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Archaea are members of most microbiomes. While archaea are highly abundant in extreme environ-
ments, they are less abundant and diverse in association with eukaryotic hosts.
Nevertheless, archaea are a substantial constituent of plant-associated ecosystems in the aboveground

and belowground phytobiome. Only a few studies have investigated the role of archaea in plant health
and its potential symbiosis in ecosystems. This review discusses recent progress in identifying how
archaea contribute to plant traits such as growth, adaptation to abiotic stresses, and immune activation.
We synthesized the most recent functional and molecular data on archaea, including root colonization
and the volatile emission to activate plant systemic immunity. These data represent a paradigm shift
in our understanding of plant-microbiota interactions.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Archaea were classified as the third domain of life along with
prokaryotes and eukaryotes at the end of 1970 [1]. Archaea are
subdivided into four superphyla: Diapherotrites, Parvarchaeota,
Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota (DPANN);
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Thaumarchaeota, Aigarchaeota, Crenarchaeota, and Korarchaeota
(TACK); Euryarchaeota; and the newly discovered Asgardarchaeota
[2]. Archaea were initially found in extreme environments with
extreme conditions such as high salinity and high temperature,
and environments in which they evolved to metabolize organics
such as methane and nitrogen [3,4]. In the tree of life based on
metagenomes, archaea occur ubiquitously but are less prominent
and less diverse in comparison with other microbes like bacteria,
fungi, and viruses in several ecosystems, such as the terrestrial
subsurface and human-associated microbiomes [5,6].

Most metagenome-based microbiome studies focused on dom-
inant bacteria and fungi rather than archaea. However, the accu-
mulating evidence indicates that archaea are important
constituents of plant microbiomes, sparking scientific interest in
plant-associated archaea [7]. Previously, Archaea have been dis-
covered in various land plant species, including rice, maize, and
Scots pine, and in several aquatic plant species [8–11] (Table 1).
Archaea are primarily found in the plant rhizosphere, and have
been identified at lower abundance in the endosphere and phyllo-
sphere [12]. The abundance and taxonomy of archaea associated
with plants differ depending on the plant species, environment,
and developmental stage [13]. The combined results suggest that
archaea might have developed specific plant-associated functions
in plant ecosystems.

Two fundamental questions emerged about the interactions
between archaea and plants. (1) What is the behavior of archaea
during plant interactions? (2) What is the function of archaea
within the plant health and growth? Some archaea have character-
istics similar to bacteria, such as oxidizing ammonia and methane
Table 1
Potential functions of archaea in the plant phytobiome.

Archaea Discovery location

Crenarchaeota
Mycorrhizospheres s
Rhizosphere of macr
Marine or wetland

Sulfolobus acidocaldarius
Rhizosphere of Jatrop

Thermoproteaceae, Sulfolobaceae
Desulfurococcaceae

Euryarchaeota
Methanogens, Rice cluster Ⅰ Rice fields

Marine or wetland

Forest and grassland
Halobacteria Rhizophora mangle
Halobactierum Halococcus Halonemum strobilac

(Chenopodiaceae)
Halolamina Rhizosphere of grass

hypersaline soil
Methanomicrobia, Halobacteriaceae Rhizosphere of Bog v
Halococcus saccharolyticus, Halorubrum saccharovorum,

Haloterrigena turkmenica, Halogeometricum sp., Natrialba sp
Marine salterns arou

Rhizosphere of Bog v
Rhizosphere of Jatrop

Methanosarcina Rice paddy field
Pyrococcus furiousus Cornus canadensis L.
Halobacteriaceae
Thaumarchaeota
Nitrosocosmicus oleophilus MY3 Coal tar-contaminate

Non-classified
Roots of Zea mays L.
Rhizosphere of rice
Soil from Bog vageta
Rhizosphere and phy
of arugula
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and environmental nutrient cycling [14]. The main characteristic of
archaea that differentiates them from other domains is their viabil-
ity in or adaptability to extreme environments [15]. This suggests
that archaea might help plants adapt to abiotic stresses such as
heavy metal contamination, high salinity, and high temperature
[16,17]. There is evidence that archaea are also involved in enhanc-
ing plant immune responses, such as triggering induced systemic
resistance to pathogenic bacteria in Arabidopsis [18].

In this review, we discuss how archaea directly or indirectly
affect plant health. We also consider how to maximize the poten-
tial of unique archaeal characteristics to optimize plant health.
1.1. How do archaea interact with plants?

Some archaeal species survive in both aerobic and anaerobic
conditions. The plant-soil interface generally contains both aerobic
and anaerobic zones. Anaerobic zones are generated when oxygen
consumption by soil biota exceeds oxygen diffusion into the soil, or
when air flow is restricted due to high moisture or high groundwa-
ter level [19]. Thus, the plant rhizosphere generates natural habi-
tats for both aerobic and anaerobic archaea [20].

How do we know that archaea directly interact with plants and
are not simply present in the rhizosphere? Previous study found
archaeal cells exclusively colonizing and multiplying in plant roots
without any soil components [18,21]. In the absence of plants, no
growth of these cells was detected. These results provide crucial
evidence that archaea directly interact with plants in addition to
colonizing the root surface. Subsequent sections of this letter will
Potential function Reference

cots pine [10]
ophyte Littorella uniflora Ammonia oxidation [24]

Sulfur reduction (dissimilatory sulfite
reductases)

[37]

Indole acetic acid production [41]
ha curcas Nitrification [48]

Bacteriosin or terpene in genome [50]

Methane-oxidizing archaea [3,32,59]
Sulfur reduction (dissimilatory sulfite
reductases)

[37]

soil Phosphatase enzymes phoD and phoX [26]
Phosphorous solubilization [27,28]

eum Phosphorous Solubilization [27,29]

es in Phosphorous solubilization [27,30]

agetation CO2 fixation, oxidative stress [42]
nd the coast Siderophores production [9]

egetation Auxin biosynthesis [42]
ha curcas [48]

Hg-methylating [8]
f. (ornamental dogwood) ROS generation and detoxification [16,17,60]

Terpene in genome [50]

d sediment Ammonia oxidation, growth promotion,
disease resistance

[18,61]

[11]
Ammonia oxidation [23]

tion Oxidative stress [42]
llosphere Oxidative stress [7]



Fig. 1. Archaea are involved in environmental nutrient cycling in plant ecosystems. (a) Archaeal ammonia monooxygenase (amo1) gene catalyzes the oxidation of ammonium
(NH4+) to nitrite (NO2–), which is subsequently oxidized to NO3–, the bioavailable form of N that plants utilize. (b) The alkaline phosphatase (Pho) genes of archaea hydrolyze
soil organic-P to HPO4

-2 and H2PO4
-1, which can be absorbed by plant roots. (c) Methyl-coenzyme M reductase (Mcr) catalyzes the last step in methanogenesis (CH4 synthesis)

and the first step in methanotrophy (CH4 oxidation). Methanogenic archaea with high abundance ofmcr are involved in C cycling. (d) S in the soil primarily exists in the form
of sulfate-esters (-O-SO3H) and sulfonates (C-SO3H), which are reduced to bioavailable sulfides (SO4-) for plant utilization by archaeal dissimilatory sulfite reductases (dsr).
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explore why archaea populate the rhizosphere and investigate
their functional niche within plant ecosystems.
1.2. Archaea are involved in environmental nutrient cycling in plant
ecosystems

Nutrient cycling within the soil environment is mediated by
microbes and their interactions. Plant roots absorb nitrogen (N)
from the soil in the form of ammonium (NH4+) and nitrate
(NO3–). However, the predominant form of N absorbed by plant
roots is NO3–, which indicates NH4+ and atmospheric dinitrogen
(N2) should be reduced [3] (Fig. 1a). These N-cycling processes
are mediated by ammonia-oxidizing bacteria and ammonia-
oxidizing archaea (AOA) [22]. In rice soils AOA were more abun-
dant in the rhizosphere than in bulk soil, indicating that AOA-
mediated N-cycling is primarily associated with the plant root
[23] (Table 1). The ammonia monooxygenase (amo1) genes of Cre-
narchaeota were strongly enriched in the rhizosphere of the sub-
mersed macrophyte Littorella uniflora compared to the levels in
surrounding sediments [24] (Table 1). These observations suggest
that AOA are enriched in the plant rhizosphere and are involved
in N-cycling to support plant growth and health.

Phosphorous (P) is another important element in plants. Plants
and microbes obtain soluble organic-P from soil by hydrolyzing
inorganic-P to orthophosphate [25]. Although both plant and
microbial phosphatases effectively solubilize orthophosphate from
soil organic-P, microbial phosphatases display higher efficiencies
than those of plants [25]. Bacteria and archaea contain alkaline
phosphatases PhoD and PhoX, which hydrolyze soil organic-P
[26] (Fig. 1b). Previous studies showed that Euryarchaeota isolated
from arable, forest, and grassland soil expressed phoD and phoX
genes implying P hydrolyzing around plants [26] (Table 1). Indeed,
some of Euryarchaeota isolated from plant rhizosphere had mea-
sureable P solubilization activity [27–30] (Table 1). Further studies
are needed to determine whether archaeal P solubilization con-
tributes to and supports plant growth.

Carbon (C) cycling is crucial for plant ecosystems. Archaea are
involved in C cycling by generating methane (CH4) using H2, CO2,
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or methylated compounds (Fig. 1c) [31]. Previous studies showed
that archaea were highly abundant in rice fields, which contribute
10–25% of global methane emissions [32] (Table 1). Methanogenic
archaea of the Euryarchaeota phylum produce up to 60% of this
methane emission [33].Methyl-coenzyme M reductase (Mcr) is com-
monly expressed in methanogenic archaea; this enzyme catalyzes
the last step in methanogenesis (CH4 synthesis) and the first step in
methanotrophy (CH4 oxidation) [31]. Methanogenesis and
methane oxidation are important steps in the C cycle, and both
are performed exclusively by anaerobic methanogens [34].

Some bacteria and archaea are involved in sulfur (S) cycling,
which is an important element in organisms [35]. Sulfur in the soil
exists primarily in the form of sulfate-esters (-O-SO3H) and sul-
fonates (C-SO3H), which need to be metabolized by soil microbes
before the S becomes bioavailable for plants [36]. Archaea reduce
these sulfates and sulfites to sulfides via enzymes encoded by
the dissimilatory sulfite reductases (dsr) gene cluster [37] (Fig. 1d).
Euryarchaeota, Crenarchaeota, and Aigarchaeota isolated from mar-
ine habitats or wetlands express the genetic capacity to reduce sul-
fite to sulfide via dsr [37] (Table 1). The combined studies suggest a
potential role for archaea in rhizospheric S cycling, although fur-
ther work is needed to verify direct archaeal involvement in S
cycles.

The emerging evidence makes us expect that archaea interact
with the land plant through soil nutrient cycling. However, even
if archaea have the ability to circulate nutrient, it cannot be con-
cluded that it makes plants healthy. For example, it has been sug-
gested that AOA can result in inorganic N leaching from the soil,
becoming less available to plants [38]. In addition, there is a report
that ammonia-oxidizing bacteria present on the surface is primar-
ily involved in regulating soil nitrification, but not AOA [39]. We
further discuss in the following paragraphs how archaea positively
affect plant health by nutrient cycling or others.
1.3. Plant growth-promoting archaea

Plant growth-promoting rhizobacteria (PGPR) promote plant
growth by directly or indirectly interacting with plant roots [40].



Fig. 2. Beneficial effects of archaea around plants. Archaea enhance plant health by promoting growth, inducing resistance, and elevating abiotic stress tolerance. Nutrient (N,
C, P, and S) cycling and siderophore production by archaea could provide nutrients that support and promote plant growth. Indole acetic acid (IAA) produced by archaea and
the genetic capacity for auxin biosynthesis in archaea also function to promote plant growth. N-acyl-L-homoserine lactones (AHLs) produced during Archaea’s cell-to-cell
communication may also affect plant growth and defense mechanisms. The as-yet unidentified volatile organic compounds (VOC) of archaea trigger plant growth and
induced systemic resistance. Archaea can stabilize toxic metal via the dissimilatory sulfate reduction process, thereby supporting plant growth under environmental
conditions with high metal levels. Functional signatures for resistance to oxidative stress and production of reactive oxygen species (ROS) suggest that archaea could protect
plants under abiotic stress conditions.
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There are some studies that archaea are also considered as plant
growth-promoting archaea (PGPA). For example, Nitrosocosmicus
oleophilus MY3 cells promote Arabidopsis growth by oxidizing N
into plant-bioavailable forms [18] (Table 1). Some halophilic
archaea isolated from marine salterns around the Bhavnagar coast
showed functional signatures of P siderophore production [9]
(Table 1). Some of these archaeal species were found in terrestrial
plants, and it is likely that they might support plant growth by
facilitating plant iron uptake [29] (Fig. 2 and Table 1).

PGPR also regulate plant growth by modulating hormone pro-
duction, and archaea have a similar potential. Early studies
reported that archaea promote the secretion of plant hormones.
Thermophilic Sulfolobus acidocaldarius produces the plant
growth-promoting hormone indole acetic acid (IAA) at levels a
thousand times higher than that observed in typical plant extracts
[41] (Fig. 2 and Table 1). This was one of the first reports linking
archaea to plant growth promotion [41]. A recent metagenomic
analysis of archaea associated with bog vegetation detected
genetic evidence for auxin biosynthesis, which further supports
the plant growth-promoting activity of archaea [42] (Fig. 2 and
Table 1).

N-acyl-L-homoserine lactones (AHLs) are used by cell-to-cell
communication of Gram negative bacteria such as Pseudomonas
[43]. AHLs can be recognized by plants, It modulate plant defense
and plant growth responses [44]. Recently, there are also increas-
ing reports of the potential for archaea to be involved in cell-
signalling [45]. The evidence that archaea join the conversation
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was found by detecting of AHL-like activity across a range of
archaeal isolates [45]. Perhaps some form of archaeal signalling
may help modulate plant-archaea interactions and plant growth
promotion like gram negative bacteria did (Fig. 2).

A recent study showed that N. oleophilus MY3 cells promote the
growth of Arabidopsis plants grown on soil and in hypotonic med-
ium [18]. Treatment of plants with volatile organic compounds
(VOC) derived from N. oleophilus MY3 cells could also promote
growth in the absence of any direct physical contact between
archaea and plants [18]. These results indicate that archaeal VOC
have a key role in plant growth promotion similar to that of PGPR.
Archaeal VOC did not contain 2,3-butanediol, which is a well-
known bacterial VOC that promotes plant growth [18,46]. These
observations lead to another emerging area of research, which
investigates the effects of archaea or archaeal VOC in plant growth
promotion and host-microbe interactions.

1.4. Archaea are involved in enhancing abiotic and biotic stress
resistance

Archaea can live in environments with extreme conditions, such
as extremes of temperatures, salinity or pH [47]. The hyperther-
mophilic archaea Methanopyrus kandleri live at 121℃, whereas
the acidophilic archaea Picrophilus survive at pH 0.06 [47]. Plants
can also grow in environments with high levels of abiotic stress.
Metagenomic analysis of the rhizosphere of Jatropha curcas, which
adapted to grow under salt stress and high temperature conditions,
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showed high abundances of Crenarchaeota and Euryarchaeota [48]
(Table 1). Although the detailed reason is not known, Crenarchaeota
and Euryarchaeota may help the Jatropha curcas adapt to salt stress
and high temperature condition.

Euryarchaeota and Methanosarcina species can methylate mer-
cury (Hg) in rice fields, suggesting that these plant-associated
archaea might have important roles in supporting plant growth
under high Hg conditions [8] (Table 1). Sulfate-reducing organisms
stabilize metals such as Pb, Zn, and Cd in soils [49]. Bacterial and
archaeal dsrA/B genes are key factors in metal sulfide formation
via the dissimilatory sulfate reduction process [37]. Therefore,
archaea could support plant growth under adverse environmental
conditions with high metal levels (Fig. 2). Further, the metagenome
analysis of archaea from alpine bogs suggest functional potential in
protecting plants fromoxidative and osmotic stresses [42] (Table 1).
Archaea found in the rhizosphere and phyllosphere of arugula also
displayed functional signatures for resistance to oxidative stress
(Table 1) [7]. These combined results suggest that archaea could
help plants survive and adapt to abiotic stress conditions (Fig. 2).

Archaea display functional traits that might enhance plant
responses to biotic stresses. Genome analyses of 203 archaea spe-
cies including Crenarchaeota and Euryarchaota showed that genes
involved in terpene and bacteriocin production were widely dis-
tributed in Crenarchaota genomes [50]. Terpene and bacteriocin
deter herbivore feeding and microbial colonization, respectively;
therefore, these archaea have potential functions for plant defense
responses against herbivores and pathogenic bacteria [51,52].

Arabidopsis plants exposed to N. oleophilus MY3 cells displayed
enhanced disease resistance when subsequently challenged with
Pectobacterium carotovorum and Pseudomonas syringae [18]. This
induced resistance response depends on jasmonic acid rather than
salicylic acid, indicating that archaea triggers induced systemic
resistance (ISR) in Arabidopsis. NO2

� promotes ISR in plants. How-
ever, the ISR response still occurs when archaea are completely
sequestered from the plants, suggesting that archaeal volatile com-
pounds elicit ISR responses against pathogens [18]. These combined
results suggest that archaea could produce novel plant protection
compounds and could be used in innovative biotechnological
applications.

1.5. Colonization and role of plant-associated archaea in the seeds

Archaea have a variety of properties that benefit the host plant
and may support the plant progeny. In tomato (Solanum lycoper-
sicum L.), beneficial bacteria are actively transmitted by the plant
to the next generation via the seeds [53]. Although plants do not
actively select and transmit archaea to the offspring, recent work
detected archaeal abundances of up to 3.09 X 109 copies g�1 in
seeds of native alpine plants [54]). Interestingly, in alpine seeds
the composition of Archaea was highly specific for each plant spe-
cies, which may suggest a co-evolution in native environments
[54]. Studies on transmission via clonal colonies in Glechoma hed-
eracea also did not detect archaeal transmission from the mother
to the daughter plant [55]. In seeds, archaea appear to have
evolved into bystander organisms based on synthrophic interac-
tions with bacteria [56]. Instead, root exudates serve to attract
and enrich archaea from the surrounding soil to the plant rhizo-
sphere [57]. This archaeal colonization occurs during the latter
phase of plant development [58]. However, more studies are nec-
essary to understand the co-evolution between plants and Archaea
and their transmission routes.

2. Conclusions and perspectives

This study discussed the beneficial functions of archaea for
plant health. Archaea have been detected in plant tissues and on
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plant surfaces. However, most of the studies on plant-archaea
interactions are limited to metagenome analysis and only suggest
the possibility that archaea have on plants, but do not suggest how
archaea directly affect plants. Recently, there is one study about
nitrogen-oxidizing archaea function to plants, they reported that
archaea promote plant growth and enhance resistance to biotic
stresses [18].

Although many studies have yet to be conducted, we believe
that these findings show the potential of archaea as a biostimulant
and bioprotectant. Archaea have very slow growth rates, which
makes archaeal genetic engineering a more suitable biotechnolog-
ical strategy than direct field applications of archaea as biocontrol
agents. The plant’s usefulness of archaea can also be inferred
through genetic studies of archaea. There is some research on the
application of archaeal genetic engineering to plant cells. Superox-
ide reductase (SOR) gene isolated from the thermophilic archaea
Pyrococcus furiousus has been successfully expressed in Arabidopsis
and tobacco cells; these transgenic plants displayed higher toler-
ance to heat, light, and methyl viologen than non-expressing plants
[16,17]. SOR expression in the chloroplast could further enhance
plant stress tolerance, as a significant proportion of reactive oxy-
gen species are generated in the chloroplast [16]. Archaea them-
selves are expected to have many beneficial properties for plants
that have not yet been identified due to experimental and technical
challenges. Further work is needed to cultivate and analyze plant-
associated archaea and to determine their full potential in support-
ing plant health and growth. Today we have no single isolate of a
plant-originated Archaeon, therefore, cultivation of an archaea as
a plant endophytes is important for further plant-archaea interac-
tion studies [57]. We predict that this work will greatly expand
their beneficial applications for agriculture.
3. Summary statement

Archaea is an important division of life forms on earth. While
archaea are highly abundant in extreme and normal environments,
scientists have not been much attention, especially in association
with eukaryotic hosts. Here we give recent evidence that archaea
are members of plant microbiome. Archaea’s beneficial effect was
focused on plant growth promotion, elicitation of abiotic tolerance,
and induced plant immunity. Our review paves a new way to
increase crop productivity with Archaea.
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