014

SLIRP 1.69 1.04–2.77 0.035

DARS2 1.78 1.35–2.33 0

CI95: 95% confidence interval.

risk status (HR = 1.78; 95% CI [1.29−2.47]; P = 0.000438)
were significant independent risk factors (Figure 5B). Based on
the results shown in Figure 3C, the risk score can be used
as an independent prognostic factor without being affected by
clinicopathological features. The HR of the high-risk group was
1.78 (95% CI: 1.29−2.47) times higher than that of the low-
risk group.

Nomogram Construction
To establish a clinical method to predict the survival probability
of MM patients, we created a nomogram using lasso regression
analysis to estimate the probability of, 1-, 3-, 5-, and 7-
year OS with age, B2M, LDH, ALB, and risk score status
(Figures 6A,B). The AUC of 1-, 3-, 5-, and 7-year OS predictions
were 0.78, 0.75, 0.70, and 0.77, respectively (Figure 6E).
The calibration curve was used to describe the prediction
value of the nomogram, and the 45◦ line indicates the

actual survival outcomes. The results for predicting 1-, 3-, 5-,
and 7-year OS showed that the nomogram-predicted survival
closely matched the best prediction performance (Figure 6D),
indicating that the nomogram has a significant predictive
value for predicting 1-, 3-, 5-, and 7-year OS in patients
with MM. The concordance index (C-index) was calculated to
evaluate the prognostic capability of the model. The C-index
of the nomogram was 0.71 (95% CI [0.69–0.73]), which
proved that the nomogram’s value a good predictive tool
for MM prognosis. We used DCA analysis to confirm the
range of the threshold probabilities for a prediction model.
As shown in Figure 6C, the nomogram threshold probability
based on 8-gene combinations was significantly better than
the default strategies of treating all or none at a threshold
probability > 0.05.

Validation of Classification Capabilities
of the Eight-Genes Prognostic Signature
for R-ISS and ISS Stage II Patients
To assess whether our model could improve the heterogeneity
of patients with R-ISS stage II, we reclassified R-ISS stage II
patients in GSE136337 based on the model. Finally, 122 of 267
patients were redefined as II-High, while 145 were defined as
II-Low, and the survival curves were subsequently plotted. To
highlight the discriminatory effect, we defined the categorized
patients as R-ISS II co-plotted in graphs. As shown in Figure 7,
stage II patients were clearly divided into two groups with
different survival, and patients defined as II-High had a worse
prognosis. Meanwhile, we found that the classifier also optimized
for ISS stage II in GSE136337, and it was validated in two other
independent datasets (Figures 7B–D). We treated R-ISS stage I
and stage III in the same way, but the discrimination was not ideal
(Supplementary Figures 2A,B). To further evaluate whether
a similar effect would be apparent on ISS, we performed the
same reclassification for the TCGA, GSE24080, and GSE136337
datasets. In GSE136337, the results were not significant for either
ISS stage I or stage III (P > 0.05). For GSE24080, the difference
in survival after grouping was significant only for ISS stage I
(P = 0.033), but the effect of differentiation was not good enough.
Surprisingly, the TCGA dataset performed the best in the three
datasets. Although each dataset performed differently, the overall
results were not as good as those of stage II (Supplementary
Figures 2C–H).

Signaling Pathways Analysis of
High-Risk Group
In our study, patients in the high-risk group exhibited worse
survival. We used GSEA to investigate the potentially important
pathways causing different prognoses in the two groups. A KEGG
functional enrichment analysis showed that the base excision
repair, nucleotide excision repair, spliceosome, cell cycle, and
p53 signaling pathways may be involved in cancer development
(Figure 8). The spliceosome pathway also appeared in the
KEGG enrichment results of DERBPs, further demonstrating the
importance of this pathway.
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FIGURE 3 | Forest plots of the multivariate Cox regression analysis, the boxplot of eight RBP expression levels, the distribution of risk score, the living status,
Kaplan–Meier analysis, and ROC analysis of the eight-gene signature of MM patients in the TCGA cohort. (A) Forest plot of the multivariate Cox regression analysis
of OS of eight genes. Beta values represent the coefficient index β for each gene. (B) The boxplot of eight RBP expression levels in the training set (blue: low-score
group. Red: high-score group). (C) The distribution of risk scores in the TCGA training set. (D) The living status of MM patients in the TCGA training set.
(E) Kaplan–Meier survival analysis of the low-score and high-score group patients. (F) ROC curve analysis according to the 1-to-5-year survival of the area under the
AUC value in the training TGCA cohort.

DISCUSSION

With the development of novel diagnostic approaches and
treatment strategies, the survival of patients with MM has
improved. However, MM remains an incurable disease for
the vast majority of patients (Rajkumar, 2020). To ensure the
predictive value of RBP-associated genes, we first screened for

RBPs with significant differences in expression between newly
diagnosed myeloma patients and normal human bone marrow.
Subsequently, an eight-gene prognostic signature was established
based on the expression levels of RBP-associated genes. By
calculating the risk scores, we divided all patients into high- and
low-score groups in the training dataset and three validation
datasets, respectively. The predictive ability of this scoring model
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FIGURE 4 | Kaplan–Meier analysis and ROC analysis of 8-gene signature in three validation datasets. (A,B) Kaplan–Meier survival analysis of the low-score and
high-score group patients and ROC curve analysis according to the 1-, 3-, 5-, 7-, and 9-year survival of the AUC value in the GSE24080 cohort. (C,D) Kaplan–Meier
survival analysis of the low-score and high-score group patients and ROC curve analysis according to the 1-, 3-, 5-, 7-, and 9-year survival of the area under the
AUC value in the GSE136337 cohort. (E,F) Kaplan–Meier survival analysis of the low-score and high-score group patients and ROC curve analysis according to the
1-, 2-, and 3-year survival of the AUC value in the GSE51317 cohort.

was evaluated and verified in the training set and the three
validation datasets. Meanwhile, we built a nomogram survival
model to predict the 1/3/5/7-year survival rate by combining age,
B2M, LDH, ALB, and risk score status.

The role of RBPs in promoting cancer has been confirmed,
and DROSHA, EXOSC8, HNRNPC, MRPS31, RPLP2, and SNRPB
have also been reported to be related to the occurrence and
development of a variety of tumors. DROSHA and DICER
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FIGURE 5 | Forest plots of the multivariate and univariate Cox regression analysis in GSE24080 cohorts. (A) Forest plot of the univariate Cox regression analysis OS
of the clinical factors and risk score. (B) Forest plot of the multivariate Cox regression analysis OS of clinical factors screened by univariate Cox analysis and risk
score. Beta values represent the coefficient index β for each clinical factor.

are important factors involved in miRNA processing. For
neuroblastoma, the expression level of DROSHA decreased in
advanced-stage patients and was associated with poor prognosis
(Lin et al., 2010). EXOSC8 is an essential component of the
exosome complex and is involved in RNA surveillance and
epigenetic regulation. Cui et al. found that the expression of
EXOSC8 in colorectal cancer was higher than that in normal
tissues in a public database, indicating a poor prognosis. They
confirmed that the expression of EXOSC8 in colorectal cancer
was higher than that in matched normal tissues in clinical
samples, and verified the cancer-promoting effect of the gene
in cell and animal experiments (Cui et al., 2020). As an RBP,
HNRNPC was reported to be aberrantly expressed at elevated
levels in a variety of tumors, besides being involved in some
well-established BPs, such as RNA splicing. Further, it was
found to control endogenous dsRNA and downstream interferon
response functions and is indispensable to a subset of breast
cancer cell lines, and partial suppression of this gene can affect
cell line activity (Wu et al., 2018). Xu et al. (2014) found that
mitochondrial ribosomal protein S31 (MRPS31) was associated
with thyroid cancer disease progression using a machine-
learning method. Ribosomal P2 (RPLP2) is an ancient ribosomal
stalk protein. It has been shown that RPLP2 can alleviate
ribosome pausing in the DENV envelope coding sequence,

thus enhancing protein stability. This effect is achieved by
improving the efficiency of co-translational folding. RPLP2 also
influences multipass transmembrane protein biogenesis, making
it important in protein synthesis. Moreover, it is associated with
DNA repair, proliferation, apoptosis, and tumorigenesis, and is
significantly associated with malignancies such as gynecological
tumors, digestive system tumors, and lung adenocarcinoma
(Campos et al., 2020). The SNRPB of SMB/B’, the core member
of the spliceosome mechanism, promotes cell proliferation and
inhibits cell apoptosis. Changes in the core splice protein encoded
by SNRPB may interrupt RNA processing, resulting in specific
changes in the splice of variable exons, thus affecting the entire
transcription process (Correa et al., 2016). Besides its important
role in splicing, SNRPB mutations also have significant effects
on cell division and DNA repair (Kittler et al., 2004). SNRPB is
associated with poor prognosis in a variety of cancers, including
glioblastoma, non-small cell lung cancer, and metastatic prostate
cancer (Yi et al., 2009). Although the above-mentioned genes
have been reported in a variety of cancers, their precise roles
in myeloma remain unknown; thus, our study may provide
direction for further exploration. RARS2 encodes mitochondrial
arginine tRNA synthetase, a protein essential for the translation
of all mitochondrially synthesized proteins (Edvardson et al.,
2007). Mutation of the RARS2 gene causes destructive effects
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FIGURE 6 | Nomogram construction based on the eight-gene signature and prognostic value of genes. (A) The nomogram for predicting the proportion of patients
with 1-, 3-, 5-, and 7-year OS of MM. (B) LASSO regression analysis used tenfold cross-validation via the maximum criteria. (C) Decision curve analysis of
nomogram predicting 1-, 3-, 5-, and 7-year OS of MM. (D) Calibration plots of the nomogram. (E) Time-dependent ROC analysis of nomogram predicting 1-, 3-, 5-,
and 7-year OS of MM.

on the cerebellum and cerebellum-associated nuclei (inferior
olivary nuclei, pontine base, and dentate nuclei), leading to
degenerative changes in the brain. However, the exact mechanism
of this effect remains to be elucidated (Joseph et al., 2014).
ZC3H6 is a zinc finger transcription factor, but little is known

about its function or expression. However, we found that ZC3H6
may be closely related to the prognosis of patients with MM.
This finding has not been mentioned in previous literature,
so it may be a potential research direction in the future. In
previous studies, RARS2 and ZC3H6 have not been reported
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FIGURE 7 | The eight-gene model can enhance the predictive power of R-ISS and ISS for their respective stage II cohorts. (A) R-ISS stage II in GSE136337.
(B–D) ISS stage II in GSE136337, TCGA-MMRF, and GSE24080. (Red: a group that was reclassified as high risk. Green: a group that was reclassified as low risk.
Blue: total group before reclassification.)

FIGURE 8 | The KEGG pathways were enriched in the high-risk group by performing the GSEA analysis.

to be associated with tumors. In our study, these two genes
were differentially expressed in myeloma and correlated with
patient survival, suggesting that these two genes are potential
tumor-related genes that require further investigation. The vast
majority of these eight RBP genes were first reported to be
associated with myeloma, and in the future, we intend to establish

a real-world cohort of MM patients to validate the value of
these genes again.

To explore how RBPs are involved in the development and
progression of MM, we performed GO and KEGG enrichment
analyses of 96 DERBPs. In the GO enrichment analysis section,
the results of enrichment from BP, CC, and MF are described.
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The BP results show that the RNA catabolic process was the most
significantly enriched result. The CC results suggest that RBPs
are mainly localized in the ribosome and its associated locations.
MF then reflects the involvement of RBPs in the structural
conformation of the ribosome, RNA catalytic activity, and other
important MPs. KEGG indicated that RBPs affected the disease
by participating in the ribosome, RNA degradation, spliceosome,
and RNA transport pathways. The results of conducting
enrichment analysis only on DEGs may miss the contribution
of genes that are relevant but less biologically significant to
disease, so we further analyzed the differences in BPs between
high-risk and low-risk groups by GSEA. In the GSEA-KEGG
results, as with the results of the KEGG enrichment analysis of
the DERBPs, the “Spliceosome pathway” was suggested to be
significant. The RNA splicing pathway is associated with a variety
of human tumors (Wang and Aifantis, 2020). In MM, aberrant
RNA splicing patterns were found to exist, and patients with a
large number of novel splice loci tended to have worse survival
outcomes, which could be used to distinguish extremely high-
risk groups (Bauer et al., 2020). These findings fit our enrichment
results, demonstrating the value of the spliceosome pathway in
myeloma, but there are currently few relevant studies, and its
role in myeloma remains to be comprehensively uncovered. One
study showed that spliceosome interference was an unreported
mechanism of action of proteasome inhibitors; inhibition of
the spliceosome could synergize with carfilzomib to potentiate
antitumor effects, suggesting that targeted spliceosome therapy
could serve as a future research direction for the treatment of
myeloma (Huang et al., 2020).

R-ISS staging had the advantage of distinguishing patients
with a very good prognosis (stage I) from those with a very
poor prognosis (stage III); however, more patients were classified
as stage II. Although stage II patients were intermediate in
terms of overall prognosis, the issue of significant heterogeneity
within stage II patients has not been addressed. In this study, we
constructed a model that we intended to be a powerful predictor
of patient survival. Therefore, we wanted to evaluate whether the
model could enhance R-ISS prediction. The results showed that
the model could further discriminate patients with R-ISS stage II,
but performed poorly in stage I and III patients. This result not
only further suggests intra-patient heterogeneity at stage II, but
also illustrates that our model can optimize R-ISS to some extent.
Besides this, we also applied this model for ISS staging in the three
databases. The results were similar between the three databases,
the optimization effect of the model on the ISS stage II phase
was the most obvious, and it had a smaller optimization effect
on stages I and III, although the effect was weaker than R-ISS.
The distinct results for stages I and III affirm the ability of R-ISS
to discriminate between patients with stages I and III diseases,
as well as the significant heterogeneity within patients with stage
II disease, while also demonstrating the ability of our model to
optimize both R-ISS and ISS.

Collectively, we suggest that our 8-RBP-related gene signature
and nomogram could be practical and reliable prognostic
tools for MM. Although the signature and nomogram showed
excellent performance in the training and validation sets, they
inevitably had some limitations. First, although it performed

well in predicting the survival of patients with MM, it lacked
verification of large-scale prospective trials. Second, the R-ISS
data were only obtained from the GSE136337 database, and
further confirmation is needed to conclude that our model can
enhance the predictive power of R-ISS. Third, the associated
mechanisms have not been validated in MM cells. Based
on this, our follow-up research will focus on verifying the
conclusions of this study in terms of clinical applications and
molecular mechanisms.

In conclusion, we introduced a prognostic signature based on
eight RBP genes that might be independent prognostic factors in
MM and a novel nomogram that could predict the survival of
patients with MM.
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