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Abstract 

Background:  Larval indices such as the house index (HI), Breteau index (BI) and container index (CI) are widely used 
to interpret arbovirus vector density in surveillance programmes. However, the use of such data as an alarm signal is 
rarely considered consciously when planning programmes. The present study aims to investigate the spatial distribu-
tion pattern of the infestation of Aedes aegypti, considering the data available in the Ae. aegypti Infestation Index Rapid 
Survey (LIRAa) for the city of Campina Grande, Paraíba State in Brazil.

Methods:  The global and local Moranʼs indices were used in spatial analysis to measure the effects of spatial 
dependencies between neighbourhoods, using secondary data related to HI and BI gathered from surveillance 
service.

Results:  Our analysis shows that there is a predominance of high rates of mosquito infestation, placing Campina 
Grande at a near-constant risk of arbovirus outbreaks and epidemics. A highly significant Moranʼs index value (P < 
0.001) was observed, indicating a positive spatial dependency between the neighbourhoods in Campina Grande. 
Using the Moran mapping and LISA mapping, the autocorrelation patterns of Ae. aegypti infestation rates among 
neighbourhoods have revealed hotpots that should be considered a priority to preventive actions of the entomologi-
cal surveillance services. Predominance of high infestation rates and clearer relationships of these between neigh-
bourhoods were observed between the months of May and July, the period with the highest rainfall in the city.

Conclusions:  This analysis is an innovative strategy capable of providing detailed information on infestation loca-
tions to the relevant public health authorities, which will enable a more efficient allocation of resources, particularly 
for arbovirus prevention.
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Background
The control of Aedes aegypti, a widespread vector of 
several viruses, is still considered a major challenge for 
public health authorities, especially in developing coun-
tries. In Brazil, epidemics of the diseases transmitted 
by Ae. aegypti, i.e. dengue, chikungunya and Zika, have 
been responsible for significant human and economic 
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losses, and led the authorities to formulate strategies 
to attempt to increase vector control [1]. In 2015 and 
2016, an annual average of 1,586,155 probable cases of 
dengue were recorded in Brazil; although a reduction to 
252,054 cases was observed in 2017 [2], which could be 
the result of the cross-herd immunity to Zika virus [3]. 
The differential diagnosis of these diseases is difficult 
because of the similarity of symptoms, cross-reactivity, 
co-circulation and overlap of infections by different 
arbovirus species and strains [4, 5]

Arboviral transmission has multiple causes and con-
tributory contextual factors, impacted by the influence 
of social, environmental and cultural determinants in 
the course of the natural history of disease [4]. Epide-
miological studies have clearly associated the expan-
sion of these diseases with haphazard and unplanned 
urban development processes, mainly caused by the 
lack of infrastructure and basic sanitation in areas that 
have been occupied without prior planning. In north-
east Brazil, the population has been disproportionately 
affected by arboviruses, with 94% of all cases of congen-
ital Zika syndrome being reported in this region [2, 6, 
7]. Poor access to garbage collection and an intermit-
tent water supply provide conditions for vector breed-
ing, which in turn makes vector control more difficult 
in this region [3].

In Brazil and elsewhere, arbovirus control programmes 
preferentially use survey of larval indices of Ae. aegypti 
population assessment, owing to practicality and repro-
ducibility [8, 9]. To identify the most vulnerable areas 
and provide indices rapid and timely, the Ae. aegypti 
Infestation Index Rapid Survey (LIRAa) has been applied 
by municipalities in Brazil since 2003 in accordance with 
the guidelines of National Dengue Control Programme 
(PNCD) [10, 11].

For LIRAa, the municipality is divided into strata of 
8100–12,000 individuals; sampling is performed in two 
phases by blocks of houses (primary sampling unit) and 
by houses (secondary sampling unit) with a maximum 
sample limit of 450 houses [12]. Software is used to gen-
erate a list of starting blocks and subsequent blocks are 
selected according to a sampling interval. In each selected 
block, endemic disease control agents (ACEs) survey an 
average of 25 houses per day, targeting every fifth house 
on a street (i.e. 20% of properties). They collect informa-
tion on infested containers, which are classified in differ-
ent categories (containers for domestic water separation, 
mobile, fixed, discarded and natural containers) [12].

The presence or absence of dengue vectors is meas-
ured using three key indices: house index (HI: the per-
centage of houses infested with larvae and/or pupae); 
Breteau index (BI: the number of positive containers 
per 100 houses); container index (CI: the percentage of 

water-holding containers infested with larvae or pupae) 
[12, 13]. These indices may facilitate understanding of the 
ecology of vectors in a given control area, but they also 
serve as useful measures for determining the success of 
intervention strategies [11, 14]. In Brazil, data for the cal-
culation of infestation indices is collected on a bimonthly 
basis according to PNCD guidelines [12]. However, some 
flexibility is given to the municipality surveillance ser-
vices, which are usually performed four times a year, but 
increase their frequency during outbreaks and epidemic 
[8, 9].

According to the PNCD, HI values above 4% indicate 
risk of dengue outbreak; above 1% and below 3.9%, alert 
situation; and below or equal 1%, satisfactory situation. 
BI above 5 indicates a risk situation. These thresholds are 
currently used by the surveillance services to plan and 
execute preventive actions, such as spraying insecticides 
in some neighbourhoods. However, in the literature, 
there is no evidence of correlation between larval density 
and disease transmission. It means that these thresholds 
cannot be useful to predict outbreaks [15].

Spatial analysis allows the identification and explana-
tion of the geographical distribution of disease patterns. 
It comprises the quantitative study of phenomena that 
are geographically located in space and may be per-
formed by visualization, exploratory analysis or spatial 
data modelling methods. This type of approach has been 
widely used in epidemiological studies and allows for an 
exploration of the relationship between demographic, 
environmental and socioeconomic information in order 
to detect the conditions and determinants of the arbovi-
ruses without dissociating them from the context of their 
territorial spaces [16].

In this study, the spatial and temporal distribution pat-
terns of infestation of Ae. aegypti were investigated, using 
LIRAa data from the period 2014 to 2017 for Campina 
Grande City, Brazil. This was completed in order to eval-
uate the potential of using the autocorrelation statistics 
between neighbourhoods as an infestation indicator. 
Moreover, the concept of strata within the LIRAa data 
was devised and investigated for their potential contribu-
tion to the targeting of, and possibly greater effectiveness 
of, vector control actions.

Methods
This study evaluated secondary data from the house 
Index (HI) and the Breteau index (BI), both gathered 
by the surveillance services. The units of analysis were 
51 neighbourhoods, grouped in 17 strata, of the city of 
Campina Grande, Brazil, from 2014 to 2017. This period 
was delimited considering the hypothesis that Zika virus 
were introduced in Brazil during the 2014 FIFA World 
Cup [17]. The team from Tahiti (French Polynesia) had 
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played in the Pernambuco Arena in June 2013 and the 
viral phylogenetic study showed that the origin of the 
Brazilian strain was Asian, sharing a common ancestor 
circulating in French Polynesia [18]. The Zika virus may 
have probably been introduced in Pernambuco, which 
could explain the larger size of the epidemic in this state 
and neighbouring areas, such as Campina Grande [19]. 
Zika virus was associated with a high prevalence of cases 
of congenital syndrome Zika, which has led the country 
to an emergency public health situation [20].

Campina Grande city (7°13′14.92″S, 35°55′1.32″W) 
is considered one of the main industrial centres of the 
north-east of Brazil as well as the main technological core 
within South America. In 2019, its estimated population 
was 409,731 inhabitants, making it the second-most pop-
ulous city of Paraíba, with a population density of 648.31 
per km2 [21]. About 40% of the population exists on a 
very low wage, or about USD 118 per month (half of the 
minimum wage) [21].

Based on the Köppen-Geiger climate classification sys-
tem, Campina Grande has a moderate tropical climate, 
with a dry season from September to January and a wet 
season from May to August. Maximum summer and 
winter temperatures are 30 and 18 °C, respectively. Mini-
mum summer and winter temperatures are 20 and 15 
°C, respectively. The annual relative humidity is between 
75–82% [22].

The city has a total area of 593 km2, divided into 51 
neighbourhoods with 5% designated as rural and 95% as 
urban (Fig. 1). Much of the city’s growth was not planned, 
and its neighbourhoods correspond to old farms that 
were sold and urbanized. The poorer neighbourhoods 
correspond to the peripheral areas or those near rivers 
or railroads. From 2014 to 2017, the cityʼs neighbour-
hoods were grouped into 17 strata, which were grouped 
together taking into consideration socioeconomic char-
acteristics and/or physical factors, such as large avenues, 
highways, railways, wide water flows such as rivers, 
lakes and dams. All procedures used to define strata are 
described in guidelines published by the Brazilian Minis-
try of Health, which also provides software for sampling 
and collecting data [10].

Statistical methods
For the purposes of this study, local authorities of 
Campina Grande provided the results of the LIRAa (HI 
and BI), which was carried out between January 2014 
and December 2017. The dependent variables were 51 
records of HI and BI, collected three to five times per 
year. The main descriptive statistics for these dependent 
variables are presented in the results: maximum, mini-
mum, median, interquartile intervals, mean and stand-
ard deviation. For spatial visualization of the data, the 

quartile maps, Moran map and Local Indicators of Spa-
tial Association (LISA) map are presented for 2014 and 
2017. The other years are presented in Additional file 1: 
Figure S1, Additional file  2: Figure S2, Additional file  3: 
Figure S3, Additional file  4: Figure S4, Additional file  5: 
Figure S5, Additional file  6: Figure S6, Additional file  7: 
Figure S7, Additional file  8: Figure S8, Additional file  9: 
Figure S9 and Additional file 10: Figure S10. All analyses 
were performed using the R software [23].

Matrix W
The associations of neighbourhood observations, defined 
for each location, can be expressed by spatial contiguity or 
a weight matrix W of order n × n, where n is the number 
of locations (neighbourhoods). The entry in the ith row and 
jth column, denoted as Wij, corresponds to the pair (i, j) of 
locations. The elements of the matrix Wij assume a nonzero 
value when the areas (observations) i and j are considered 
neighbouring, and zero otherwise.

Spatial autocorrelation
Spatial correlation is the correlation between obser-
vations of a single variable solely attributable to their 
proximity in space. Spatial autocorrelation (association) 
measurements and tests can be differentiated by the 
range or scale of analysis, as distinguished from global 
and local measures [24]. A global measure implies that 
all elements in the matrix W are included in the spatial 
correlation calculation, producing a spatial autocorre-
lation value for any spatial weight matrix. In contrast, 
local measures are concentrated, i.e. they evaluate the 
autocorrelation associated with one particular area or a 
few area units rather than all of them [24].

Both measures indicate the degree of spatial associa-
tion of the dataset. The Moranʼs I index calculates the 
spatial autocorrelation as a covariance, from the prod-
uct of the deviations from the mean [24]. This index 
indicates the magnitude of the spatial association pre-
sent in the data set with n locations. The Moranʼs I 
index is calculated by the following expression:

The Moranʼs I index varies in a range of (− 1:1), 
where − 1 means perfect dispersion, 0 represents 
random behaviour, and 1 means perfect association. 
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Assuming that Zi is observations of random variables Zi 
whose distribution is normal, then it has an appropri-
ately normal distribution:

E(I) = −
1

(n− 1)

Var(I) =
n2(n− 1)W1 − n(n− 1)W2 − 2W 2

0

(n+ 1)(n− 1)2W 2
0

While these comprehensive measures are very useful 
to provide an indication of global grouping data, such 
methods need to be complemented by local statistics. 
The formula for calculating the local Moranʼs index for 
each area Ai is given by:

Ii =
(yi − ȳ)

∑n
i=1

∑n
j=1

wij

(

yi − ȳ
)

∑n
i=1

(yj−ȳ)
2

n

Fig. 1  Map of Campina Grande city, Paraiba State, Brazil showing 17 strata in which are grouped together 51 neighbourhoods
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The statistics can be interpreted as follows: positive 
values of Ii mean that there are spatial clusters with 
similar values (high or low) of the variable under study, 
whereas negative values mean that there are spatial 
clusters with dissimilar values of the variable in and 
between the areas and their neighbours.

Moran scatter plot
The Moran scatter plot is an illustration of the relation-
ship between the values of the chosen attribute at each 
location and the average value of the same attribute at 
neighbouring locations. For this purpose, the diagram 
is divided into four quadrants (Q1, Q2, Q3 and Q4) 
with the following interpretation: (i) Q1: the first quad-
rant (upper right) shows the areas that have high values 
for the variable in question surrounded by neighbour-
ing areas which also have above-average values for 
the variable under analysis. This quadrant is classified 
as high-high (AA, + +); (ii) Q2: the second quadrant 
(lower left) shows the areas that have low values for the 
variable in question surrounded by neighbouring areas 
that also have below-average values for the analysed 
variables. This quadrant is classified as low-low (BB, 
− −); (iii) Q3: the third quadrant (lower right) shows 
the areas that have high values for the variable under 
analysis surrounded by neighbouring areas that have 
values below the average for the variable in question. 
This quadrant is classified as high-low (AB, + −); and 
(iv) Q4: the fourth quadrant (upper left) shows areas 

that have low values for the variable under analysis sur-
rounded by areas that are above the average for the var-
iable in question. This quadrant is classified as low-high 
(BA, − +).

The areas located in quadrants Q1 and Q2 show posi-
tive autocorrelation, i.e. the neighbouring areas had 
similar value. In contrast, the areas located in quad-
rants Q3 and Q4 have negative autocorrelation, i.e. 
there is dissimilarity between the neighbouring areas.

Box map, LISA map and Moran map
The Box map is an extension of the Moran scatterplot 
in which the elements of each quadrant of the plot are 
represented by a specific colour with their respective 
polygons. The LISA map indicates the regions whose 
location correlation is significantly different from the 
others, being classified into the following groups: non-
significant; and significant at the 5% (P < 0.05), 1% (P 
< 0.01), and 0.1% (P < 0.001) levels, respectively. The 
Moran map, similarly to the LISA map, shows only sig-
nificant values, being represented in four groups and 
placed in the quadrants to which they belong on the 
graph.

Results
Table 1 shows the descriptive analysis of data through 
the period 2014 to 2017. The HI (n = 51) ranged from 
0.30 to 21.50 with an average of 4.74 ± 2.10; while the 
BI (n = 51) ranged from 0.30 to 21.20 with an average 

Table 1  Descriptive analysis of Aedes aegypti Rapid Index Survey (LIRAa) measurements, Breteau Index (BI) and House Index (HI), 
during the period of 2014–2017, in Campina Grande, Paraíba, Brazil

Abbreviations: n, number of observations; MD – median; Q1, first quartile; Q3, third quartile; SD, standard deviation

Year Month n Breteau Index House Index

LIRAa Range Median Q1 Q3 Mean ± SD Range Median Q1 Q3 Mean ± SD

2014 1. January 51 0.3–4.4 1.3 1.00 2.5 1.84 ± 1.15 0.3–4.4 1.3 1.0 2.5 1.80 ± 1.15

2. March 51 0.5–7.9 1.8 1.00 2.7 2.16 ± 1.48 0.5–7.7 1.8 1.0 2.6 2.08 ± 1.43

3. May 51 0.3–10.2 3.2 2.3 4.3 3.54 ± 1.93 0.3–10.2 3.2 2.3 4.0 3.40 ± 1.84

4. July 51 1.0–11.4 4.0 2.7 5.9 4.57 ± 2.76 1.00–11.4 3.6 2.5 5.7 4.14 ± 2.46

5. October 51 0.9–7.0 3.3 2.6 3.9 3.02 ± 1.12 0.9–7.0 3.3 2.2 3.9 2.93 ± 1.17

2015 1. January 51 1.7–12.1 5.0 3.4 5.6 4.86 ± 1.78 1.7–10.9 4.6 3.1 5.5 4.37 ± 1.68

2. March 51 0.4–12.5 4.8 3.8 6.5 5.14 ± 2.27 0.4–12.5 4.8 3.8 5.4 4.86 ± 2.20

4. July 51 3.7–20.5 7.8 6.4 9.7 8.31 ± 2.97 3.7–20.0 7.8 5.7 9.7 7.83 ± 2.83

5. October 51 2.6–17.5 5.0 4.6 8.3 6.48 ± 2.92 2.6–17.2 5.0 4.4 7.5 6.25 ± 2.81

2016 1. April 51 2.8–17.3 7.1 4.7 8.1 6.79 ± 2.36 2.6–17.0 7.1 4.6 8.0 6.57 ± 2.30

2. July 51 2.5–9.3 4.5 3.3 6.2 4.61 ± 1.50 2.5–9.3 4.5 3.1 6.2 4.50 ± 1.54

3. October 51 1.2–6.0 2.1 1.8 2.9 2.59 ± 1.25 1.2–5.5 2.1 1.7 2.9 2.50 ± 1.26

2017 1. January 51 2.9–21.5 7.8 5.3 10.3 7.65 ± 3.56 2.9–21.5 6.8 4.7 10.0 7.36 ± 3.55

2. April 51 0.7–11.8 4.3 3.8 6.0 5.15 ± 2.39 0.7–11.6 4.3 3.8 6.0 5.06 ± 2.31

3. July 51 1.8–21.5 7.5 6.9 9.3 7.70 ± 3.13 1.8–21.5 7.5 6.3 9.0 7.40 ± 3.00
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of 4.96 ± 2.17. The mean values observed for HI were 
greater than 4%, and for BI were very close to 5, indi-
cating risk of outbreaks and epidemics. It is noteworthy 
that the BI was almost exactly consistent with the HI 
predictions.

According to the global Moranʼs index (W), a signifi-
cant spatial autocorrelation among the analysed neigh-
bourhoods (n = 51) for the most of dependent variables 
(HI and BI) was observed with P < 0.05 (Table 2), dur-
ing the period 2014–2017. This result indicates that 
there is a clear spatial dependence in the mosquito 
infestation proportion among neighbourhoods, dem-
onstrating that those in close proximity have a greater 
risk of cross-infestation (Table 2).

Data from the HI and BI of the first LIRAa 2014 (Jan-
uary) showed that of the 51 neighbourhoods of the city 
studied, 9 had low-risk with HI less than 0.9%, 37 had 
an average risk with HI of 1–3.9%, and 4 were at high 
risk for outbreaks and epidemics by arboviruses, with 
HI greater than 4.0% (Galante, Mirante, Monte Castelo 
and Santo Antonio). In the second LIRAa of 2014 
(March), the number of neighbourhoods at high risk of 
outbreak increased to eight and there was a change in 

the geographic distribution pattern (Tambor, Itararé, 
Bodocongó, New Bodocongó, Malvinas, Sandra Caval-
cante, Serrotão and Vila Cabral).

From March to June, there was a considerable 
increase in neighbourhoods with a high risk, which 
increased from 5 in January to 22 neighbourhoods in 
June, with infestation predominating in the north-
ern and western areas, such as the neighbourhoods of 
Mirante, Monte Castelo and São José. Given this situa-
tion, the municipality had an average infestation rate of 
4.0%, which was considered as a high alert warning due 
to the high risk of outbreaks and epidemics arboviruses.

The autocorrelation of Ae. aegypti mosquito infes-
tation between the city neighbourhoods studied can 
be identified by the Global Moran index map (map of 
quartiles) for HI and BI (Figs.  2 and 3, respectively) 
which shows the similarity in terms of the infestation 
of neighbouring areas. The positive values of the LIRAa 
shown by the increasingly dark shades used on the map 
indicate the clusters with similar spatial autocorrela-
tion values and with statistical significance. Negative 
values on the LIRAa are represented by white, show-
ing that there are dissimilar spatial clusters between 

Table 2  Global Moranʼs index 2014–2017

Note: The Moran index and P-value (P) are shown for Breteau index (BI) and house index (HI)

Variable 2014 2015 2016 2017

Moran P Moran P Moran P Moran P

BI-1 0.3689 < 0.001 0.1978 < 0.001 0.0801 0.1168 0.1818 < 0.001

BI-2 0.3027 < 0.001 − 0.0414 0.5972 0.3402 < 0.001 0.0171 0.3355

BI-3 0.3281 < 0.001 0.1638 0.0155 0.2845 < 0.001 0108 0.0635

BI-4 0.2075 < 0.001 0.1782 0.0107 – – – –

BI-5 − 0.0008 0.4127 – – – – – –

HI-1 0.3877 < 0.001 0.0633 0.1667 0.0725 0.1345 0.2026 < 0.001

HI-2 0298 < 0.001 − 0.0281 0.5374 0.3532 < 0.001 0.0153 0.3435

HI-3 0.3147 < 0.001 0.1763 < 0.001 0.3045 < 0.001 0.0969 0.0777

HI-4 0.2501 < 0.001 0.1862 < 0.001 – – – –

HI-5 0.0354 0.2627 – – – – – –

Fig. 2  Moranʼs index map (Map of Quartiles) for the house index (HI) showing the autocorrelation of Aedes aegypti mosquito infestation between 
neighbourhoods of Campina Grande city, Paraiba State, Brazil, in 2014
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contiguous areas. On the map, there is a prevalence of 
darker shades, indicating that most neighbourhoods 
have similar infestation values. The neighbourhoods 
with positive correlation did not necessarily corre-
spond to those which belong to the same stratum based 
on similar LIRAa values indicating that the neighbour-
hoods belonging to the same stratum are not necessar-
ily autocorrelated.

In 2015, there was a worsening of Ae. aegypti mosquito 
infestation rates. On the first LIRAa of the year, held in 
January, 34 neighbourhoods had an HI greater than 4.0%, 
i.e. more than half of the municipality was at high risk of 
an outbreak. In the second LIRAa, only one neighbour-
hood located in the city centre had a satisfactory index, 
i.e. less than 1%. Over time, the number of neighbour-
hoods with high infestation rate dropped from 34 to 30, 
but the value of this indicator rose in almost every neigh-
bourhood, which resulted in an increase in the overall 
index of the municipality, which rose from 4.4% to 4.9%.

As in the previous year, the survey conducted in July 
2015 (the third LIRAa) reached the highest levels of infes-
tation, with 49 neighbourhoods at high risk and only 
three at medium risk. Very high levels of infestation were 
detected in the neighbourhoods of Presidente Medici 
(11.5%), Cruzeiro (11%) and Jardim Paulistano (11%), all 
belonging to the east zone. In the last survey of 2015 (the 
fourth LIRAa), there was a small reduction in the num-
ber of neighbourhoods with high risk, from 49 to 44. The 
Moranʼs index map for HI and BI in 2015 (Additional 
file 1: Figure S1, Additional file 2: Figure S2, respectively) 
shows the similarity of neighbouring areas with statisti-
cally significant autocorrelation.

In 2016, more than half of the city’s municipal neigh-
bourhoods presented high levels of infestation, with 
an overall rate of 4.3%. Due to the strike of endemic 
disease control agents of 2016, only three surveys 
were conducted. On third LIRAa, the last of the year, 
held in October, it can be seen that there was a sig-
nificant improvement in the rates when compared with 
other surveys of the same year. However, none of the 

neighbourhoods reached a satisfactory index, i.e. low 
risk, with the majority remaining on high alert, with 
medium risk. The Moranʼs index map for HI and BI in 
2016 (Additional file 3: Figure S3, Additional file 4: Fig-
ure S4, respectively) highlights the similarity of the infes-
tation pattern in adjoining neighbourhoods, as already 
shown for 2014 and 2015.

In 2017, approximately 81% of the neighbourhoods 
were at high risk in the first LIRAa (February). There was 
an improvement in indicators in the second LIRAa, but 
still approximately 65% of neighbourhoods were at high 
risk, 30% at medium risk and only 5% at low risk, culmi-
nating in an overall infestation rate of 4.9%. The final sur-
vey of the year, held in July, showed a significant increase 
again in infestation levels: back up to 87% of neighbour-
hoods at high risk and 13% at medium risk. The neigh-
bourhoods of Malvinas, President Medici and Cruzeiro 
remained with a high level of infestation across all the 
different measurements (10%).

Figures  4 and 5 present the global Moran map index 
(map of quartiles) for HI and BI, respectively, for three 
LIRAs performed in 2017. The dark shades indicate the 
clusters with similar spatial autocorrelation values and 
with statistical significance. It is possible to observe a 
repetition in the pattern of autocorrelated areas through-
out the year.

Figures  6 and 7 showed the Moran scatterplots, the 
LISA maps, and the Moran maps for HI and BI obtained 
in 2017. The scatterplots demonstrate the localities that 
were in the +/+ quadrant (i.e. showed a positive corre-
lation with mosquito infestation) and these are shown 
on the Moran maps in black. The neighbourhoods in the 
−/− quadrant, shown in grey, are those with a negative 
value in the LIRAa data. The Moran maps directly rep-
resent the observations on the scatterplot onto the urban 
map. For example, in Fig.  6 (HI for 2017), Malvinas (in 
black), which comprises one of the poorest populations 
of the Campina Grande city, exerts a positive influ-
ence on the indicators. The LISA maps for each LIRAa 
survey show the alpha significance values, ranging from 

Fig. 3  Moranʼs index map (Map of Quartiles) for the Breteau index (BI) showing the autocorrelation of Aedes aegypti mosquito infestation between 
neighbourhoods of Campina Grande city, Paraiba State, Brazil, in 2014
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non-significant (white) to significant values (5% in light 
grey and 0.1% in black). The neighbourhoods in black are 
those that had the most significant influence on other 
localities.

Analysis of the scatterplots and the Moran and LISA 
maps for the period of 2014 up to 2017 showed that there 
is a clear repetition of patterns through time and that 
some neighbourhoods have a higher incidence of infes-
tation rates, such as Malvinas, Ramadinha, José Pinheiro 
and Santo Antônio (Additional file  5: Figure S5, Addi-
tional file 6: Figure S6, Additional file 7: Figure S7, Addi-
tional file  8: Figure S8, Additional file  9: Figure S9 and 
Additional file  10: Figure S10). The use of this method-
ology thus reveals the hotspots or neighbourhoods that 
should be considered a priority for the preventive actions 
of the entomological surveillance services.

Discussion
This is the first study to show the spatial autocorrela-
tion of Ae. aegypti mosquito infestation among the 
neighbourhoods of Campina Grande. The results dem-
onstrate autocorrelation distribution patterns evolv-
ing throughout the year. This analysis is an innovative 
strategy and may be more effective in planning surveil-
lance actions than infestation rates, as suggested by the 
literature [25]. Spatial autocorrelation more accurately 
points out localities with similar levels of vulnerabil-
ity and risk of Ae. aegypti infestation, which may help 
direct the actions of the responsible health authorities.

Spatial analysis has been used to show correlations 
between entomological indicators with the climate, 
disease transmission and socioeconomic conditions 
[26–28]; however, the strategy had not yet been used 

Fig. 4  Moranʼs index map for the house index (HI) showing the autocorrelation of Aedes aegypti mosquito infestation between neighbourhoods 
of Campina Grande city, Paraiba State, Brazil, in 2017. The dark shades indicate the clusters with similar spatial autocorrelation values and with 
statistical significance

Fig. 5  Moranʼs index map for the Breteau index (BI) showing the autocorrelation of Aedes aegypti mosquito infestation between neighbourhoods 
of Campina Grande city, Paraiba State, Brazil, in 2017. The dark shades indicate the clusters with similar spatial autocorrelation values and with 
statistical significance
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to analyse contiguous, or adjoining, neighbourhoods in 
order to better define areas of similar risk and vulnera-
bility. Data from the literature highlight that the results 
of scientific research have not impacted the vector con-
trol practices in many countries, including Brazil [3, 8] 
However, the methodological approach and results of 
the present study are promising and can be easily repli-
cated in future entomological surveillance services.

In Campina Grande, there was a predominance of high 
rates of mosquito infestation in different years indicat-
ing risk situations for outbreaks and epidemics. A similar 
study conducted in three cities in Kenya in order to assess 
the potential risk for the transmission of dengue and yel-
low fever, considered both BI and CI indices, as well as 
the seasonality of these regions. Based on the established 
vector index thresholds, the results have shown low to 
medium risk levels for urban yellow fever and high risk 
for dengue in Kilifi and Kisumu, while for Nairobi the 

yellow fever risk was lower and dengue risk levels were 
low to medium [28].

Other studies conducted in Taiwan, Sri Lanka and Viet-
nam [13, 14, 29] have shown that larval indices may be 
closely related to the incidence of dengue epidemics and 
arboviruses. In Brazil, similar research was conducted 
in Rio de Janeiro, São Paulo and Maranhão [14, 18, 19]. 
These studies used the infestation index in isolation; this 
differs from the present study which shows that patterns 
of spatial distribution and risk levels from small territo-
rial units of analysis (census tracts, for example), can 
indicate that these risks can be connected into larger 
units, especially amongst adjoining neighbourhoods.

Some studies have examined land use and larval den-
sity. In Thailand, it has been observed that settlements 
around gas stations and workshops nearby swampland, 
marshes and paddy fields appear to be favourable habi-
tats for vector propagation [30]. In Ethiopia, the most 
common Ae. aegypti mosquito breeding habitats were 

Fig. 6  Moran scatterplots of the HI data, the Local Indicators of Spatial Association (LISA) maps, and the Moran maps in 2017
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discarded tires (57.5%), followed by clay pots (30.0%) 
[31]. The approach here described may show how these 
favourable habitats for mosquito proliferation impact 
on contiguous areas, helping to redefine the risk territo-
ries and allow for a better direction of surveillance and 
resourcing to combat the disease vectors.

The literature describes contextual factors such as cli-
mate, seasonality and socioeconomic conditions for dis-
ease vector control. A survey conducted in Taiwan, for 
example, observed whether low temperatures can influ-
ence the distribution of the mosquito and identified 
that a temperature of 13.8 °C is a critical temperature 
to limit the occurrence of Ae. aegypti [26]. A study into 
the occurrence of dengue fever was conducted in seven 
municipalities of Greater São Paulo in 2010–2013, show-
ing that the months of January to May were those with 
the highest number of reported cases in the south-east of 
Brazil [32], explained by the authors as being a product of 

the higher rainfall in this area during those months. Our 
study in Campina Grande indicates that the infestation 
levels were higher during the months of May to Septem-
ber, which correlates with the higher levels of rainfall.

Regarding the socioeconomic context, a survey con-
ducted in Rio de Janeiro observed that the locations of 
highest occurrence of classical dengue fever and haem-
orrhagic fever were not coincident, the latter being more 
prevalent in poor neighbourhoods and slums, providing 
clear evidence that social vulnerability may be a major 
factor influencing the occurrence of aggravation [16]. The 
present results corroborate these observations, demon-
strating that the infestation and autocorrelation indices 
are most evident in contiguous neighbourhoods and the 
poorest ones.

To carry out the analysis of the LIRAa, neighbourhoods 
are grouped into strata with up to 12,000 inhabitants 
defined mostly by their sociodemographic, economic and 

Fig. 7  Moran scatterplots of the BI data, the Local Indicators of Spatial Association (LISA) maps, and the Moran maps in 2017
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physical characteristics. For this set of neighbourhoods, 
a single LIRAa value is obtained. This study found that 
the analysis of autocorrelation and spatial dependence 
between the neighbourhoods does not correspond to the 
demarcation of the strata. The autocorrelation analysis of 
mosquito infestation is more useful due to its ability to 
reveal patterns regarding risk analysis and vector man-
agement, including the definition of specific localities to 
be considered priority or a hotspot for the surveillance 
services.

The results of this work point to the need to revise the 
concept of stratum used as a unit to perform the LIRAa, 
considering that the surveillance services grouped 
together neighbourhoods that had different patterns 
of autocorrelation. The delimitation of stratum is based 
on the population density and some socioeconomic and 
geographical characteristics, parameters that should be 
revised considering the Modifiable Areal Unit Problem 
(MAUP) [33]. Spatial-based indicators, which use popu-
lation density to define a territory, can produce biased 
results, considering that the summary values are influ-
enced by both the shape and scale of the aggregation unit 
[33].

The outcomes of this study indicate that the inclusion 
of spatial and temporal autocorrelation analyses in the 
existing software (LIRAa System) used by the Brazilian 
Ministry of Health can provide a new strategy to identify 
the hotspots neighbourhoods, responsible for the most 
influence on mosquito infestation. This information is 
helpful for adopting and directing control vector actions 
with less impact on material and human resources. There 
is a gap in the literature in relation to the quantifiable 
associations between vector indices and dengue trans-
mission that could reliably be used to predict outbreaks 
[15]. Further studies are required to elucidate the rela-
tionship between vector abundance and dengue trans-
mission, which could be performed in comparable areas 
based on spatial autocorrelation methodologies. In the 
same municipality, it will be possible to compare the hot-
spot areas with high frequency of vector mosquitoes with 
those with low frequency to identify characteristics of 
each.

Regarding the limitations of this study, it should be 
considered that the analyses were carried out from sec-
ondary data provided by the Environmental Surveillance 
Service of Campina Grande municipality. In our analy-
sis, environmental actions to curb infestations, as well as 
rainfall variability and climate change patterns, were not 
considered. For a better evaluation of the use of autocor-
relation statistics to define strata or units for risk analysis 
and vector control, it will be important to replicate this 
study in other localities and assess the variability caused 
by environmental changes.

Conclusions
To our knowledge, this study showed for the first time 
the autocorrelation patterns of Ae. aegypti infestation 
rates among neighbourhoods in the city of Campina 
Grande, in northeastern Brazil, using Moranʼs index, 
Moran mapping and LISA mapping. The use of spa-
tial and temporal autocorrelation revealed hotpots or 
neighbourhoods that should be considered a priority 
to preventive actions of the entomological surveillance 
services. The predominance of high infestation rates 
and greater spatial dependence was observed between 
the months of May and July, the period with the highest 
rainfall in the city. This analysis is an innovative strat-
egy capable of providing detailed information to the 
relevant public health authorities, which will enable a 
more efficient allocation of resources, particularly in 
mosquito prevention actions.
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