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Abstract: In this article, we propose to determine the dynamic model of a squirrel-cage induction
motor from a reduced amount of information. An adaptive observer is also built from this model in
order to obtain a speed estimation and to perform rotor fault monitoring by Tacholess Order Tracking
(TOT). We also propose a generalization of the notion of angular sampling in order to adapt to this
type of defect. The procedure is validated in the laboratory on a test bench dedicated to the study of
rotor bar defects.

Keywords: soft sensor; speed estimation; adaptive observer; order tracking; squirrel-cage induction motor

1. Introduction

The detection of faults in squirrel-cage induction motors from electrical measurements
is currently a well-understood subject at constant speed. Frequency methods are very
effective because the signatures of the main defects are well known. At variable speed
and for data sampled as a function of time, classical Fourier analysis is impossible because
the frequencies of the spectral components sought vary with this speed. Many surveys
have been published on the diagnosis of electrical machines, including the case of variable
speed [1–5]. In these review articles, the methods cited are essentially time/frequency
methods. There are quite a few articles citing Order Tracking (OT) as a method in its own
right [2,3,6–8]. The main reason is that order tracking techniques require knowledge of the
motor mechanical position. Their application from electrical measurements alone is one
of the techniques called Tacholess Order Tracking. The article [9] is the reference survey
on TOT. It summarizes the various measurements, other than mechanical (vibrations,
electrical currents, video), making it possible to perform angular sampling and order
analysis. In [9], the section relating to electrical measurements from induction motors is
relatively brief because the estimation of rotational speed from electrical measurements
is considered a well-known problem. Indeed, this subject was widely discussed in the
context of sensorless motor control in the 1980s and 1990s [10–14]. Two possible approaches
can be distinguished. The signal approach looks for a spectral component linked to the
rotational speed in the stator current. They generally exploit specific construction features
(number of slots, for example), with or without signal injection [15]. The model approach
uses currents, voltages and the motor model to define an adaptive observer [16,17] or a
reference model structure (MRAS) [18,19]. The model approach provides a robust speed
estimation and also allows us to estimate other quantities (flux, resistances, rotor time
constants, etc.) [20]. However, it requires knowledge of the dynamic motor model, which,
in practice, requires identification of the parameters [21,22]. In an industrial context, it is
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generally impossible to carry out specific tests. Furthermore, available information is often
reduced (nameplate and sometimes manufacturer’s documentation if the motor is recent),
which strongly compromises the possibility of establishing a dynamic model.

In this article, we propose to circumvent this difficulty by going through the motor
steady-state model (also called static model) in order to deduce the dynamic model. Deter-
mining the steady-state model of a squirrel-cage induction motor from a reduced amount of
information is a research topic that has given rise to a number of publications [23–28]. The
objective is to avoid having to carry out the conventional tests (no-load test and locked-rotor
test) necessary to determine these parameters. This work provides us with a number of
methods, each with its advantages and disadvantages. In [27], the authors propose a com-
parative study and establish a combined method exploiting the best of existing methods.
This static model can be used to estimate a dynamic model and then build an observer to
estimate the motor speed in real time. This speed can be used to estimate the mechanical
position and perform the analyzed signal angular re-sampling. The proposed procedure
makes it possible to set up monitoring by order tracking on a squirrel-cage induction motor
for which we have very little information. It is particularly suitable for deployment in an
industrial environment.

In Section 2, we recall the methods for obtaining the motor steady-state model from
a reduced amount of information. The link between the static and dynamic models is
established and an experimental study determines the estimation method to be used to
satisfy variable-speed operation. In Section 3, the estimated speed is used for an angular
re-sampling of the current modulation terms. A specific angle is defined for the monitoring
of rotor bar breakage type faults. The entire procedure is experimentally tested in Section 4.

2. Observer Design from a Reduced Amount of Information
2.1. Model Estimation in Steady State

We recall in Figure 1 the squirrel-cage induction motor classical static model.

V

R1 L1ωe

LmωeRc

L2ωe

R2

s

Figure 1. Squirrel-cage induction motor model in steady state.

This model is a per-phase equivalent model under the assumption that the three input
voltages are balanced. The meanings of the different parameters are as follows:

• ωe = 2π fe: supply electrical angular frequency;
• R1: stator winding resistance;
• L1: leakage inductance of a stator winding;
• Rc: resistance modeling iron losses;
• Lm: magnetizing inductance;
• R2: resistance of an equivalent rotor winding transferred to the stator;
• L2: leakage inductance of a rotor winding transferred to the stator;

• s =
fsync − fr

fsync
: synchronism frequency with fsync =

fe

p
and p the number of pole pairs.

The information needed to implement the methods mentioned above is as follows:
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• The motor nameplate (NP), which provides the mechanical power Pn, the line voltage
Vn, the current In, the frequency Fe, the speed Nn, the power factor FPn, the torque Tn
and the nominal efficiency ηn of the machine;

• Additional manufacturer data such as the maximum torque Tm, the starting torque Td
and the starting current Id, the motor code and class in the NEMA standard (National
Electrical Manufacturers Association), and additional operating points for power
factor and efficiency (100%, 50%, and 25% of load).

Table 1 summarizes the data necessary for the most common methods for determining
model parameters.

Table 1. Data needed for the different methods.

Model NP cosϕ η Torque Current NEMA

100 75 50 100 75 50 Td Tm Id CODE CLASS

Natarajan-Misra [23] ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Lee [25] ∗ ∗ ∗ ∗

Haque [24] ∗ ∗ ∗ ∗ ∗ ∗ ∗

Guimarães [26] ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Amaral [28] ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

A comparison of these different methods was made in [27] and indicated that most of
the methods had at least one discrepancy. The Lee and Guimarães methods presented many
problems in the calculation of reactance, presenting either negative values or absurdly high
values. On the precision, the analytical R1 estimation from the Natarajan-Misra, Haque,
and Guimarães methods obtained good performance. For elements R2, X1, and X2, the
other methods presented better results, except for R2 estimation in the Haque and Lee
methods. Small deviations in Rc values resulting from the Natarajan-Misra and Haque
methods, although larger deviations of constant losses (Pconst), are observed, which means
that an accurate Rc estimate does not necessarily imply a good estimate of the constant
losses. It is found that Lee’s method shows a failure to provide Xm results. Despite this,
the Lee method has the best performance in calculating constant losses, as well as the
Natarajan and the Guimarães methods. By combining the strengths of each method in
terms of robustness and precision, a new method has been proposed, the “COMBINED”
method [27]. Improvements were observed in the accuracy of the parameter values as
well as in the robustness of the new method, since it showed no malfunctions on different
motors. The COMBINED method proposes and verifies experimentally a combination of
the different methods:

• R1 estimation with the Guimarães method;
• R2 estimation with the Natarajan-Misra method;
• Rc, Xm estimation with Haque’s method;
• X1, X2 estimation with Amaral’s method;
• constant losses Pconst estimation with the Lee method.

In a steady-state context, it is therefore possible to decide on the use of the COMBINED
method to obtain the engine model. In this article, we are interested in the dynamic model
of the machine. It is in this context that we will compare the different methods available in
the following paragraphs.

2.2. From Steady State to Dynamic Model

Squirrel-cage induction motor dynamic models have mainly been developed in the
context of flux vector control. They differ mainly in the choice of state variables used (stator
flux, rotor flux, stator currents) and the reference frame chosen (fixed with respect to the
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stator, linked to the rotor or stator fields, linked to the rotor). This results in a large number
of possible models whose electrical quantities are generally represented in the form of a
two-phase system equivalent to the three-phase system. The model chosen here exploits
the state variables rotor flux and stator current. The dynamic model is developed in any
reference frame rotating at the angular frequency ωg in complex notation,

us = Rsis +
dφ

s
dt

+ jωgφ
s

(1)

Rrir +
dφ

r
dt

+ j(ωg − ω)φ
r
= 0. (2)

φ
s
= Lsis + Lir (3)

φ
r
= Lrir + Lis (4)

with

• us, is, φ
s
: stator voltages, currents and fluxes;

• ir, φ
r
: rotor currents and fluxes;

• Rs: stator resistance;
• Rr: rotor resistance;
• Ls: cyclic stator inductance;
• Lr: rotor cyclic inductance;

• L =
3
2

Msr: Msr, maximum mutual inductance between a stator phase and a rotor
phase;

• ω: mechanical angular frequency;
• ωg: angular frequency of the frame in which the equations are expressed.

The angular frequency ωg can be chosen in several ways.

• ωg = ωs: the frame is fixed on the field rotating at the synchronism angular frequency.
This frame is commonly called Park’s frame and is used in vector control. In this frame
of reference, the electric and magnetic quantities are continuous.

• ωg = 0: the frame is set on stator phase {a}. This frame is commonly called the
Concordia frame and is often used in observer synthesis. In this frame, the electrical
and magnetic quantities are sinusoidal.

In order to determine the existing relationships between the steady-state model (R1, R2,
L1, L2 and Lm) and the dynamic model (Rs, Rr, Ls, Lr and L), we choose the Park frame. It
is a frame rotating at the power supply frequency. In steady state, the representation of
these vectors can be likened to the Fresnel representation compatible with the steady-state
model of the machine. In the Park reference, Equations (1) and (2) are written:

us = Rsis +
dφ

s
dt

+ jωsφ
s

(5)

Rrir +
dφ

r
dt

+ j(ωs − ω)φ
r
= 0. (6)

We write Equations (5) and (6) in steady state by canceling the derived terms.

us = Rsis + jωsφ
s

(7)

Rrir + j(ωs − ω)φ
r
= 0. (8)

For the stator, by combining (7) and (3), we obtain

us = Rsis + jL1ωsis + jLωs(ir + is) (9)

with L1 = Ls − L.
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For the rotor, we divide both sides of Equation (8) by the slip s =
(ωs − ω)

ωs
, and

we obtain:

Rr

s
ir + jωsφ

r
= 0 (10)

By combining (10) and (4), we have

Rr

s
ir + jL2ωsir + jLωs(is + ir) = 0 (11)

with L2 = Lr − L.
Equations (9) and (11) correspond to a diagram equivalent to that of Figure 1 with

the changes in variable: Rs = R1, Rr = R2, L = Lm, Ls = L1 + Lm and Lr = L2 + Lm. We
can therefore directly define the dynamic model of an induction machine from its static
model, from a reduced amount of information. In the following, we implement an adaptive
observer built on the dynamic model above. The objective is to estimate the speed of
the machine in order to deduce the mechanical angle and then to carry out the angular
sampling of the analyzed signal.

2.3. Adaptive Observer

Observers for squirrel-cage induction motors were developed in the 1980s/90s with the
aim of achieving controls without mechanical sensors. There is a large number of possible
observers depending on the state variables that are estimated: stator currents, stator fluxes,
rotor fluxes. In the case of speed, which is also a state variable, its direct estimation is
impossible because the mechanical equation is, by definition, unknown, particularly the
resistive torque applied to the shaft. We therefore use an adaptation mechanism, making it
possible to estimate the speed at the same time as the other state variables. In the following,
we use the Kubota observer [16], which is now a classic observer. This observer is built
around Equations (1)–(4), expressed in the fixed frame relative to the stator (Concordia
frame), i.e., ωg = 0. The estimated state variables are the stator current and the rotor flux.
The model, expressed as a state representation, is given by:

d
dt

(
îs
φ̂

r

)
=

(
A11 Â12
A21 Â22

)(
îs
φ̂

r

)
+

(
B1
0

)
vs + Gei

ŵr = Kpε + Ki
∫

εdt
(12)

with: îs =
[
îsα îsβ

]T
, φ̂

r
=
[
φ̂rα φ̂rβ

]T , ei =
[
eiα eiβ

]T
=
[
(îsα − isα) (îsβ − isβ)

]
, and

ε = eiαφ̂rβ − eiβφ̂rα.

The notation ˆ(.) symbolizes the estimated quantities. The matrices are defined by

• A11 = −(Rs/(σLs) + (1 − σ)/(στr))I = ar11 I
• Â12 = −Lm/(σLsLr)((1/τr)I − ω̂r J) = ar12 I + âi12 J
• A21 = (Lm/τr)I = ar21 I
• Â22 = −(1/τr)I + ω̂r J = ar22 I + âi22 J
• B1 = 1/(σLs)I = b1 I

• G =

(
g1 g2 g3 g4
−g2 g1 −g4 g3

)T

• I =
(

1 0
0 1

)
, J =

(
0 −1
1 0

)
where

• σ = 1 − L2
m/(LsLr): leakage coefficient;

• τr = Lr/Rr: rotor time constant;
• ω̂r: mechanical motor angular frequency.
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Observer tuning parameters are G, Kp, and Ki. In the rest of this article, we will take
G = 0, which means that the dynamics of the observer are equal to motor ones. The rotation
speed estimation dynamics will be determined by the parameters Kp and Ki.

2.4. Experimental Model Selection

We test the proposed methodology on a laboratory test bench (Figure 2). This bench
was made to study rotor bar faults on squirrel-cage induction motors [29]. Figure 3 shows
the heathy and faulty rotors. The motor characteristics are: power 1.1 kW, rated voltage
400/230 V, rated current 2.6/4.3 A, cos(phi) 0.85/0.82, rated speed 1425 rpm. The motor
is coupled to a DC generator delivering on a resistive load. Placed at the end of the
shaft, an incremental encoder at 1024 pulses/revolution provides a mechanical position
measurement. This measurement is connected to the simulink/dSpace processing block,
which calculates the velocity by derivative. This angular speed is filtered by a low-pass
filter of order 1 in order to limit the noise. All the electrical and mechanical measurements
are processed by an anti-aliasing filter before being acquired by a Matlab/dSpace 1104
system with a sampling frequency Fs = 10 kHz.

Figure 2. Experimental set-up.

From the motor nameplate and the motor manufacturer’s documentation, the various
methods for determining the model in steady state are applied. Results are given in Table 2.

Table 2. Steady-state models.

Method R1 X1 R2 X2 Rc Xm

Lee 10.06 6.26 4.96 9.39 978.82 179.38

Haque 12.99 4.83 5.16 7.25 1619.1 153.76

Guimarães 13.18 3.23 4.05 31.88 1778.3 181.04

Natarajan 12.67 7.70 4.55 11.55 3985.43 232.96

Amaral 13.16 7.60 4.06 11.35 5289.16 160.96

COMBINED 13.18 7.60 4.55 11.35 1619.1 153.76
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Figure 3. Healthy and faulty rotors.

It is difficult to establish the best choice among the five methods proposed in Table 2 for
the simple reason that, for this motor, we do not have any references from the manufacturer.
The motor is old and of low power; the method of Guimarães seems to give a false estimate
of X2. This is also due to the fact that this method gives better results for motors with
higher powers, beyond 7.5 kW (R1 and X1 values are then lower). For all the other methods,
the estimated parameters remain of the same order of magnitude. The combined model
is established according to the procedure defined in [27]. From these parameters, five
dynamic models are defined and used to build five adaptive observers. In the following
test, we study the behavior of the various observers at variable speed. The motor is started
directly on the network. The generator is coupled to a resistor set so that, in steady state,
the motor absorbs its rated current (Figure 4). The observer tuning parameters are G = 0,
Kp = 0, ki = 10,000.

1.5 2 2.5 3 3.5 4

-20

-10

0

10

20

30

1.5 2 2.5 3 3.5 4

0

500

1000

1500

2000

Figure 4. Direct Concordia current isα(t) and speed.
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In order to compare dynamic models, we plot the instantaneous amplitudes and
frequencies IA(t) and IF(t), calculated by Concordia (measurements) and estimated for
each model:

IA(t) =
√

isα(t)2 + isβ(t)2 (13)

IF(t) = atan
[ isβ(t)

isα(t)

]
(14)

The result is given in Figure 5.

1.9 1.95 2 2.05 2.1
0

5

10

15

20

5.32 5.33 5.34 5.35 5.36
1

1.5

2

2.5

3

3.5

2 2.5 3
0

20

40

60

Measurement

LEE

HAQUE

GUIMARES

NATARAJAN

COMBINED

5.32 5.33 5.34 5.35 5.36
49.9

49.95

50

Figure 5. Comparison between models: IA(t) et IF(t), Ki = 10,000, Kp = 0, G = 0.

First, we note that in steady state and for this motor, the COMBINED and Haque
methods give the better estimations. On the other hand, in transitory mode, one notices that
the methods of Lee and Haque give the most precise estimate. The COMBINED method
is not, on this test, the most precise in the estimation of IA(t) and IF(t). In the context of
the TOT, we are particularly interested in the estimation of the speed. Figure 6 shows the
estimates obtained for the different models. The error is calculated by simply taking the
difference between the measured speed and the estimated speed.

It is verified that in steady state (top left of the figure), the COMBINED method gives
the best result, which is verified by plotting the error in steady state (bottom right). On the
other hand, in the transient regime, the COMBINED method is not the most precise. We
find again, as in the case of IA(t) and IF(t) estimates, that the methods of Lee and Haque
provide the best estimate. These results can be verified by calculating the rms value of the
various errors in the transient and steady-state regions:

x_rms_err =

√√√√ 1
(N2 − N1)

N2

∑
k=N1

[xmes(k)− xest(k)]2 (15)

where xmes and xest represent the measurement and the estimates of the signal x(t), and
N1, N2 denote the bounds including the transient or the steady states. Figure 7 shows the
results obtained.
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Figure 6. Comparison between measured and estimated speeds, Ki = 10,000, Kp = 0, G = 0.
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Figure 7. Criterion (15) calculated for speed, IA(t) and IF(t): (1) Lee, (2) Haque, (3) Guimarães,
(4) Natarajan, (5) COMBINED.

It is checked here that the estimate of speed in the transient state provided by the
method of Lee is the most precise. It is also noted that the COMBINED method provides
the best results on the three signals in steady state, as indicated in [27]. The results obtained
on this motor and this test cannot be generalized. An exhaustive study must be carried
out in order to explain the performance of the Lee method in transient conditions, but
this is outside the context of this article. In the following, we retain the Lee model for the
implementation of the TOT applied to our motor.
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3. Specific Angular Re-Sampling for Rotor Asymmetry Monitoring
3.1. Angular Re-Sampling with Mechanical Position

Once the speed of rotation has been estimated, it is possible to deduce the mechanical
position from a simple integration. This position is then used to carry out the angular re-
sampling of the signal chosen to carry out the diagnosis. Offline, this sampling can be done
in different ways [30]. As mentioned before, the quantities re-sampled with mechanical
position are independent of velocity. Consequently, a conventional FFT calculated on
these quantities becomes a powerful tool again, as at constant speed. The spectrum is no
longer represented as a function of frequency ( f in Hz) but as a function of a homogeneous
variable with rad−1. The unit currently used is the number of events per turn (g in evt/rev),
also called orders. The relations between the angular variables and the specifications of the
FFT are recalled in Table 3.

Table 3. Angular domain and FFT notations.

Angular Domain

Name Variable Expression Unit

θs Sampling period - rd

Gs Sampling frequency
2π

θs
Evt/rev

Nθ Number of samples - -

gmax FFT domain
Gs

2
Evt/rev

∆g FFT resolution
Gs

Nθ
Evt/rev

In this representation, for data sampled from the mechanical position, the component
at the rotational frequency will be localized to the order g = 1, whatever the speed
variations. Considering the data sampled at the sampling period θs, the spectrum will be

calculated between g = 0 and gmax =
1

2θs
. The corresponding resolution is ∆g =

1
Nθs

.

Each spectral component, due to faults or load variations, will be located at an order whose
value will be constant. The angular sampling period θs will be chosen according to the
maximum order to monitor. In the following, we will analyze the motor in transient state,

i.e., during the start-up phase. The FFT resolution defined by ∆g =
1

Nθθs
will depend on

the duration of this transitional regime.
In steady state, the angular spectrum expressed as a function of g is obtained simply

from the time data by dividing the frequency scale by the value of the rotation frequency
Fr. In a variable regime, the angle to use to re-sample the data is:

θr(t) = 2π
∫ t

0
Fr(τ)dτ (16)

3.2. Design of a Specific Angle for Fault Monitoring

In the previous paragraph, we recalled the principle of angular sampling from the
mechanical position. This principle can be generalized to any angle. For example, in the
event of a rotor fault (bar breakage) and at fixed speed, the frequency components in the
stator current will be located at [31,32]:

f = Fe(1 ± 2ks) = Fe ± 2ksFe, (17)

where Fe is the supply frequency, s is the machine slip, and k is a positive integer.
It is known that this type of fault will generate amplitude and frequency modulations

of the rotor currents [33]. It is therefore customary to look for defects in the quantities IA(t)
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or IF(t). In the modulation quantities IA(t) and IF(t), the fault components, due to the
frequency translation around 0, will be located at

f = 2ksFe = 2kpFsync(
Fsync − Fr

Fsync
) = 2kp(Fsync − Fr), (18)

with p denoting the number of pairs of poles of the motor and Fsync =
Fe

p
the synchronism

frequency.
In steady state (constant speed), the spectrum expressed as a function of the order

could be obtained from a time-sampled signal by dividing the frequency scale by the
quantity 2p(Fsync − Fr). In the transient state, it is necessary to re-sample the analysis signal
with a specific angle equal to:

θspec(t) = 2π × 2p
∫ t

0
Fsync(τ)− Fr(τ)dτ, (19)

After re-sampling analysis signals IA(t) or IF(t) with the specific angle θspec, the
defect components will be located at g = 1, g = 2, g = 3. . . , whatever the motor speed
(constant or variable speed). Due to the use of an observer, the quantities Fsync and Fr are
accessible and the angle θspec can be estimated in real time. It is possible to generalize
this approach to define the specific angles relative to the different possible defects (stator
winding, bearings, torque oscillations, etc.).

4. Experimental Results

In these tests, we insert a faulty rotor into the motor. Two holes are made to simulate
two bar breaks. The motor is started gradually over 5 s by varying the supply voltage
amplitude with an auto-transformer. The observer provides the estimated rotation fre-

quency (F̂r) and the synchronism frequency F̂sync =
ÎF
p

calculated by (14). The specific

angle (19) is then estimated in real time. This angle is then used to re-sample the signal
ÎF(t), which is chosen as the analysis signal in this test. Re-sampling operation is performed
by linear interpolation using the Matlab function “rpmordermap”. This function uses the
following parameters:

• the signal to be analyzed: ÎF(t).
• the time sampling frequency: Fs = 10 kHz.
• the motor speed expressed in rpm: we adapt this function to use it with our specific

angle by entering the speed N = 60
[

F̂sync(t)− F̂r(t)
]
. This choice corresponds to

choosing a reference frame rotating at the frequency of the rotor currents.

Finally, the Matlab function “orderspectrum” is used to calculate the spectrum of
the signal. Figure 8 shows the complete procedure used in the following tests. The same
procedure is applied to analyze the signal IF(t) resulting from the measurements.

The first test concerns the analysis of signal IF(t) (calculated from measurements)
and ˆIF(t) (calculated from estimations) in the stationary zone (6 s < t < 16 s), as shown in
Figure 9. On the steady-state spectrum (Figure 9b), we check the presence of the components
at 2sFe = 4.35 Hz and its multiples of a component at Fr = 23.9 Hz, which is the frequency
of rotation and which is probably due to motor misalignment. There is also a spectral
component at Fe = 50 Hz, which is the translation of the fundamental component of the
network at 100 Hz after demodulation. Figure 9c shows the spectrum of the signal IF(θspec)
sampled with the specific angle (19). As expected, the components related to the rotor fault
are now located at g = 1, 2, 3, 4. The component at g = 5.49 evt/rev corresponds to the
rotation frequency Fr divided by 2sFe. The component at g = 11.48 evt/rev corresponds to
Fe divided by 2sFe.
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Figure 8. Complete TOT procedure.
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Figure 9. IF(t) and ÎF(t) analysis in steady state.

We now perform an analysis of the same signal IF(t) in the transient zone (1 s < t < 6 s).
The result is shown in Figure 10. The angular sampling from the specific angle θspec makes
it possible to highlight the orders relating to the motor rotor fault. One notes the presence
of components between g = 0 and g = 1, g = 3, and g = 4, which did not appear in steady
state. These components are related to the transitory regime, which generates additional
spectral components.
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Figure 10. IF(t) analysis during start-up.

Since the angular spectrum is now stationary (independent of the speed), it is pos-
sible to carry out a simple filtering to isolate the components sought. Time Synchronous
Averaging (TSA) type filtering is applied [34]. The frequency response of the filter is of
the form:

F(g) =
1
M

sin(πMg)
sin(πg)

(20)

The function (20) is a sequence of cardinal sine centered on g = 1, 2, 3 . . .. The width
of the lobes is regulated by the coefficient M. The filtered signal is obtained by a simple
multiplication of the original spectrum by the function F(g). The result is given in Figure 10b
for M = 10. The components linked to the fault are correctly isolated by the TSA filtering.

5. Discussion and Conclusions

In this article, we presented a methodology allowing us to carry out an analysis of the
electrical currents of an asynchronous machine in transitory state starting from a reduced
amount of information. The known methods for Tacholess Order Tracking have been little
used in the case of induction motors because they require an estimation of the rotational
speed. Model-based speed estimation methods require the identification of dynamic motor
parameters, which makes them difficult to use in an industrial environment. From this
point of view, the strategy proposed in this article is a real contribution for the development
of angular sampling techniques for squirrel-cage induction motors. The first important
point is the possibility of establishing an observer from the nameplate motor without
resorting to an identification procedure. We have shown that the COMBINED method does
not give the best results in transient state. Although, for this study, the Lee method is the
most precise, it is impossible to generalize this result to all motors. An additional study
is in progress to justify this result and generalize the methodology. From an industrial
point of view, the fact that the Lee method gives good results is interesting because it is the
one that mobilizes the least information to establish the static model. Another advantage
in the use of an observer is that it gives access to other quantities on which it is possible
to search for faults—in particular, speed and flux. The second interesting point is the
generalization of the angular re-sampling notion. Although it is generally applied from
the mechanical position, we have shown that it is possible to define an angle specific to the
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desired defect. In this article, we have dealt with the case of a rotor fault, but we could
extend the principle to all possible motor faults (short circuit to the stator, bearings, etc.)
and also to the frequency components generated by the load and its coupling (gearbox, belt,
etc.). This generalization is also the subject of current work. Finally, in this work, we used
re-sampling by linear interpolation. It is planned to apply our methodology with more
efficient techniques (Kalman, Vold–Kalman, and Time-Variant Discrete Fourier Transform).
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