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Fusing multichannel neurophysiological signals to recognize human emotion states becomes increasingly attractive. ,e con-
ventional methods ignore the complementarity between time domain characteristics, frequency domain characteristics, and time-
frequency characteristics of electroencephalogram (EEG) signals and cannot fully capture the correlation information between
different channels. In this paper, an integrated deep learning framework based on improved deep belief networks with glia chains
(DBN-GCs) is proposed. In the framework, the member DBN-GCs are employed for extracting intermediate representations of
EEG raw features from multiple domains separately, as well as mining interchannel correlation information by glia chains. ,en,
the higher level features describing time domain characteristics, frequency domain characteristics, and time-frequency char-
acteristics are fused by a discriminative restricted Boltzmann machine (RBM) to implement emotion recognition task. Ex-
periments conducted on the DEAP benchmarking dataset achieve averaged accuracy of 75.92% and 76.83% for arousal and
valence states classification, respectively. ,e results show that the proposed framework outperforms most of the above deep
classifiers. ,us, potential of the proposed framework is demonstrated.

1. Introduction

Emotion plays an important role in the daily life of human
beings. Especially, peoples communicate more easily
through emotional expression, and different emotional
states can affect people’s learning, memory, and decision-
making. ,erefore, recognition of different emotional states
has wide application prospects in the fields of distance
education, medicine, intelligent system, and human-
computer interaction. Emotion recognition has recently
been highly valued by researchers and has been one of the
most important issues [1].

Emotional recognition can be performed by external
features such as facial expressions and voice intonation
[2–6]. It can also be performed according to changes of
physiological signals such as electroencephalogram. Com-
pared with physiological signals, facial/vocal expressions are
easily affected by the external environment and the pa-
rameters easily vary in different situations. However, the
emotion recognition results from EEG signals are relatively

objective due to the fact that physiological signals are hard to
be camouflaged. ,erefore, the studies of associations be-
tween EEG activity and emotions have received much at-
tention [7–9].

Emotion recognition is essentially a pattern recognition
task, and one of the key steps is extracting the emotion-
related features from the multichannel EEG signals. Var-
ious EEG features in time domain, frequency domain, and
time-frequency domain have been proposed in the past.
Time-domain features from EEG can identify character-
istics of time series that vary between different emotional
states. ,e statistical parameters of EEG series, such as
mean, standard deviation, and power, were usually
employed [10–12]. Frantzidis et al. used amplitude and
latency of event-correlated potentials (ERPs) as features for
emotion recognition [13]. In addition, Hjorth features
[14, 15], nonstationary index [16], and higher order
crossing features [17, 18] have also been utilized. Power
features from different frequency bands from EEG signals
are most popular in frequency domain techniques. ,e
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EEG power spectral density (PSD) in alpha (8–13Hz) band
was reported to be significantly correlated with the level of
valence [19]. ,e EEG PSDs in delta (1–4Hz) and theta
(4–7Hz) extracted from three central channels also contain
salient information related to both arousal and valence
levels [13]. Based on time-frequency analysis, the
Hilbert–Huang spectrum (HHS) [20] and discrete wavelet
transform method [21, 22] were proposed in the emotion
classification tasks. ,e above research shows that time
domain characteristics, frequency domain characteristics,
and time-frequency characteristics of EEG signals can
provide salient information related to emotional states
separately.

Usually, machine learning methods are used to es-
tablish emotion recognition models. Samara et al. fused
statistical measurements, band power from the β, δ, and θ
waves, and high-order crossing of the EEG signal by
employing a support vector machine (SVM) as the classifier
[23]. Jadhav et al. proposed a novel technique for EEG-
based emotion recognition using gray-level co-occurrence
matrix- (GLCM-) based features and k-nearest neighbors
(KNN) classifier [24]. ,ammasan et al. applied three
commonly used algorithms to classify emotional classes: a
support vector machine based on the Pearson VII kernel
function (PUK) kernel, a multilayer perceptron (MLP) with
one hidden layer, and C4.5 [25]. Recently, various deep
learning (DL) approaches were investigated for EEG-based
emotion classification. ,e standard deep belief networks
(DBNs) were employed by Wand and Shang to extract
features from raw physiological data to recognize the levels
of arousal, valence, and liking [26]. In reference [27], two
types of deep learning approaches, stacked denoising
autoencoder and deep belief networks, were applied as
feature extractors for the affective states classification
problem using EEG signals. Li et al. designed a hybrid deep
learning model that combines the convolutional neural
network (CNN) and recurrent neural network (RNN) to
extract EEG features [28].

Compared with the traditional machine learning
methods, DL has achieved the promising results. However,
there still exist two challenges in the multichannel EEG
signals based emotion recognition. Firstly, seeing that time
domain characteristics, frequency domain characteristics,
and time-frequency characteristics of EEG signals contain
salient information related to emotional states, naturally the
complementarity between different types of features derived
from these domain characteristics, respectively, is consid-
ered. ,us, feature extraction and feature fusion of multi-
channel EEG signals in time domain, frequency domain, and
time-frequency domain need to be investigated to achieve
better performance. Generally, a simple deep model such as
DBN or CNN can abstract the intermediate representations
of multichannel EEG features and achieve feature fusion at
the feature level [29]. Nevertheless, in view of the fact of the
high dimensionality and limited training samples of the
physiological data, too many nodes in each layer of the deep
network will lead to the model overfitting problem. Sec-
ondly, capturing the correlation information between
different channels of EEG signal and extracting depth

correlation feature, which are ignored by the researchers,
needs to be taken into consideration when performing
feature fusion using the deep model.

To address the two issues mentioned above, an in-
tegrated deep learning framework composed of DBN-GC is
proposed in this paper. As a special nerve cell in human
brain, glia cell can transmit signals to neurons and other glia
cells. ,erefore, researchers paid attention to the charac-
teristics of glia cells and applied it to the artificial neural
networks [30, 31]. In the framework, raw multidomain
features are obtained from multichannel EEG signals. ,en,
the intermediate representations of the raw multidomain
features are separately extracted by member DBN-GC, in
which glia chains work for mining interchannel correlation
and help to optimize learning process. Finally, a discrimi-
native RBM is used to obtain the emotion predictions. In the
experiment, the effectiveness of our method is validated on
the multichannel EEG data in DEAP dataset, which is a
widely used for emotion recognition.

,e rest of this paper is organized as follows. A detailed
description of the proposed deep learning framework based
on DBN-GC is presented in Section 2. ,e experimental
results and discussions are reported in Section 3. ,e last
Section 4 briefly concludes the work.

2. Methods

2.1. Database. In this research, the DEAP dataset is used for
emotion analysis. DEAP is an open source dataset developed
by the research team at Queen’s University in Marie, London
[32]. It mainly recorded the multimodal physiological signals
produced by 32 volunteers under the stimulus of the selected
videos.,e multimodal physiological signals include the EEG
and peripheral physiological signals. Each volunteer needed to
watch 40 one-minute long videos. While each video was
presented, the EEG and peripheral physiological signals of
volunteers were recorded synchronously. It should be noted
that the EEG was recorded from 32 sites (Fp1, AF3, F3, F7,
FC5, FC1, C3, T7, CP5, CP1, P3, P7, PO3, O1, Oz, Pz, Fp2,
AF4, Fz, F4, F8, FC6, FC2, Cz, C4, T8, CP6, CP2, P4, P8, PO4,
and O2). Finally, the subjective-ratings of arousal, valence,
liking, and dominance on a scale of 1–9 were provided. In this
study, we only focus on arousal and valence scales. ,us, a
two-dimensional emotional model (illustrated in Figure 1)
can be built, where the two dimensions are arousal and va-
lence, respectively. We divide and label the trials into two
classes for valence and arousal, respectively (pleasant: >5,
unpleasant: ≤5; aroused: >5, relaxed: ≤5).

2.2.DataPreprocessingandFeatureExtraction. In this study,
only EEG signals are employed for the emotion recogni-
tion. EEG signals recorded with 512Hz sampling frequency
are downsampled to 128Hz. ,en, filtering is implemented
by a band-pass filter with cutoff frequencies of 4.0 and
45.0 Hz.

In order to make full use of the salient information
regarding the emotional states in EEG signals, four types of
raw features which characterizing the information in time
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domain, frequency domain, and time-frequency domain,
respectively, are extracted from the EEG signals [32–36], and
the detailed description is shown in Table 1. ,e 14 EEG
channel pairs for achieving power differences include Fp2-
Fp1, AF4-AF3, F4-F3, F8-F7, FC6-FC5, FC2-FC1, C4- C3,
T8-T7, CP6-CP5, CP2-CP1, P4-P3, P8-P7, PO4-PO3, and
O2-O1. ,us, the dimension of the feature vector for one
instance is 664, and the label for each instance is 2-
dimensional.

For one volunteer, the size of the corresponding data
matrix is 40 × 664 (videos/instances × features). For all 32
volunteers, 40 × 32 � 1280 instances are available. ,e
corresponding data matrix of each volunteer was stan-
dardized to remove the difference in feature scales.

2.3. Ensemble Deep Learning Framework

2.3.1. Improved DBN with Glia Chains. For emotion rec-
ognition tasks, deep learning methods hypothesize that a
hierarchy of intermediate representations from the EEG
raw features is necessary to characterize the underlying
salient information related to different emotional states.
Deep belief network, which is composed of many restricted
Boltzmann machines in the stacking way, has the strong
ability to learn high-level representations benefiting from a
deep structure-based learning mechanism with multiple
hidden layers.

As shown in Figure 2, the output of the first RBM is used
as the input of the second RBM. Similarly, the third RBM is
trained on the output of the second RBM.,rough this way,
a deep hierarchical model can be constructed that learns
features from low-level features to obtain the high-level
representation.

In view of the fact that there are no interconnections
among the neural units of DBN in the same layer, it is hard to
exploit the mutual information of different neural units in
the same layer. ,is means that DBN is hard to work for
mining interchannel and interfrequency correlation in-
formation from multichannel EEG signals in the emotion
recognition tasks. Considering this, an improved DBN with
glia chains is introduced in this paper.

,e structure of DBN-GC can be seen from Figure 3. In
addition to the two level units of each RBM, there is a group of
glia cells represented by stars and linked into a chain structure.
Each glia cell is also connected to a unit in the hidden layer of
RBM, as shown in Figure 4. ,ere is no weight between the
glia cells and the corresponding hidden units. ,e effect of all
glia cells in the training process can be directly applied to the
hidden units, and the outputs of the hidden layer nodes can be
adjusted accordingly. ,rough the connection of glia cells,
each glia cell can also transmit activated signal to other glia
cells and adjust the glia effect of other glia cells.

Table 1: Detailed description of raw EEG features.

Index Type Domain Notations of the
extracted features

No.
1–128

Statistical
measures

Time
domain

Mean, variance, zero-
crossing rate, and

approximate entropy of
32 EEG channels

(4 features × 32 channels)

No.
129–288

Power
features

Frequency
domain

Average PSD in theta
(4–8Hz), slow-alpha

(8–10Hz), alpha (8–12Hz),
beta (12–30Hz), and gamma
(30–45Hz) bands for all EEG

channels (5 power × 32
channels)

No.
289–344

Power
differences

Frequency
domain

Difference of average PSD in
theta, alpha, beta, and gamma
bands for 14 EEG channel
pairs between right and left
scalp (4 power differences ×

14 channel pairs)

No.
345–664

HHS
features

Time-
frequency
domain

Average values of squared
amplitude and instantaneous
frequency of HHS-based

time–frequency
representation in delta
(1–4Hz), theta (4–8Hz),
alpha (8–12Hz), beta

(12–30Hz), and gamma
(30–45Hz) bands for all EEG
channels (2 features × 5 bands

× 32 channels)

Valence

Arousal

Positive

Negative

HighLow

Peaceful Happiness

Sadness Angry

Neutral

Figure 1: Arousal-valence plane.
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Figure 2: Structure of deep belief network.
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For example, if the output of a hidden unit h1 is higher
than the prespecified threshold, the corresponding glia cell
g1 will be activated and then, a signal is transmitted to the
glia cell g2. When the signal is passed to g2, the glia cell g2
will be activated, no matter whether or not the output of the
hidden unit h2 reached the prespecified threshold. ,en glia
cell g2 will produce the second signal to spread. Meanwhile,
the signal generated by g1 will continue to spread. In order
to simplify the calculation, all signals produced by glia cells
are propagated along the specific direction of the glia chain.
,at is, the signals are transmitted from the first glia cell on
the chain to the last.

For RBM with a glia chain, the output rule of hidden
units is updated as follows:

hj � σ h
∗
j + α · gj􏼐 􏼑, (1)

where h∗j is the output value of the hidden node j before the
output rule is updated, gj is the glia effect value of the
corresponding glia cell, α is the weight coefficient of glia
effect value, and σ() is the sigmoid function. ,e weight
coefficient α is set manually, which can control the effect of
glia effect on the hidden units. h∗j can be calculated as

h
∗
j � 􏽘

i

Wijvi + cj, (2)

where Wij is the connection weight of the visual unit i and
the hidden unit j, vi is the state value of the visible unit i, and
cj is the bias value of the hidden unit j. Instead of random
sampling, activation probability is employed as output for
each hidden unit, which can reduce sampling noise and
speed up learning.

,e glia effect value of glia cell gj is defined as

gj(t) �
1, h∗j > θ∪gj−1(t− 1) � 1􏼐 􏼑∩ tj <T􏼐 􏼑,

βgj(t− 1), others,

⎧⎨

⎩

(3)

where θ is the prespecified threshold, T is an unresponsive
time threshold after activation, and β represents the at-
tenuation factor. Every time, the signal produced by an
activated glia cell is passed to the next glia cell.,e activation
of a glia cell will depend on whether the output of the
corresponding hidden unit reaches the prespecified
threshold θ or whether the previous glia cell conveys a signal
to it. Meanwhile, the difference tj between its last activation
time and the current time must be less than T. If the glia cell
is activated, it will transmit a signal to the next glia cell;
otherwise, it will not produce signals, and its glia effect will
gradually decay.

After integrating the glia cell mechanism, the learning
algorithm of RBM is improved and the pseudocodes of the
learning algorithm are listed in Algorithm 1.

,e training process of a DBN-GC, which is similar to
that of DBN, consists of 2 steps: pretraining and fine-tuning.
Glia cell mechanism only acts on the pretraining process. In
the pretraining phase, a greedy layer-wise unsupervised
method is adopted to train each RBM and the hidden layer’s
output of the previous RBM is used as the visible layer’s
input of the next RBM. In the fine-tuning phase, back
propagation is performed to fine-tune the parameters of the
DNB-GC.

2.3.2. DBN-GC-Based Ensemble Deep Learning Model.
Considering that the raw EEG features in Table 1 may share
different hidden properties across different time domain and
frequency domain modalities, we proposed a DBN-GC-
based ensemble deep learning model which implements a
DBN-GC-based network on homogenous feature subset
independently. ,e feature vectors derived from different
feature subsets are fed into the corresponding DBN-GC,
respectively, and the higher feature abstractions of each
feature subset are obtained as the outputs of the last hidden
layer in the corresponding DBN-GC. ,en, a discriminative
RBM is built upon the combined higher feature abstractions.
,e network architecture is illustrated in Figure 5. ,e
ensemble deep learning model consists of three parts: the
input layer, five parallel DBN-GCs, and a discriminative
RBM.

,e overall raw EEG feature set in Table 1 can be defined
as F0, which is split into five nonoverlapped physiological
feature subsets: F1, F2, F3, F4, and F5. ,e statistical measures
from time domain construct subset F1, and the multichannel
EEG PSDs construct subset F2. Another subset F3 is built by
EEG power differences. In view of the heterogeneity of
multichannel HHS features in time domain and frequency
domain, the HHS features can be grouped into two subsets,
F4 and F5, indicating squared amplitude and instantaneous
frequency, respectively.

Define feature vectors formed by the feature subset Fi as
x(Fi). ,e features in F0 form the input vector x(F0) of the

RBM with
glia chainVisible

 layer
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layer
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v1

g1
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hjgj
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Figure 4: Structure of RBM with glia chain.
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Figure 3: Structure of deep belief network with glia chains.
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ensemble deep learning framework, which is fed into the
input layer. ,en, the input vector x(F0) is split into five
subvectors: x(F1), x(F2), x(F3), x(F4), and x(F5). ,e five
subvectors are the input to the corresponding DBN-GC,
respectively. ,e five DBN-GC based deep models are built
for learning the hidden feature abstractions of each raw EEG
feature subset, and the hidden feature abstractions are de-
scribed as s1(x(F1)), s2(x(F2)), s3(x(F3)), s4(x(F4)), and
s5(x(F5)). si(x(Fi)) is the output vector of the last hidden layer
of the corresponding DBN-GC i. ,en, s1(x(F1)), s2(x(F2)),
s3(x(F3)), s4(x(F4)), and s5(x(F5)) are merged into a vector,
which is fed into the discriminative RBM to recognize
emotion states.

When building the DBN-GC-based ensemble deep
learning model, the five DBN-GCs are trained firstly. An
additional two-neuron output layer that corresponds to
binary emotions is added when training each DBN-GC.
,en, the discriminative RBM is built upon the combined
higher feature abstractions derived from the five DBN-GCs.
To determine the DBN-GCs’ hyperparameters, different
combinations of hyperparameters are tested and the pa-
rameter combination with the minimal recognition error is
adopted.

3. Results and Discussion

In view of the limited sample size in the dataset, cross-
validation techniques are adopted in the experiments. ,e
ensemble deep learning model is trained and tested via 10-
fold cross-validation technique with a participant-specific
style. For each of the 32 volunteers, the corresponding 40
instances are divided into 10 subsets. 9 subsets (36 instances)
are assigned to the training set and the remaining 1 (4

instances) is assigned to the test set. ,e above process is
repeated 10 times until all subsets are tested.

3.1. Comparison between DNB and DBN-GC. In order to
study the learning performance of DBN-GC, we first use
three feature subsets (F6, F7, and F8) to train DBNs and
DBN-GCs, respectively. ,e three subsets are given as fol-
lows: F6 � F1, F7 � F2 ∪ F3, and F8 � F4 ∪ F5.,e three feature
subsets represent time domain characteristics, frequency
domain characteristics, and time-frequency characteristics,
respectively. A DBN and a DBN-GC are trained by the same
feature subset, and they have the same hyperparameters, as
shown in Table 2. In addition, the parameters of the DBN
and the DBN-GC which share the same feature subset, such
as learning rate, are all set to the same value. ,e six models
perform the same emotion recognition task, and the metrics
for recognition performance adopt accuracy and F1-score.

,e detailed recognition performance comparisons on
arousal and valence dimensions are illustrated in Figure 6.

Each column represents the statistical results of 32
participants. Figures 6(a) and 6(c) show the classification
accuracy and F1-score of arousal dimension. Figures 6(b)
and 6(d) show the classification accuracy and F1-score of
valence dimension. As we can see from Figure 6, no matter
which feature subset is used, the DBN-GC model greatly
outperforms the corresponding baseline DNN model with a
higher median of accuracy and F1-score and a relatively low
standard deviation. In the three DBN-GC models, DBN7
which is built by the feature subset F7 achieves the highest
recognition accuracy (0.7242 on arousal and 0.7310 on
valence) and F1-score (0.6631 on arousal and 0.6775 on
valence). ,e results show that the frequency domain

Input: a training sample x1, learning rate ε, glia effect vector g
Output: weight matrix W, bias vector of the visible layer b, bias vector of the hidden layer c
Start training
Initialize v(0): v(0)� x1 (initialize state value of the visible layer v)
for j � 1 :m (for all hidden units)

p (hj(0) � 1 | v(0)) � σ (􏽘
i

Wijv
(0)
i + cj + cj)

End for
Extract a sample h(0) according to h(0)∼p (h(0) | v(0))
for i � 1 : n (for all visible units)

p (v(1)
i � 1 | h(0)) � σ (ΣjWij hj(0) + bi)

End for
Extract a sample v(1) according to v(1)∼p (v(1) | h(0))
for j � 1 :m (for all hidden units, calculate the output value without glia effect)
hj(1)∗ � ΣiWij vi

(1) + cj
End for
update the glia effect vector g
for j � 1 :m (for all hidden units, calculate the output value with glia effect)

hj
(1) � σ (hj

(1)∗ + α · gj)
End for

Update parameters
W⟵ W + ε (p (h(0) � 1 | v(0))v(0)T − p(h(1) � 1 | v(1))v(1)T)
b⟵ b + ε (v(0) − v(1))
c⟵ c + ε (p (h(0) � 1 | v(0)) − p (h(1) � 1 | v(1)))

ALGORITHM 1: Pseudocodes for training the RBM with glia chain.
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characteristics of EEG signals can provide salient in-
formation regarding emotion states.

,e results validate that the glia chain can improve the
learning performance of the deep structure.,rough the glia
chains, the hidden layer units in DBN-GC can transfer
information to each other and the DBN-GC model can
obtain the correlation information between the same hidden
layer units. ,us, the improved DNB model can learn more
discriminative features. For EEG-based emotion recognition
task, the DNN-GC can mine interchannel correlation and
utilize interchannel information, which is often ignored by
other emotion recognition studies.

3.2. Results of the DBN-GC-Based Ensemble Deep Learning
Model. ,en, the proposed DBN-GC-based ensemble deep
learning model is employed to perform the emotion rec-
ognition task. Each parallel DBN-GC in the ensemble deep
learning model has 3 hidden layers. ,e numbers of hidden
neuron of each parallel DBN-GC are listed in Table 3.
,rough the five parallel DBN-GCs, the samples’ feature
dimensionality is reduced from 664 to 350.

Table 4 compares the average recognition performance
between the proposed DBN-GC-based ensemble deep
learning model and several deep learning-based studies on
the same database. Specifically, Tripathi et al. divided the

Input layer Parallel DBN-GCs Discriminative RBM

v1 h1 h2 hn v1

h1

Label

x (F0)

DBN-GC 1

DBN-GC 2

DBN-GC 5

x (F1)

x (F2)

x (F5)

s1 (x(F1))

s2 (x(F2))

s5 (x(F5))

Figure 5: Architecture of DBN-GC-based ensemble deep learning model.

Table 2: Hyperparameters of DBNs and DBN-GCs.

F6 F7 F8
DBN6 DBN-GC6 DBN7 DBN-GC7 DBN8 DBN-GC8

v1 128 128 216 216 320 320
h1 100 100 200 200 300 300
h2 80 80 135 135 280 280
h3 45 45 90 90 125 125
o1 2 2 2 2 2 2
Note: v1 represents the input layer, o1 represents the output layer, and hi represents the i-th hidden layer.
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8064 readings per channel into 10 batches. For each batch, 9
characteristics, such as mean and variance were extracted.
,en, a deep neural network and a convolutional neural

network were used for emotion recognition [29]. Li et al.
proposed the frame-based EEG features through wavelet and
scalogram transform and designed a hybrid deep learning
model which combined CNN and RNN [37]. In addition, Li
et al. also trained a two-layer DBN to extract high-level
features for each channel, and then, a SVM with RBF kernel
is employed as the classifier [38]. Wang and Shang presented
the DBN-based system that extracted features from raw
physiological data and 3 classifiers were built to predict
emotion states [26]. In view of that the above studies did not
introduce F1-score as the metrics for recognition perfor-
mance, the average recognition performance of the proposed
model is also compared with that of reference [32]. In this
reference, Koelstra et al. analyzed the central nervous system
(CNS), peripheral nervous system (PNS), and multimedia
content analysis features for emotion recognition. Consid-
ering the proposed DBN-GC-based method in this paper is
based on the EEG signal; Table 4 only lists the recognition
results of the CNS feature-based single modality in reference
[32]. ,e DEAP dataset is used in all references in Table 4,
and the trials are divided into two classes for valence and
arousal, respectively (ratings divided as more than 5 and less
than 5) in all references in Table 4.

As can be seen from Table 4, the performance of the
DBN-GC-based ensemble deep learning model regarding
the recognition accuracy outperforms most of the above
deep classifiers. Meanwhile, the F1-scores achieved by the
proposed model are obviously superior to 0.5830 and 0.5630
reported by reference [32]. ,e proposed method provides
0.7683 mean recognition accuracy (MRA) on valence, which
is lower than the highest MRA reported on valence (0.8141).
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Figure 6: Comparison of emotion recognition results between DBN and DBN-GC.

Table 3: Hyperparameters of each parallel DBN-GC in the en-
semble deep learning model.

h1 h2 h3
DBN-GC1 110 105 90
DBN-GC2 145 145 120
DBN-GC3 55 55 45
DBN-GC4 120 55 45
DBN-GC5 155 80 50
Sum 585 440 350

Table 4: Average recognition performance comparison between
the DBN-GC-based ensemble deep learning model and several
reported studies.

Arousal Valence

Accuracy F1-
score Accuracy F1-

score
Deep neural network [29] 0.7313 — 0.7578 —
Convolutional neural
network [29] 0.7336 — 0.8141 —

CNN/RNN [37] 0.7412 — 0.7206 —
DBN-SVM [37] 0.6420 — 0.5840
Wang and Shang [26] 0.5120 — 0.6090 —
CNS feature-based single
modality [32] 0.6200 0.5830 0.5760 0.5630

DBN-GC-based ensemble
deep learning model 0.7592 0.6931 0.7683 0.7015

Computational Intelligence and Neuroscience 7



,is may be due to that the CNN model proposed by Tri-
pathi et al. benefits from sufficient training and validating
instances. In addition, the performance of the ensemble deep
learning model also outperforms the three DBN-GCs in
Table 3 which are trained by a single-feature subset. ,is
indicates that time domain characteristics, frequency do-
main characteristics, and time-frequency characteristics of
EEG signals should be complementary in emotion recog-
nition, and the proposed method can integrate different
types of characteristics effectively.

3.3. Parameter Selection. Each parallel DBN-GC in the
proposed ensemble deep learning model contains three
important parameters: the weight coefficient of glia effect
value α, the attenuation factor β, and the glia threshold θ.
,ese three parameters will determine the effect of glia cells
on DBN and then affect the performance of the proposed
model. Since there is no self-adaptive adjustment method,
the three parameters are set manually and take 20 values in
the range of 0 to 1, respectively, with the interval 0.05. Under
the different values of each parameter, the MRA on valence
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Figure 7: MRA of the proposed ensemble deep learning model with different values of glia effect weight.
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Figure 8: MRA of the proposed ensemble deep learning model with different values of attenuation factor.
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and the MRA on arousal are taken as the final evaluation
basis, and the analysis results are shown in Figures 7–9.

As can be seen from Figure 7, when the glia effect weight
is between 0.05 and 1, the MRA on arousal as well as the
MRA on valence fluctuates continuously. ,e highest MRA
on arousal (76.12%) is obtained as the glia effect weight is set
to 0.75. For MRA on valence, the higher values will appear
when the weight value is close to 0.15 or 0.80. Taking into
account these two indicators simultaneously, it is appro-
priate to set the weight coefficient to 0.80.

Figure 8 shows the results of arousal classification and
valence classification with different values of the attenuation
factor. When the value of attenuation factor is between 0.05
and 0.35, the MRA on arousal as well as the MRA on valence
fluctuates greatly. With the attenuation factor increased to
0.4, both the MRA on arousal and the MRA on valence
increase rapidly. Once the attenuation factor exceeds 0.5, the
two MRAs have been decreasing slowly. ,us, it is appro-
priate to set the attenuation factor to 0.40 or 0.50.

Figure 9 shows the results of arousal classification and
valence classification with different values of glia threshold.
Although the highest value of MRA on arousal occurs with
the glia threshold set to 0.35, the MRA is more stable when
the glia threshold is between 0.65 and 1. For the MRA on
valence, its value has been rising slowly when the attenuation
factor exceeds 0.25. It is appropriate that the glia threshold is
within the range of 0.70 to 0.80.

4. Conclusions

In this paper, we presented an ensemble deep learning model
which integrates parallel DBN-GCs and a discriminative
RBM for emotion recognition. ,e interchannel correlation
information from multichannel EEG signals, which is
often neglected, contains salient information regarding to

emotion states, and the chain structure of glia cells in DBN-
GC has the ability in mining interchannel correlation in-
formation. In addition, the time domain characteristics,
frequency domain characteristics, and time-frequency
characteristics of EEG signals should be complementary
for emotion recognition, and the ensemble deep learning
framework benefits from the comprehensive fusion of
multidomain feature abstractions. ,e reliability of the
DBN-GC and the ensemble deep learning framework-based
fusion methods is validated by the experiments based on
DEAP database.

Data Availability

,e DEAP dataset used in our manuscript is a dataset for
emotion analysis using electroencephalogram (EEG) and
physiological and video signals. ,e DEAP dataset is
available at http://www.eecs.qmul.ac.uk/mmv/datasets/
deap/. Anyone interested in using this dataset will have to
print, sign, and scan an EULA (end-user license agreement)
and return it via e-mail. ,en, a username and password to
download the data will be provided. ,e dataset was first
presented in reference [32]. DEAP: a database for emotion
analysis using physiological signals.
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