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Abstract

Background: To investigate the prevalence of robust conclusions in systematic reviews addressing missing
(participant) outcome data via a novel framework of sensitivity analyses and examine the agreement with the
current sensitivity analysis standards.

Methods: We performed an empirical study on systematic reviews with two or more interventions. Pairwise meta-
analyses (PMA) and network meta-analyses (NMA) were identified from empirical studies on the reporting and
handling of missing outcome data in systematic reviews. PMAs with at least three studies and NMAs with at least
three interventions on one primary outcome were considered eligible. We applied Bayesian methods to obtain the
summary effect estimates whilst modelling missing outcome data under the missing-at-random assumption and
different assumptions about the missingness mechanism in the compared interventions. The odds ratio in the
logarithmic scale was considered for the binary outcomes and the standardised mean difference for the continuous
outcomes. We calculated the proportion of primary analyses with robust and frail conclusions, quantified by our
proposed metric, the robustness index (RI), and current sensitivity analysis standards. Cohen’s kappa statistic was
used to measure the agreement between the conclusions derived by the RI and the current sensitivity analysis
standards.

Results: One hundred eight PMAs and 34 NMAs were considered. When studies with a substantial number of
missing outcome data dominated the analyses, the number of frail conclusions increased. The RI indicated that 59%
of the analyses failed to demonstrate robustness compared to 39% when the current sensitivity analysis standards
were employed. Comparing the RI with the current sensitivity analysis standards revealed that two in five analyses
yielded contradictory conclusions concerning the robustness of the primary analysis results.

Conclusions: Compared with the current sensitivity analysis standards, the RI offers an explicit definition of similar
results and does not unduly rely on statistical significance. Hence, it may safeguard against possible spurious
conclusions regarding the robustness of the primary analysis results.
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model, Bayesian analysis
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Background
The ubiquity of participant losses (also known as miss-
ing participant outcome data, MOD) in systematic re-
views in healthcare is well-acknowledged in the
literature [1–3]. The inclusion of studies with MOD in
systematic reviews further complicates their quantitative
synthesis [4, 5]. As the term indicates, MOD refer to un-
available information about the outcome of participants
due to several reasons [6]. Addressing MOD, therefore,
rests entirely on untestable assumptions on the possible
outcome of the missing participants [4, 7]. Kahale et al.
[8] reported that imposing clinically implausible assump-
tions on the outcome of missing participants led to great
variation in the summary effect estimates and contra-
dictory conclusions, whilst clinically plausible assump-
tions mitigated the variability in the summary effect
estimates.
Handling MOD in systematic reviews requires an at-

tentive plan to ensure credible results. The Cochrane
Handbook promotes sensitivity analyses as necessary
means to safeguard against spurious inferences [9]. The
authors of systematic reviews are advised to explore how
sensitive the results are to different yet reasonable as-
sumptions about MOD in the compared interventions
[9]. However, recent evidence on the planning and con-
duct of sensitivity analysis related to MOD in systematic
reviews is underwhelming. Spineli et al. [1] reported that
two in five reviews that made their protocol available
provided a plan to address MOD in the analysis. Eventu-
ally, only 6% of the reviews with MOD in the included
studies performed a sensitivity analysis [1]. According to
Kahale et al. [2], only 9% of the reviews reported having
performed sensitivity analyses related to MOD, with ap-
proximately half of them reporting the actual sensitivity
analysis results.
We recently proposed a novel framework in the con-

text of sensitivity analyses to objectively infer the robust-
ness of the primary analysis results to different plausible
assumptions about the MOD mechanisms [10]. This
framework introduces the robustness index (RI) to quan-
tify the similarity of the summary effect estimates from a
series of sensitivity analyses to the primary analysis.
When the RI does not exceed a pre-specified threshold
(a minimally allowed deviation between the primary ana-
lysis results and alternative re-analyses), we can deem
the primary analysis results robust to a possible risk of
bias associated with MOD. Contrary to current sensitiv-
ity analysis standards, the RI incorporates a formal defin-
ition of ‘similar’ results and does not unduly rely on the
statistical significance of the summary effect estimates.
We aim to demonstrate the ease of applying the RI

using a collection of published systematic reviews with
two or more interventions across several healthcare
fields. By calculating the RI, we uncover the prevalence

of primary analyses with frail conclusions that translates
to a high risk of biased results due to MOD. We also in-
vestigate the agreement between RI and the current sen-
sitivity analysis standards, which rely on statistical
significance. With this empirical study, we aspire to initi-
ate a paradigm shift in the analysis of aggregate MOD
where sensitivity analysis and objective judgement of ro-
bustness become state of the art in systematic reviews.

Methods
Design
The present empirical study is based on 108 pairwise
meta-analyses (PMAs) comprised of at least three stud-
ies and 34 network meta-analyses (NMAs) of at least
three interventions. The PMAs are part of a broader col-
lection of 140 Cochrane systematic reviews from three
review groups on the mental health field published be-
tween 01/2009 and 12/2012, assessing both binary and
continuous outcomes [3]. The PMAs reported the num-
ber of MOD in both arms of every study: 95 (88%)
assessed a binary primary outcome, and 13 (12%) a con-
tinuous primary outcome. The NMAs are part of a
broader collection of 387 systematic reviews of three or
more interventions from several healthcare fields pub-
lished between 01/2009 and 03/2017 [1]. Twenty-nine
NMAs (85%) assessed a binary primary outcome, and
five (15%) assessed a continuous primary outcome. All
NMAs reported the number of MOD in all arms of
every study. Additional files 1 and 2 list the systematic
reviews with the PMAs and NMAs, respectively, consid-
ered in the present work.

Data extraction
For the binary outcomes, we extracted the number of
observed events, MOD, and randomised participants in
each study-arm. For the continuous outcomes, we ex-
tracted the observed mean outcome and standard devi-
ation, the number of MOD, and randomised participants
in each study-arm. The accuracy of the extracted data
was heavily dependent on the reporting quality of the
eligible systematic reviews, as we did not retrieve the ori-
ginal reports of the corresponding studies.

Data analysis
The pattern-mixture model to handle MOD
To investigate and quantify the robustness of primary
analysis results, we conducted various sensitivity analyses
by modelling MOD via the pattern-mixture model. This
sophisticated model offers the advantage of maintaining
the randomised sample of the studies in the analysis,
therefore, conforming with the intention-to-treat
principle, which is generally preferred in the synthesis of
studies [7]. Suppose we have retrieved the reports of N
studies comparing different sets of interventions {A, B,
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C,…} for the same target population and condition. We
have collected information on the observed aggregate
outcome of participants who completed the study (called
completers), and the number of MOD, mik, out of the
number randomised, nik, in arm k of study i. For a binary
outcome, the number of events given the nik −mik com-
pleters and the number of MOD in arm k of study i are
sampled from the corresponding binomial distributions
[11]:
rik � Binðθoik ; nik−mikÞ and mik~Bin(qik, nik)
where θoik and qik are the underlying probability of ob-

serving an event given the completers and the probabil-
ity of MOD, respectively. In the case of a continuous
outcome, the observed mean outcome in arm k of study
i follows a normal distribution:

yik � N θoik ; vik
� �

where θoik and vik are the underlying mean outcome
given the completers and the variance of the observed
outcome (typically assumed known), respectively.
Then, the underlying outcome (i.e. the probability of

an event or the mean outcome given the randomised
participants) is specified via the pattern-mixture model
as follows:

θik ¼ θoik ∙ 1−qikð Þ þ θmik ∙qik

where θmik refers to the underlying unobserved out-
come in the missing participants. For the unobserved
outcome, clinically plausible assumptions regarding its
relationship to the outcome in the observed participants
are made. This relationship is measured using the in-
formative missingness odds ratio (IMOR) parameter for
binary outcomes [4, 5] and the informative missingness
difference of means (IMDoM) parameter for continuous
outcomes [12].

Informative missingness odds ratio (IMOR)
The IMOR in arm k of study i is defined as a function of
θmik and θoik as follows:

eφik ¼ θmik= 1−θmik
� �

θ0ik= 1−θ0ik
� �

The IMOR takes positive values, similar to the odds
ratio (OR). IMOR equal to one (φik = 0) translates to the
missing-at-random (MAR) assumption and a value differ-
ent from one (φik ≠ 0) to informative missingness; that is,
the unobserved outcomes may be related to their under-
lying values. For example, for the binary outcome ‘symp-
tom improvement’, IMOR > 1 (φik > 0) indicates that
participants who left the study prematurely are more likely
to have experienced improvement in their symptoms than
participants who completed that intervention.

Informative missingness difference of means (IMDoM)
The IMDoM in arm k of study i is also defined as a
function of θmik and θoik using the following formula:

ψik ¼ θmik−θ
o
ik

The IMDoM takes values from minus to plus infinity;
a value different from zero implies informative missing-
ness, and a value equal to zero corresponds to the MAR
assumption. A positive IMDoM indicates that a larger
outcome on average is more likely to occur in missing
participants than in completers, and a negative IMDoM
indicates the opposite.
The values of φik and ψik are naturally unknown; thus,

one needs to suggest plausible values for these parame-
ters. By convention, we assigned a normal distribution
on φik and ψik,

φik ;ψik � Ν λik ; σ
2
ik

� �
where λik reflects our prior belief about the missing-

ness mechanism, and σ2ik indicates the uncertainty about
our belief [11, 12]. Following the relevant literature, we
considered σ2ik ¼ σ2 equal to 1 for φik and ψik [4, 11, 12].
Assigning a normal distribution is a better approach to
fixing either parameter to an assumed value, which ef-
fectively corresponds to imputation [5]. Both pattern-
mixture model and imputation maintain the randomised
sample. However, by assigning a probability distribution
on the unknown parameters, we fully acknowledge the
uncertainty about the parameters’ true value. This ap-
proach is natural under the Bayesian framework. In con-
trast, imputation discounts the uncertainty of the
assumed value, therefore leading to spuriously precise
results [5]. In the present work, we specified λik to be
different for the experimental and control arms of a
study but same across the corresponding studies, which
corresponds to assuming that different interventions
may trigger a different missingness mechanism on aver-
age. This corresponds to λik ¼ λtik where tik refers to the
intervention investigated in the arm k of study i (tik ∈ {A,
B,C,…}). We provide detailed information on the speci-
fication of the Bayesian models (e.g. prior distributions
and diagnostic evaluation of convergence) in Additional
file 3: Note S1 [11–21]. In the following section, we
present the values for λtik , separately, for log IMOR and
IMDoM, which we adopted for the sensitivity analysis.

Selection of assumptions for the MOD mechanisms in each
intervention
We considered the MAR assumption for the primary
analysis (i.e. λtik ¼ 0) as a plausible reference point when
the reasons for MOD are not available for every study
[5]. For sensitivity analysis, we defined a set of stringent
yet clinically plausible assumptions for λtik without con-
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sulting clinical expertise. Our decision was merely logis-
tical; our dataset includes various outcomes and inter-
ventions from different healthcare fields. Thus, we
would need to involve a great number of experts from
each field. Our proposed values, however, are in line
with relevant work for aggregate MOD [10, 12]. Specific-
ally, for the IMOR parameter, we allowed expðλtik Þ to
take the values 1/3, 1/2, 2, and 3. For the IMDoM par-
ameter, we allowed λtik to take the values −2, −1, 1, and
2. For example, in the IMOR scale, expðλtik Þ equal to 1/
3 indicates that the odds of an event are three times
more likely in completers than in missing participants
who received the intervention tik, whilst expðλtik Þ equal
to 3 indicates the opposite for the same intervention.
Similarly, in the IMDoM scale, λtik equal to −2 indicates
that the outcome increases by two units on average in
completers than in missing participants who received
the intervention tik, whilst λtik equal to 2 indicates the
opposite for the same intervention.
Recall that the values for λtik mentioned above refer to

the intervention investigated in the arm k of study i. It is
possible to assign identical or different λtik values to the
interventions compared in the same study. For a pair-
wise comparison, the possible combinations of these
values and the value for the MAR assumption yield 5 × 5
assumptions. Table 1 illustrates the 25 assumptions (one
for the primary analysis and 24 for sensitivity analyses)
in the active and control arms of a two-arm study. We
used the same assumptions for all studies in a PMA.
The same concept applies to an NMA for star-shaped

networks because the common anchor intervention is
the ‘control arm’ in all studies. These pairwise assump-
tions are not immediately applicable to a non-star-

shaped network where an intervention may be the ‘active
arm’ in a study but the ‘control arm’ in another study. In
this case, for each assumption, we assigned the ‘control
arm’ values to the selected reference intervention and
the ‘active arm’ values to the remaining interventions in
that network [10]. Therefore, in a non-star-shaped net-
work, the non-reference interventions receive the same
assumptions. The reference intervention receives either
the same or different assumptions with the non-
reference interventions (Table 2).

The robustness index (RI)
To quantify the (dis)similarity between the primary ana-
lysis results (under MAR assumption) and the results
from the 24 sensitivity analyses, we calculated the RI, a
metric we recently proposed [10], which considers the
magnitude and standard error of the summary effect es-
timate(s) in primary and sensitivity analyses as follows:

RI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i∈A

D2
i

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1 þ D2
2 þ…þ D2

12 þ D2
14…þ D2

25

q
where A = {1, 2,…12, 14,…, 25} refers to the |A| = 24

informative assumptions about the λtik in Table 1 (one
assumption per sensitivity analysis), and Di is the
Kullback-Leibler divergence measure [22] for two nor-
mal distributions,

Di ¼ 1
2

s13
si

� �2

þ μ̂i−μ̂13ð Þ2
s2i

−1þ 2� ln
si
s13

� �" #

with μ̂i and μ̂13 being the summary effect estimates
under the assumption i and primary analysis (the MAR
assumption has the number 13 in Table 1), respectively,
and si and s13 being the corresponding standard errors.
In the Bayesian analysis, μ̂i and si refer to the posterior
mean and the posterior standard deviation of the

Table 1 Assumptions for the missingness mechanisms in a
two-arm study

Assumption IMDoM values IMOR values

Active arm Control arm Active arm Control arm

1 − 2 − 2 1/3 1/3

2 − 2 − 1 1/3 1/2

… … … … …

5 − 2 2 1/3 3

… … … … …

13 (MAR) 0 0 1 1

… … … … …

21 2 − 2 3 1/3

… … … … …

24 2 1 3 2

25 2 2 3 3

IMDoM informative missingness difference of means, IMOR informative
missingness odds ratio

Table 2 Assumptions for the missingness mechanisms in a
fictional triangle network

Assumption IMDoM values IMOR values

A B Ca A B Ca

1 − 2 − 2 − 2 1/3 1/3 1/3

2 − 2 − 2 − 1 1/3 1/3 1/2

… … … … … … …

13 (MAR) 0 0 0 1 1 1

… … … … … … …

24 2 2 1 3 3 2

25 2 2 2 3 3 3

IMDoM, informative missingness difference of means; IMOR, informative
missingness odds ratio
aThe reference intervention of the network
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summary effect estimate, respectively. The RI ranges
from zero to infinity; a zero value implies a perfect over-
lap between the distributions of summary effects under
MAR and alternative re-analyses. The lower the value of
the RI, the larger the proximity between the distribu-
tions, and thus, approximating the MAR assumption
with any informative assumption would not materially
change the conclusions [10]. Note that the RI is
comparison-specific; we can calculate as many RIs as the
number of pairwise comparisons. It follows then that for
a PMA, one RI is calculated, and for an NMA, the num-
ber of RIs equals T(T − 1)/2, where T is the number of
interventions in the network.

The threshold of robustness
The interpretation of the RI requires a threshold to
which the values of the index are contrasted. As a
threshold of robustness, we used one standard deviation
of low statistical heterogeneity [10]. Low statistical het-
erogeneity was defined as the median of the empirically
based distribution for the between-study variance (τ2) in
the case of a general healthcare setting [16, 17]. For a
binary outcome, this median equals 0.08 in the log OR
scale, and for a continuous outcome, 0.03 in the standar-
dised mean difference (SMD) scale. Therefore, for a
given comparison, an RI value less than

ffiffiffiffiffiffiffiffiffi
0:08

p ¼ 0:28
(1.32 after exponentiation) or

ffiffiffiffiffiffiffiffiffi
0:03

p ¼ 0:17 infers ro-

bustness, and a value at least 0.28 or 0.17 implies a lack
of robustness in the log OR and SMD scale, respectively
[10]. We used these thresholds for all PMAs/NMAs of
our dataset. To infer the robustness of the whole net-
work, we considered the following decision framework:
when the RI equals or exceeds the robustness threshold
for at least one comparison, we conclude a lack of ro-
bustness in the network [10]. Robustness can be claimed
for a network when the RI is less than the robustness
threshold for all possible comparisons [10].

Application to a network with a considerable risk of bias
due to MOD
We illustrate the sensitivity analysis framework and cal-
culation of the RI in a network of multiple interventions
using a systematic review of five antidepressants and a
placebo to relieve the symptoms of depression in partici-
pants with Parkinson's disease (Additional file 4: Figure
S1) [23]. The authors defined relief of symptoms as a re-
duction of at least 50% from the baseline score on vari-
ous scales for depression assessment (binary outcome)
[23]. Figure 1A shows the percentage of total MOD in
each intervention (percentages in white, main diagonal)
and pairwise comparison (percentages in black, lower
off-diagonal), respectively. The percentage of total MOD
in an intervention is the ratio of the sum of MOD for that
intervention across the corresponding studies to the sum
of the randomised participants in that intervention.

Fig. 1 A Heatmap of the proportion of total MOD in each intervention (percentages in white, main diagonal) and observed comparison
(percentages in black, lower off-diagonal) in the network of antidepressants for participants with Parkinson’s disease [23]. B Heatmap of the
robustness index (RI) values for every possible comparison in the network of antidepressants for participants with Parkinson’s disease [23]. The
pairwise comparisons are read from left to right. Red cells indicate a lack of robustness (RI ≥ 0.28), and green cells indicate the robustness (RI <
0.28) of the primary analysis results for the corresponding comparison
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Similarly follows the definition of the percentage of total
MOD in an observed comparison. Overall, the percentage
of total MOD in all pairwise comparisons and interven-
tions exceeded 5%, the threshold of low risk of bias due to
MOD [24]. The comparison of TCA with SSRI and the in-
terventions thereof had at least 20% of total MOD, the
threshold of high risk of bias due to MOD [24].
Figure 1B is a heatmap of the RI values for all possible

comparisons in the network. Robustness could not be
inferred for SNRI and SSRI versus placebo (red cells)
since the RI values exceeded the threshold of 0.28. The
credibility of the primary analysis results for this net-
work is, thus, overall questionable. Interestingly, the
comparisons between antidepressants resulted in zero RI
values (after rounding to the second decimal). This may
be explained partly due to (a) sharing the same assump-
tions about the missingness mechanisms (contrary to
comparisons with placebo) and (b) the consistency equa-
tion that warrants the agreement between indirect and
direct evidence for a given comparison, as has been re-
cently shown [25]. These comparisons were obtained as
linear combinations of the placebo comparisons via the
consistency equation. Therefore, after adjusting for
MOD via the pattern-mixture model, any residual bias
in the placebo comparisons may have been mitigated in
the remaining comparisons.

Investigating the risk of frail conclusions in PMAs and NMAs
We investigated the proportion of PMAs and NMAs
with questionable conclusions in association with the ex-
tent of MOD. A study is associated with a low, moder-
ate, or high risk of bias due to MOD when the
corresponding proportion of total MOD is up to 5%,
more than 5% and up to 20%, or more than 20%, re-
spectively [24]. Since the number of MOD differs from
study to study, it is not straightforward to characterise a
pairwise comparison as having a low, moderate, or high
risk of bias due to MOD. In an NMA, where we deal
with many studies comparing different interventions, la-
belling a network as having a low, moderate, or high risk
of bias due to MOD is unarguably more challenging.
For each PMA and NMA, we counted the number of

studies with a low, moderate, and high risk of bias due
to MOD and then, we grouped them into one of the fol-
lowing three categories: analyses with (a) more studies
with low risk, (b) more studies with moderate risk, and
(c) more studies with high risk. Those PMAs/NMAs
with an equal number of studies in at least two of the
risk levels (i.e. low, moderate, and high) were placed in
the second category. Stacked barplots were used to illus-
trate the percentage of PMAs/NMAs with and without
questionable conclusions (based on the RI) within each
category. Violin plots and boxplots were also created to
describe the distribution of the RI in each group in

PMAs and NMAs, respectively. In the NMAs, we con-
sidered the maximum RI among the comparisons of the
corresponding analysed network to create the boxplots.
The results for PMA and NMA are presented separately.
All plots were created using the R-package ggplot2 [26].
The R-package gghalves was used to integrate dots in
the violin plots and boxplots [27].

Investigating the agreement with the current sensitivity
analysis standards
We investigated the proportion of PMAs and NMAs
that reached the same conclusions under our sensitivity
analysis framework and the current sensitivity analysis
standards. Thus, we examined whether the statistical sig-
nificance of the summary effect estimate of a pairwise
comparison under the primary analysis changed in any
of the subsequent 24 re-analyses. A 95% credible interval
of the summary effect estimate that excludes the thresh-
old for null effect implies statistical significance for that
comparison. If the statistical significance under the pri-
mary analysis changed in at least one re-analysis, we
concluded the corresponding comparison to be frail
under the current sensitivity analysis standards. For the
NMA, we followed the same decision framework as be-
fore: if one summary estimate of a pairwise comparison
in the network changed statistical significance, the NMA
findings were deemed to be frail.
We tabulated the percentage of PMAs/NMAs with the

same or different conclusions under these two sensitivity
analysis frameworks. We used Cohen’s kappa statistic (k)
to measure the agreement between the conclusions of
our proposed framework and the current sensitivity ana-
lysis standards [28]. The thresholds of agreement pro-
posed by Landis and Koch [29] were adopted to
interpret the Cohen’s kappa statistic: k < 0 indicates poor
agreement, 0 < k ≤ 0.20 implies slight agreement, 0.20 <
k ≤ 0.40 implies fair agreement, 0.40 < k ≤ 0.60 indicates a
moderate agreement, 0.60 < k ≤ 0.80 indicates a substan-
tial agreement, and 0.80 < k ≤ 1.00 indicates an almost
perfect agreement. We reported the estimated statistic
and 95% confidence interval (CI) separately for PMAs
and NMAs. The R-package fmsb [30] was used to obtain
Cohen’s kappa statistic and 95% CI and the R-package
caret [31] to create the confusion matrices. All functions
and data related to this manuscript are publicly available
at https://github.com/LoukiaSpin/Empirical-Evidence-
on-Robustness-in-Meta-analyses.git.

Results
Characteristics of the dataset
A total of 108 PMAs (95 on binary and 13 on continu-
ous primary outcomes) and 34 NMAs (29 on binary and
five on continuous primary outcomes) comprised the
analysed dataset (Table 3). NMAs included inherently
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more studies than PMAs (median 14 and 4, respectively)
with a substantially larger randomised sample (median
247 and 60, respectively). However, the total sample size
ranged from very few participants (4 and 12 in PMA and
NMA, respectively) to a few thousands (1996 and 18,201
in PMA and NMA, respectively) in both analyses. The
number of investigated interventions and the percentage
of observed comparisons varied considerably across the
analysed networks (range 3 to 22 and 13 to 100%, re-
spectively). Overall, the event frequency observed in
study-arms indicated that both analyses dealt mostly
with a frequent binary outcome (Table 3). Only 33
PMAs (31%) and nine NMAs (26%) included at least one
study with zero events or non-events. Most NMAs in-
vestigated comparisons with placebo (68% of NMAs ver-
sus 34% of PMAs). PMAs included mostly comparisons
among pharmacological interventions (43% of PMAs
versus 26% of NMAs). Comparisons with non-
pharmacological interventions were the least prevalent
intervention-comparison type in the dataset (23% of
PMAs and 6% of NMAs). Studies with a high risk of bias
due to MOD were predominant in PMAs (median 55%);
8% of the PMAs comprised such studies only. On the
contrary, NMAs included mostly studies with a low risk
of bias due to MOD (median 50%), followed by studies
with a moderate risk of bias due to MOD (median 44%).

Exclusion due to convergence issues
We excluded one PMA and one NMA on a binary out-
come due to convergence problems (Additional file 5:
Tables S1 and S2) [33, 34]. Therefore, the final analyses
were based on 107 PMAs (94 on binary and 13 on con-
tinuous primary outcomes) and 33 NMAs (28 on binary
and five on continuous primary outcomes). More details
on the reasons for non-convergence can be found in
Additional file 3: Note S2 [33–35].

The risk of frail conclusions in PMA and NMA
Using the RI, we found that 61 (57%) PMAs and 22
(67%) NMAs failed to demonstrate robustness of the pri-
mary analysis results. The summary effect estimates of
these analyses were, thus, sensitive to different assump-
tions about the missingness mechanisms in the com-
pared interventions. Figures 2A and 3A depict the
relative frequency of robust and frail conclusions with
respect to the classification of PMAs and NMAs based
on the risk of bias due to MOD in the included studies.
The stacked barplots showed that the higher the risk of
bias in studies, the more likely the analysis is to yield
frail decisions, revealing a pattern between the risk of
bias due to MOD and the credibility of findings in
PMAs/NMAs. In addition, we observed frail conclusions
for six PMAs and eight NMAs in the ‘low risk’ group

Table 3 Characteristics of the 108 pairwise meta-analyses and 34 network meta-analyses. Values are median (range) [number of
pairwise meta-analyses or network meta-analyses] unless stated otherwise

Characteristic PMA NMA

Number of studies 4 (3 to 25) 14 (4 to 104)

Randomised sample 60 (4 to 1996) 247 (12 to 18201)

Number of interventions 2 6 (3 to 22)

Observed comparisons (%) 1 42 (13 to 100a)

Εvent frequency (%) in study-arms (binary outcomes only) 47 (26 to 67)b 60 (42 to 76)b

Studies with at least one zero-cell (binary outcomes only) 2 (1 to 6) [33] 1 (1 to 4)[9]

Intervention-comparison type:

Pharma versus placeboc 37 (34) 23 (68)

Pharma versus pharmac 46 (43) 9 (26)

Non-pharmad versus pharmac 3 (3) 1 (3)

Non-pharma versus non-pharmac 22 (20) 1 (3)

Proportion of studies associated with:

Low risk of bias due to MODe 33 (8 to 100) [6]f 50 (6 to 100) [3]f

Moderate risk of bias due to MODe 33 (10 to 100) [2]f 44 (7 to 92)

High risk of bias due to MODe 55 (11 to 100) [9]f 28 (4 to 80)

MOD missing participant outcome data, NMA network meta-analysis, pharma pharmacological interventions, PMA pairwise meta-analysis
aTwo networks on the continuous outcome are closed triangles
bValues are median (interquartile range). The range of event frequency (%) in study-arms was 0 to 100 in pairwise meta-analyses and network meta-analyses
cValues are numbers (percentages)
dNon-pharmacological interventions include medical devices, surgical, complex, resources and infrastructure, behavioural, psychological, physical, complementary,
educational, radiotherapy, vaccines, cellular and gene and screening [32]
eFollowing the classification by Sackett et al. [24]: a proportion of missing participants up to 5% implies a low risk of bias due to MOD, more than 5% and up to
20% indicates a moderate risk of bias due to MOD, and more than 20% indicates a high risk of bias due to MOD
fNumber of PMAs/NMAs that include only studies with a specific risk of bias due to MOD
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and robust conclusions for three PMAs in the ‘high risk’
group, which may appear counterintuitive (Figs. 2A and
3A). These findings suggest that except for the case of
no MOD in a PMA/NMA, the percentage of MOD in
most synthesised studies may not necessarily ensure ro-
bust or frail conclusions, partially due to potential unob-
served confounding. Additional file 5: Table S3 describes
the characteristics of these PMAs and NMAs.

After excluding one outlying PMA, the RI had a
slightly wider range of values in PMAs than in NMAs
(Figs. 2B and 3B): 0 to 1.40 in PMAs and 0 to 1.31 in
NMAs, where each dot represents the RI value for each
of the PMA/NMA. The outlying point referred to the
PMA by Sguassero et al. [36], evaluating the effect of
supplementary feeding in children’s early life growth
(Fig. 2B). The analysed outcome comprised four studies

Fig. 2 A Stacked barplot of the percentage of pairwise meta-analyses with robust (green bar) and frail (red bar) conclusions in each group of the
x-axis. B Violin plot with integrated dots of the robustness index (RI) values of pairwise meta-analyses with robust (green colour) and frail (red
colour) conclusions in each group of the x-axis

Fig. 3 A Stacked barplot of the percentage of network meta-analyses with robust (green bar) and frail (red bar) conclusions in each group of the
x-axis. B Boxplot with integrated dots on the maximum robustness index among the comparisons of a network with robust (green colour) and
frail (red colour) conclusions in each group of the x-axis
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with 20%, 15%, 21%, and 26% total MOD, respectively.
Considering the same assumptions for IMDoM in both
interventions yielded the smallest Kullback-Leibler diver-
gence measure (range 0 to 0.09) compared to the as-
sumptions above and below the main diagonal (Fig. 4).
Different IMDoM assumptions for the compared inter-
ventions affected the posterior mean of the SMD consid-
erably, for example, IMDoMSupplementary feeding = 2 and
IMDoMControl = − 2 (Fig. 4), yielding a striking RI of
3.22.

Agreement with the current sensitivity analysis standards
The current sensitivity analysis standards indicated in
total fewer analyses with frail conclusions than those
identified by calculating and applying the threshold for
the RI. Specifically, a total of 55 (39%) analyses failed to
demonstrate robustness of the primary analysis results
under the current sensitivity analysis standards as op-
posed to 83 (59%) analyses in total under the RI. For the
PMAs, Cohen’s kappa statistic indicated a slight agree-
ment between these two frameworks, though there was
great uncertainty in the estimation (mean 0.19; 95% con-
fidence interval (CI) 0.02 to 0.39). For the NMAs,
Cohen’s kappa statistic indicated a fair agreement;

however, the 95% CI ranged from poor to a substantial
agreement (mean 0.25, 95% CI − 0.41 to 0.64).
For the 46 (43%) PMAs with contradictory conclusions

from the compared frameworks (non-diagonal elements
in Fig. 5A), we looked further into the probability density
plots of the summary effects from the primary analysis
and the 24 re-analyses. Seven PMAs were associated with
robust conclusions based on the RI but with frail conclu-
sions based on the current sensitivity analysis standards
(Additional file 4: Figures S2 to S8) [37–43]. The statistical
significance changed in at least one re-analysis using the
current sensitivity analysis standards, leading to frail con-
clusions for these comparisons. These re-analyses referred
to opposite assumptions about the missingness mechan-
ism in the compared arms (i.e. bottom left or top right of
the panels) (Additional file 4: Figures S2 to S8) [37–43].
Four of these PMAs were classified as having more studies
with a low risk of bias due to MOD and the rest as having
more studies with a moderate risk of bias. The same pat-
tern was observed for the seven (21%) NMAs, where con-
clusions on the statistical significance changed in at least
one re-analysis of the possible comparisons of the network
(Fig. 5B).
In all 39 (36%) PMAs with frail conclusions, based on

the RI, the statistical significance did not change in any

Fig. 4 A panel of probability density plots of the summary standardised mean difference (SMD) of supplementary feeding versus the control
intervention from Sguassero et al. [36]. The red line indicates the posterior distribution of the SMD under the primary analysis. The black lines
indicate the posterior distribution of the SMD under the alternative re-analyses. The alternative re-analyses refer to 24 different assumptions about
the informative missingness difference of means parameter in the supplementary feeding (facets at the top of the panel) and the control
intervention (facets at the left of the panel). The blue area corresponds to the Kullback-Leibler divergence (KLD) measure. The vertical dotted line
refers to SMD equal to zero (no difference). The grey rectangular indicates the 95% credible interval of SMD under the corresponding re-analysis
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re-analysis (for example, Additional file 4: Figure S9
[44]). Consequently, the current sensitivity analysis stan-
dards deduced the conclusions from these analyses to be
robust. The Kullback-Leibler divergence measure was,
however, systematically substantial in the opposite as-
sumptions about the missingness mechanism in the
compared arms. Therefore, the RI determined the con-
clusions from these analyses as frail. Almost half of these
PMAs were classified as having more studies with a high
risk of bias due to MOD, followed by 8 (20%) PMAs
with more studies with a moderate risk of bias due to
MOD. A similar pattern was observed for the three (9%)
NMAs with frail conclusions under the RI but robust
conclusions under the standard sensitivity analysis (Fig.
5B).

Discussion
The primary analysis results can be sensitive to different
assumptions about the missingness mechanisms in the
compared interventions of the synthesised studies. The
ratio of studies with low to a substantial amount of
MOD can also implicate the robustness of the primary
analysis results. Using the proposed RI showed almost
double the number of frail conclusions compared with
relying on the statistical significance of the summary ef-
fect estimate in the re-analyses. Comparing the RI with
the current sensitivity analysis standards revealed that
two in five analyses yielded contradictory conclusions re-
garding the robustness of the primary analysis results.
Reliance on the statistical significance resulted in frail
conclusions in analyses with a materially unaffected pos-
terior distribution of the summary effect estimate that
included the threshold for null effect in the primary and
subsequent analyses. Based on the significance level of

5%, the statistical significance of these analyses changed
when making more stringent assumptions.
Furthermore, the current sensitivity analysis standards

yielded robust conclusions in analyses where the poster-
ior distribution varied substantially under stringent as-
sumptions. The statistical significance (at a 5% level) was
maintained in all re-analyses of these PMAs/NMAs. The
RI naturally accounted for the deviations in the location
and dispersion of the posterior distribution in the re-
analyses; therefore, it demonstrated the sensitivity of the
primary analysis results to different assumptions.
This is the first empirical study to investigate the sen-

sitivity of the summary effect estimates of PMAs and
NMAs to different assumptions about MOD. We con-
sidered a wide range of clinically plausible assumptions
about the missingness mechanisms in the compared in-
terventions. Therefore, we were able to thoroughly in-
vestigate the sensitivity of the results to a varying degree
of stringent assumptions. However, these assumptions
were not tailored to the interventions and conditions
under investigation. Ideally, expert opinion should be
sought to determine the assumptions for the sensitivity
analysis at the protocol stage of the analysis.
Furthermore, we used an objective framework to de-

velop the robustness thresholds. These thresholds
reflected the minimally allowed deviation in a general
healthcare setting. Preferably, clinically specific robust-
ness thresholds should be considered in addition to our
proposed threshold.
This is also the first empirical study on systematic re-

views to rely on objective criteria other than statistical
significance to determine the presence or lack of robust-
ness of the primary analysis results. Kahale et al. [8] is
the most recent empirical study on the impact of MOD

Fig. 5 A Cross-tabulation of the percentage of pairwise meta-analyses with robust and frail conclusions under the robustness index and the
current sensitivity analysis standards. B Cross-tabulation of the percentage of network meta-analyses with robust and frail conclusions under the
robustness index and the current sensitivity analysis standards
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on the summary effect estimates from PMAs. The au-
thors reported that only a quarter of 100 PMAs failed to
demonstrate robustness based on statistical significance.
Our study revealed that mere reliance on statistical sig-
nificance was sensitive to the selected significance level.
It, hence, declared conclusions as robust or frail in cases
where the posterior distribution of the summary effect
estimate differed or was materially unchanged to the dif-
ferent re-analyses, respectively. By employing the RI in
the database of Kahale et al. [8], one may expect a higher
percentage of PMAs with frail conclusions due to the
substantial percentage of participants with definite or
potential MOD in these PMAs (median 11.7% and inter-
quartile range 5.6 to 23.7%).
The present study focused on the impact of two fac-

tors on the sensitivity of the primary analysis results: (1)
the amount of MOD in the collated studies and (2) the
different assumptions about the missingness mecha-
nisms in the compared interventions. Potential unob-
served confounding (stemming from analysing aggregate
outcome data), the size and the number of the studies,
and the distribution of the outcome across the studies,
also constitute important factors that may affect the
summary effect size, and by extent, the conclusions from
a sensitivity analysis. Variability in the sample size and
the distribution of the outcome should be expected and
properly accounted for. In the present study, we pre-
ferred modelling the exact distribution of the binary out-
come data (one-stage approach) rather than
approximating the normal distribution (two-stage ap-
proach)—the latter being difficult to defend when the in-
cluded studies are small, and the investigated outcome is
rare [45]. Following Dias et al. [15], we have assumed
approximately normally distributed sample means for
the continuous outcome by convention, which may have
implications for the summary SMD when the studies are
small [45].
Despite the cautionary tales on the misuse of statistical

significance in interpreting the study results, dichotomis-
ing the results based on a 5% significance level remains
the status quo in the published literature. This study
showed the merits of objectively developed decision cri-
teria, contrary to reliance on statistical significance in
isolation, to interpret the sensitivity analysis results.
Therefore, we aspire for this framework to be integrated
into the GRADE guidance for assessing the risk of bias
due to MOD, which, coupled with plausible clinical as-
sumptions, may uncover the comparisons and outcomes
with frail conclusions [46]. In addition, the relevance
and utility of our sensitivity analysis framework extend
beyond the analysis of MOD. For instance, the sensitivity
of the results to different prior distributions for the
between-study heterogeneity parameter, different effect
measures, or excluding outlying studies can be easily

inferred with our proposed framework. Finally, it can be
applied straightforwardly regardless of the analysis
framework (frequentist or Bayesian).
An index that evaluates the consistency assumption

would further help the analyst infer the degree of incon-
sistency in the network and whether the NMA results
are valid. There are currently no recommendations to
interpret the estimated inconsistency parameter as an in-
dication of low or considerable inconsistency. Therefore,
the analysts unduly rely on the statistical significance of
the inconsistency parameter to infer the presence or lack
of consistency.
Clinically relevant robustness thresholds would allow

for contextualised conclusions regarding the robustness
of the primary analysis results. For instance, deciding
what constitutes a minimum clinically important differ-
ence (MCID) in the sensitivity analysis context could be
used as the robustness threshold. Then, an RI below this
threshold would signify robust primary analysis results.
Preferably, the elicited threshold would be based on sev-
eral experts with different experiences on the subject
under investigation [47]. Then, the average of MCIDs
across the experts weighted by their experience in years
would comprise the robustness threshold.

Conclusions
Interpreting the sensitivity analysis results requires ob-
jectivity and contextualisation to safeguard against spuri-
ous conclusions. The current sensitivity analysis
standards rely on statistical significance; hence, they fail
to fulfil these requirements. We proposed the RI as a
better alternative to the current sensitivity analysis stan-
dards, which offers an objective definition of similar re-
sults and does not rely unduly on statistical significance.
The RI can overhaul the current norms in applying and
interpreting sensitivity analyses in systematic reviews.
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