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Abstract

We have little information about the definite role of the thioredoxin antioxidant complex system during viral infection, particu-
larly during human T- cell lymphotropic virus type 1 (HTLV-1) infection and the HTLV-1- associated myelopathy/tropical spastic 
paraparesis (HAM/TSP) state. Therefore, we conducted comprehensive next- generation sequencing (NGS) analysis to deter-
mine Trx system expression changes in three categories of subjects: sero- negative HTLV-1 individuals, asymptomatic HTLV-1 
people and HAM/TSP patients. We found that Trx capacity is reduced in the HAM/TSP state compared to healthy individuals, 
which indicates increasing inflammation and reduction of apoptosis, which might contribute to the progression of inflammation 
in the spinal cord, which in turn may develop into the HAM/TSP state.

INTROdUCTION
Human T- cell lymphotropic virus type 1 (HTLV-1) is one 
of the most important retrovirus type C members, affecting 
5–10 million people worldwide [1]. This virus is endemic in 
many areas, including Japan, sub- Saharan Africa, the Carib-
bean islands, South America, the Middle East (particularly 
northeastern Iran), Romania and Australo- Melanesia [1, 2].

HTLV-1 is the aetiological agent of serious disorders such as 
HTLV-1- associated myelopathy/tropical spastic paraparesis 
(HAM/TSP) and adult T- cell leukaemia/lymphoma (ATLL) 
[3]. Although over 90 % of HTLV-1- infected people remain 
asymptomatic carriers throughout their lives, approxi-
mately 1–2 % of infected individuals develop HAM/TSP 
and another 2–4% develop the fatal hematological condi-
tion of ATLL [2, 3]. The precise mechanisms of HAM/TSP 
have not yet been fully elucidated. However, increasing 
proviral load, viral virulence factors such as Tax, HBZ, Rex, 
p12 and p30/13, and host epigenetic changes, in particular 
dysregulation and modulation of the immune system, 
may be predisposing factors for these disorders [1–3]. In 
addition, there is now growing evidence for the increased 
likelihood of progression to HAM/TSP in the Caribbean 
and South American populations and those infected with 

the virus through contaminated blood products or unsafe 
sexual contacts [2, 3].

The most important hallmarks of HAM/TSP include chronic 
inflammation in the cerebro- spinal fluid (CSF); increased 
plasma levels of pro- inflammatory cytokines (i.e. IL-4, IL-6, 
IL-8, IFN-ϒ and TNF-α); CD4+ T cells, which continuously 
and spontaneously produce IFN- ϒ, TNF-α, IL-6 and IL-1β; 
and increased levels of CXCL10, CXCL9 and CXCR3 in the 
CSF, as well as numerous indicators of chronic inflammation 
in the CSF [2, 4]. In relation to the pathogenesis of HAM/
TSP, it has been suggested that HTLV-1- infected CD4+ T cells 
spontaneously produce large quantities of IFN-ϒ and pro- 
inflammatory cytokines, causing tight junction disruption 
of the blood–brain barrier and leading to the exacerbation 
of inflammation in the CSF. Subsequently, the glial central 
nervous system (CNS) cell astrocytes are stimulated in 
response to the increased IFN-ϒ and secrete the chemokines 
CXCL9 and CXCL10, which cause the migration and recruit-
ment of the CD4+ and CTLs to the CSF. Finally, clinical 
manifestations appear along with a prolonged inflammation 
process and demyelination and axonal loss of the neural cells 
[2, 4, 5]. One of the mechanisms through which inflammation 
causes cell damage and disease exacerbation is the production 
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of free radicals and oxidative stress. In turn, the human body 
employs several mechanisms against HTLV-1 infection to 
reduce free radical damage (iNOS) or oxidative stress [6].

The Trx system is one of the most important antioxidant 
systems in the body that protects the cells from degradation 
due to oxidative stress and also inhibits apoptosis through 
AP-1, NF_κB and AMPK [7, 8]. According to a review of the 
literature, CD4+ T cells cells produce large amounts of Trx 
during retroviral infections, particularly in HIV and HTLV-1 
infection. This would reduce the damage due to oxidative 
stress and is considered to be one of the potential therapeutic 
alternatives for HTLV-1, working by reducing the release of 
inflammatory cytokines [9–14]. However, the role of the Trx 
system in HTLV-1 pathogenesis has not yet been investigated 
and quite limited studies have been performed.

The aim of this study was to evaluate the expression changes 
of Trx system genes (including Trx, Trx reductase, NADPH 
and scavenger ROS) and some of the most important genes 
responsible for T cell proliferation and apoptosis.

MeTHOdS
First, all the HTLV-1- related microarray studies of the 
profiles of gene expression during infection were recorded 
and reviewed in GEO DataSets and four studies of GSE29312, 
GSE29332, GSE19080 and GSE38537 were selected and 
analysed. In this study the people were divided into three 
categories: healthy individuals, asymptomatic carriers (ACs) 
and HAM/TSP patients. The recorded expression profiles for 
the Trx system, BCL2, TP53, caspase 3, caspase 8 and TNFR 
genes of 117 patients, including 29 healthy donors, 50 ACs and 
38 HAM/ TSP patients, were evaluated. GEO2R software was 

used to determine differentially expressed genes (DEGs) and 
logarithm fold change. DEGs were calculated based on Benja-
mini–Hochberg false discovery rate (FDR)- adjusted P- value 
assessment and a P- value of less than 0.05 was considered 
significant. Negative LogFC values   indicated downregulation 
and positive LogFC values indicated overexpression (Table 1). 
Moreover, the data were analysed separately and a heatmap 
of the studied genes was constructed and plotted using the 
online server hiv- land ( www. hiv. lanl. gov/ content/ sequence/ 
HEATMAP/ heatmap. html) (Fig. 1).

Results and discussion
We found that Trx capacity dysregulation occurred in the 
HAM/TSP state. Based on the DEG results, it was found that 
the expression of Trx reductase and BCL2 was decreased in 
the HAM/TSP group compared to the AC and healthy donor 
groups. Further, the expression levels of Trx, scavenger ROS, 
TNFR (Fas) and caspase 3 in the healthy group decreased 
steadily compared with those in the AC and HAM/TSP 
patients. However, the expression levels of BCL2 and TP53, 
which are the most important of the genes responsible for 
cell survival, were increased in the AC and HAM/TSP groups 
compared with the healthy control group (Fig. 1).

In general, our observations revealed that the Trx system 
function decreases in HAM/TSP patients, whereas the 
expression of inducer genes responsible for cell proliferation 
increases. Based on the available documents, apoptosis, cell 
survival, tissue invasion and proliferation processes are the 
most important signalling pathways in HAM/TSP pathogen-
esis [15]. Stimulation of cell proliferation through NF_κB, 
TP53, AP-1 and PI3K- Akt induces the survival of HTLV-1 
infected CD4+ T cells, enhancing IFN-ϒ production and 

Table 1. List of the expression changes of the target genes in different groups

GEO studies Trx Trx reductase NADPH Scavenger ROS BCL2 TP53 Caspase 3 Caspase 8 TNFR

GSE29312 Healthy vs ACs 0.14 −0.03 3.10 0.72 −0.27 −0.29 0.04 −0.44 −0.9

Healthy vs HAM/
TSP

0.30 0.03 −0.72 −2.11 −0.39 −0.48 0.12 −0.81 −0.20

ACs vs HAM/TSP −0.15 −0.07 3.17 1.93 2.17 0.18 0.73 −0.48 0.53

GSE29332 Healthy vs ACs 0.01 0.04 1.7 0.15 0.08 −0.15 −0.17 −0.20 −0.12

Healthy vs HAM/
TSP

0.66 −0.60 −2.33 0.40 −0.11 0.06 0.21 −1.06 0.16

ACs vs HAM/TSP −0.69 0.56 0.63 −0.56 0.05 0.88 0.14 0.72 0.19

GSE19080 Healthy vs ACs −0.45 −0.73 0 −0.16 0.09 −0.46 0.43 0.74 0.61

Healthy vs HAM/
TSP

−0.26 −0.66 0 −0.26 0.16 −0.39 0.59 1.01 0.47

ACs vs HAM/TSP 0.18 0.71 0 0.15 0.66 0.07 0.15 0.26 −0.14

GSE38537 Healthy vs ACs 0.72 0.15 −0.53 0.11 −0.17 0.10 −0.52 −0.48 0.46

Healthy vs HAM/
TSP

1.12 0.11 0.34 0.18 0.20 0.14 −0.24 −0.45 0.65

ACs vs HAM/TSP 0.15 −0.04 −0.67 0.73 0.27 0.04 0.28 −0.72 0.19
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stimulating the inflammation process and recruiting inflam-
matory cells to the CSF [15, 16]. In HAM/TSP patients, TP53 
and BCL2 genes were expressed at increased levels, while 
caspase and TNFR (Fas) were downregulated, which in turn 
led to cell survival and stimulation of inflammation in these 
patients.

As mentioned above, free radicals, particularly reactive 
oxygen species, are produced during the inflammation 
process, which causes cell damage and cell death by trig-
gering TNFR and caspases, but these agents are resolved by 
the thioredoxin redox system activities [17, 18]. According 
to current evidence, the thioredoxin redox system supports 
cell growth and inhibits apoptosis [18, 19]. In this study, we 
found that TNFR and caspase 3 (the main apoptotic inducers) 
were downregulated while BCL2 (anti- apoptotic factor) 
was overexpressed in HAM/TSP patients. These changes 
can lead to cell survival and HTLV-1 infected CD4+ T cell 
immortalization, which can be supported from continuous 
inflammation and develop into HAM/TSP and ATLL [20–22]. 
We also found TP53 and caspase 8 overexpression, which are 
known causes of cell death. TP53 and caspase 8 can induce 
apoptosis and can be considered for the development of novel 
HTLV-1 treatment approaches. According to Mulloy et al., 
HTLV-1 Tax can suppress apoptosis through the inhibition 
of TP53 [23]. Therefore, molecular targeting of HTLV-1 Tax 
efficiently enhances the overexpression of TP53 and prevents 
CD4+ T cell immortalization [24].

Studies about the expression changes of the genes responsible 
for the antioxidant function during HTLV-1 infection are quite 
limited. However, according to previously published reports, 
antioxidant capacity is reduced in HTLV-1 infection [6, 9, 12]. 
Shomali et al. have suggested that it may be appropriate to 
predict the progression towards the HAM/TSP by assessing 
the altered expression of genes responsible for the antioxi-
dant process [6]. Corroborating previous studies, Yaghoubi 
et al. showed that the expression level of Trx system genes in 
HAM/TSP patients was significantly decreased compared to 
that in ACs and normal individuals [9]. The Trx system can 
reduce the progressive inflammatory process in HAM/TSP 
by reducing the deleterious effects of free oxygen radicals and 
protecting against oxidative stress due to the inflammation. It 
is a proper treatment alternative for HAM/TSP.

Finally, the molecular signalling networks based on KEGG 
pathway data were proposed in order to better understand the 
role of the Trx system during the HTLV-1 infection (Fig. 2).

According to preset results, the thioredoxin redox system 
inhibits the inflammatory process and cell damage with the 
support of anti- apoptotic biomarkers (e.g. BCL2) and through 
the inhibition of various inflammatory signalling pathways, 
including NF_κB, JNK/STAT, MAPKs, PI3K/AKT and 
mTOR. This efficiently reduces the inflammatory response 
and development into HAM/TSP. A recent clinical trial study 
confirmed the anti- inflammatory, immunomodulatory and 

Fig. 1. Fig. 1: Heatmap of the hub genes in different patient categories (healthy, ACs and HAM/TSP). The colour of the genes indicates the 
expression level. Red represents a lower expression level while overexpression is indicated using green.
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anti- proliferative effects of the reducing agents when admin-
istered with IFN-α for the treatment of HAM/TSP. Therefore, 
the evaluation of cellular antioxidant capacity changes during 
HTLV-1 pathogenesis could be a new approach in the deter-
mination of the diagnostic biomarkers of HTLV-1 infection 
and development of a new generation of anti- HTLV-1 drugs.
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