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Studies on strictly anaerobic microorganisms represent one 
of the most challenging areas of research, because anaerobic 
conditions (oxygen-free) need to be reconstructed to under-
stand microbial activities and to obtain enrichments and  
pure culture. It is well-known that the micro/macro anaerobic 
environments are present everywhere on the Earth, and  
anaerobes comprise complex communities that play an 
important role in the carbon, nitrogen, and sulfur cycles on 
earth (49). Microbial community studies using 16S rRNA 
gene, as well as various functional genes, have offered new 
insights into anaerobic microbial ecology. Furthermore, 
numerous new lines of evidence offered by recent omics-
driven and high-throughput sequencing studies provide a  
new vision of the anaerobic microbial world.

In the current issue of Microbes and Environments, Cheng 
et al. (4) reported that different types of sulfate-reducing 
prokaryotes that can be grown under specific temperatures 
ranges were detected in sulfate-amended enrichment cultures 
of muddy fluids taken from a Taiwanese terrestrial hydro­
carbon seep, and that indigenous microbial communities 
might change based on the dynamic environmental fluctua-
tions in volcanic mud ecosystems. Sulfate-reducing prokary-
otes are frequently found in sulfate-supplied environment and 
are capable of growing on a variety of electron donors. In gas 
seeps and oil fields, the presence of various sulfate-reducing 
prokaryotes (9, 27, 30, 39) is associated with their potential  
to degrade anaerobic aromatic compounds and hydrocarbons. 
In fact, some sulfate-reducing bacteria are known to be decom
posers of these compounds (e.g., Desulfobacula toluolica, 
Desulfogloeba alkanexedens, Desulfosarcina sp.) (5, 11, 12, 
48). In addition, a recent study reported that the hyperthermo-
philic sulfate-reducing archaeon Archaeoglobus fulgidus 
oxidizes long-chain n-alkanes (24). Together with these 
findings, sulfate-reducing bacteria are also known to be an 
important microbial group as syntrophic partners in anaerobic 
ecosystems. Consortia of anaerobic methanotrophic archaea 
and sulfate-reducing bacteria contribute to the global meth-
ane consumption in methane-seeps (41). In addition, hydro-
gen and sulfur-compounds are syntrophically utilized by  
sulfate-reducing bacteria, sulfur-oxidizing bacteria, fermen-
ters and anoxygenic photosynthetic bacteria in hot springs 
and hydrothermal fields showing the complexity and impor-
tance of synrtophic associations between organisms (10, 25, 
36, 38).

Methanogens play a key role in anaerobic ecosystems, and 
represent the most important member for the effective 
organic degradation and the recovery of methane as energy  
in anaerobic digesters treating various types of wastewater  
(3, 13, 34, 50). Due to their growth under very low redox 
conditions, their cultivation and physiological analyses 
require special laboratory techniques and apparatus (8, 22). 
Methanogens are phylogenetically widespread among the 
phylum Euryarchaeota, and the discovery of new lineages is 
ongoing. Methanomassiliicoccus luminyensis was isolated 
from human feces (7) and is the first methanogenic represen-
tative belonging to the class Thermoplasmata (14). The class 
originally consisted of acidophilic and aerobic archaea (42) 
and of uncultured lineages retrieved from hydrothermal fields 
(46), rice fields (23), and so on. Isolation of Thermoplasmata-
related methanogens within the unexpected lineage suggests 
that methanogens are phylogenetically more diverse than 
previously thought, and holds the promise of the discovery  
of as-yet-unrecognized methanogens (6, 35). The genus 
Methanocella also represents a novel lineage of methano-
gens, formerly called “Rice Cluster I”, and the only cultivated 
representative belonging to the order Methanocellales (44). 
Sakai et al. successfully isolated Methanocella paludicola 
using an elaborate enrichment method: low-hydrogen condi-
tions were created by using Syntrophobacter fumaroxidans as 
a hydrogen-producing fermenter (43) so that methanogens 
that favor low concentrations of hydrogen was selectively 
enriched and isolated. This example makes it clear that  
inventive approaches to cultivation provide opportunities for 
success. On the other hand, it is also important to easily and 
efficiently create the conditions for cultivation of fastidious 
anaerobic microorganisms like methanogens. Carbonero  
et al. (2) reported that improving the culture medium made 
the colony formation of Methanosaeta species successful. 
Nakamura et al. (32) developed a simple technique for  
the cultivation of anaerobic microorganisms, by using a  
six-well plate and anaerobic gas-pack system. Subsequently, 
Methanothermobacter tenebrarum was successfully isolated 
using this technique (33). Clearly, increase in colony forming 
efficiency would facilitate not only isolation of yet-to-be cultured 
methanogens but further studies using genetic manipulations.

Anaerobic ammonium oxidation (anammox) is a microbial 
process in which ammonium is anaerobically oxidized to 
nitrogen gas with nitrite as an electron acceptor. Strous et al. 
first reported that this phenomenon occurs with anammox 
bacteria belonging to the order “Brocadiales” in the phylum 
Planctomycetes (45). As this process does not require a  
supply of oxygen or of organic substrates for stimulation  
of denitrification, it is expected to serve as an alternative  
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to conventional processes used to remove nitrogen from  
ammonia-rich wastewater. In nature, anammox has been 
detected in marine and fresh-water sediments, soils, and so on 
(1, 52), and it is likely that anammox bacteria significantly 
contribute to the global nitrogen cycle (15, 16, 28). Based on 
enrichment studies (26, 37, 51), five candidate genera, 
“Candidatus Anammoxoglobus”, “Candidatus Brocadia”, 
“Candidatus Jettenia”, “Candidatus Kuenenia”, and 
“Candidatus Scalindua”, have been proposed (17), but none 
of the pure cultures have been so far isolated. Oshiki et al. 
(37) reported that two dominant enrichments, those of 
“Candidatus Brocadia sinica” and of “Candidatus Scalindua 
sp.”, were obtained by using membrane bioreactors. The  
fluorescence in situ hybridization study indicated that  
anammox bacteria dominated the biomass, as they accounted 
for more than 90% of its total biomass. Additional ecophysi-
ological and biochemical studies using this dominated and 
stable enrichment are required to obtain pure anammox  
bacteria and to fully clarify the anammox process.

As the current issue of Microbes and Environments  
introduces the ecophysiological functions of anaerobes. For 
example, the intestinal colonization by Lachnospiraceae 
bacterial strain AJ11941 may contribute to the development 
of metabolic dysfunctions in obese mice (20). The gut envi-
ronments may represent interesting anaerobic ecosystems to 
study in association with their hosts (40, 47). Cross-
interactions between aerobic and anaerobic microorganisms 
are important factors with respect to organic matter degrada-
tion and material cycles of various types (19, 29, 31). Recent 
studies reported that anaerobic microorganisms use filaments 
(flagella and pili) for their communication and respiration, 
and that they are important functional parts than previously 
thought (18, 21). Interspecies electron transfer using conduc-
tive flagella or inorganic materials will become one of the 
most intriguing topics in microbial ecology.
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